Teste de Gaussianidade 2

Tamanho: px
Começar a partir da página:

Download "Teste de Gaussianidade 2"

Transcrição

1 Teste de Gaussianidade 2 Leonardo T^orres 3 de agosto de 2 Resumo Breve revis~ao do teste 2 usado para determinar se a func~ao densidade de probabilidade associada a variavel observada de um instrumento e Gaussiana ou n~ao, com um certo nvel de signic^ancia (chance de cometer um equvoco). O problema Precisamos descobrir se os diversos valores observados em um instrumento de medic~ao est~ao distribudos segundo uma func~ao de densidade de probabilidade Gaussiana, para o caso em que a variavel desejada e mantida xa. Isto e, desejamos saber se a func~ao de densidade de probabilidade associada a pode ser escrita como f( ) = s obs p 2 e ( x ) 2 obs 2s 2 obs ; () sendo a media amostral dos valores observados e s obs o desvio padr~ao amostral dos valores observados: X = N (k) N k= s obs X = [ (k) ] 2 N 2 O Histograma Suponha que foram observados N = valores de para um dado instrumento, mantendo-se a variavel desejada constante. Fazendo-se um histograma para visualizar a distribuic~ao de valores, obtem-se a Fig.a. A partir dos valores de e s obs calculados dos dados observados, e conhecendo-se a express~ao (), obtem-se a curva vermelha mostrada na Fig.b, que corresponde ao numero

2 (a) 2 Histograma dos valores observados (N = ) 2 o (b) Ajuste do histograma a curva Gaussiana o (asteriscos) e nk e (curva vermelha) Figura : (a) Histograma para valores de. curva Normal com par^ametros e s obs. (b) Pontos do histograma sobre a de valores que deveriam ter sido observados, se a variavel realmente fosse Gaussiana e o numero de pontos N! : e = f(xk obs )N ; (2) sendo o numero de amostras e esperadas no intervalo k, xk obs o valor medio do intervalo k; N o numero total de valores observados e o tamanho dos intervalos (classes) do histograma. 3 A variavel Q 2 A m de medir o quanto os pontos da curva vermelha (Fig.b) se distanciam dos pontos obtidos para o histograma dos valores observados, podemos denir a variavel Q 2, que 2

3 pode ser vista como um ndice de qualidade de ajuste da curva: Q 2 = XNc ( e o )2 k= e (3) sendo N c o numero de classes do histograma e o o numero de valores observados na classe k do histograma tracado. Como Q 2 e uma variavel formada pela composic~ao de valores aleatorios, e tambem uma variavel aleatoria. Um fato interessante e que a func~ao de densidade de probabilidade da nova variavel Q 2 tende para uma fdp conhecida como func~ao de densidade de probabilidade 2, mostrada na Fig.2, ou seja: lim N! Q2 = 2 : Figura 2: Func~oes de densidade de probabilidade 2 para diferentes graus de liberdade. A fdp 2 e caracterizada pelo numero de graus de liberdade g, denido como g = N c p ; sendo N c o numero de classes do histograma e p o numero de par^ametros que precisaram ser estimados, pois n~ao eram conhecidos a priori, para tracar a func~ao de densidade de probabilidade No presente caso, usamos a media e desvio-padr~ao amostrais para este m, e portanto temos p = 2. 4 O Teste de Ader^encia 2 O teste de Gaussianidade 2, tambem chamado de teste de ader^encia 2 (qui-quadrado), fundamenta-se na minimizac~ao da chance de se cometer o seguinte equvoco, conhecido como Erro do Tipo I [Magalh~aes and de Lima, 22]: 3

4 Rejeitar a hipotese de que os dados observados t^em distribuic~ao Gaussiana, para o caso em que os dados observados t^em realmente distribuic~ao Para isto, observamos que quanto maior for o valor de Q 2 em (3), maior sera a discrep^ancia entre o histograma obtido e a curva Gaussiana (ou curva Normal) correspondente, indicando que ha maior chance de os dados n~ao estarem distribudos de forma.6 Teste de aderencia.4.2. fdp χ Chance de se cometer o Erro Tipo I χ 2 Figura 3: Exemplo de aplicac~ao do teste de ader^encia 2 para um nvel de siginic^ancia = %, ou seja, q c,, para g =. q c Para avaliarmos a chance de cometermos o equvoco supracitado, denimos um limite para o valor de Q 2, tal que:. Se Q 2 q c ) rejeitamos a hipotese de que os dados observados t^em distribuic~ao 2. Se Q 2 < q c ) aceitamos a hipotese de que os dados observados t^em distribuic~ao Neste caso, quanto maior o valor de q c, menor sera a chance de cometermos o erro do Tipo I, ao rejeitarmos a hipotese de que a distribuic~ao e Por outro lado, mais facil sera aceitarmos que a distribuic~ao e Gaussiana, mesmo que ela n~ao seja (Erro Tipo II)! E possvel mostrar que, infelizmente, n~ao conseguimos minimizar simultaneamente tanto a chance de cometermos o Erro Tipo I, quanto a chance de cometermos o Erro Tipo II. Escolhe-se, usualmente, a minimizac~ao do Erro Tipo I, como descrito neste documento. 4

5 Em func~ao disto, dizemos que aceitamos ou rejeitamos a hipotese de que os dados t^em distribuic~ao Normal, a um nvel de signic^ancia de, onde e a chance de cometermos o Erro Tipo I. Esta chance corresponde a area sob a curva da func~ao de densidade de probabilidade 2, com g graus de liberdade, para o intervalo 2 > q c, conforme mostrado na Fig.3. Os valores de q c s~ao obtidos de tabelas que contem valores para as probabilidades cumulativas 2, para diferentes graus de liberdade, em func~ao do nvel de signic^ancia [Magalh~aes and de Lima, 22]. Refer^encias [Magalh~aes and de Lima, 22] Magalh~aes, M. N. and de Lima, A. C. P. (22). Noc~oes de Probabilidade e Estatstica. EdUSP.

Instrumentação Industrial. Fundamentos de Instrumentação Industrial: Introdução a Metrologia Incerteza na Medição

Instrumentação Industrial. Fundamentos de Instrumentação Industrial: Introdução a Metrologia Incerteza na Medição Instrumentação Industrial Fundamentos de Instrumentação Industrial: Introdução a Metrologia Incerteza na Medição Introdução a Metrologia O que significa dizer: O comprimento desta régua é 30cm. A temperatura

Leia mais

Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo

Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Testes de Hipóteses Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais

Leia mais

Testes de Hipóteses. Henrique Dantas Neder

Testes de Hipóteses. Henrique Dantas Neder Testes de Hipóteses Henrique Dantas Neder Vimos no capítulo anterior como construir intervalos de conança para parâmetros da população. Um outro procedimento muito utilizado em inferência é o estabelecimento

Leia mais

Professora Ana Hermínia Andrade. Período

Professora Ana Hermínia Andrade. Período Teste de Hipóteses Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.1 Teste de Hipóteses O Teste de Hipóteses

Leia mais

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA)

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA) 1. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância

Leia mais

NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional

NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional Estimação Teste de Hipóteses Qual é a probabilidade de "cara no lançamento de uma moeda? A moeda é honesta ou desequilibrada?

Leia mais

b) Variáveis Aleatórias Contínuas

b) Variáveis Aleatórias Contínuas Disciplina: 1171 b) Variáveis Aleatórias Contínuas Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1 Uma variável aleatória é contínua (v.a.c.) se seu conjunto de valores é qualquer intervalo

Leia mais

Testes de Hipóteses para. uma Única Amostra. Objetivos de Aprendizagem. 9.1 Teste de Hipóteses. UFMG-ICEx-EST-027/031 07/06/ :07

Testes de Hipóteses para. uma Única Amostra. Objetivos de Aprendizagem. 9.1 Teste de Hipóteses. UFMG-ICEx-EST-027/031 07/06/ :07 -027/031 07/06/2018 10:07 9 ESQUEMA DO CAPÍTULO 9.1 TESTE DE HIPÓTESES 9.2 TESTES PARA A MÉDIA DE UMA DISTRIBUIÇÃO NORMAL, VARIÂNCIA CONHECIDA 9.3 TESTES PARA A MÉDIA DE UMA DISTRIBUIÇÃO NORMAL, VARIÂNCIA

Leia mais

Estatística e Probabilidade. Aula 11 Cap 06

Estatística e Probabilidade. Aula 11 Cap 06 Aula 11 Cap 06 Intervalos de confiança para variância e desvio padrão Confiando no erro... Intervalos de Confiança para variância e desvio padrão Na produção industrial, é necessário controlar o tamanho

Leia mais

1 Probabilidade - Modelos Probabilísticos

1 Probabilidade - Modelos Probabilísticos 1 Probabilidade - Modelos Probabilísticos Modelos probabilísticos devem, de alguma forma, 1. identificar o conjunto de resultados possíveis do fenômeno aleatório, que costumamos chamar de espaço amostral,

Leia mais

Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo

Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Testes de Hipóteses Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais

Leia mais

Instrumentação Industrial. Fundamentos de Instrumentação Industrial: Caracterização Estática

Instrumentação Industrial. Fundamentos de Instrumentação Industrial: Caracterização Estática Instrumentação Industrial Fundamentos de Instrumentação Industrial: Caracterização Estática Caracterização Estática de Instrumentos Definição: determinação da relação entre a entrada e a saída do instrumento,

Leia mais

Inferência Estatística Básica. Teste de Hipóteses: decidindo na presença de incerteza

Inferência Estatística Básica. Teste de Hipóteses: decidindo na presença de incerteza Inferência Estatística Básica Teste de Hipóteses: decidindo na presença de incerteza Exemplo Inicial A ProCare Industries LTDA lançou, certa vez, um produto chamado Gender Choice. De acordo com a propaganda,

Leia mais

Razão para rejeitar H 0

Razão para rejeitar H 0 Processo do teste de hipótese Hipótese de pesquisa: a idade média da população é 5 H : μ = 5 H 1 : μ 5 É X = improvável se μ =5? População Selecionar amostra aleatória Sim: Rejeite Ho Para definir pouco

Leia mais

Análise de Aderência e de Associação

Análise de Aderência e de Associação Análise de Aderência e de Associação Capítulo 14, Estatística Básica (Bussab & Morettin, 8a Edição) Capítulo 8, Introdução Computacional à Probabilidade e Estatística (Pedrosa & Gama, Porto Editora) 8a

Leia mais

INFERÊNCIA ESTATÍSTICA. ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p

INFERÊNCIA ESTATÍSTICA. ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p INFERÊNCIA ESTATÍSTICA ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (desconhecida) de elementos em uma população, apresentando certa característica de interesse, a partir

Leia mais

Métodos Estatísticos em Física Experimental. Prof. Zwinglio Guimarães 1 o semestre de 2015 Aulas 11 e 12

Métodos Estatísticos em Física Experimental. Prof. Zwinglio Guimarães 1 o semestre de 2015 Aulas 11 e 12 Métodos Estatísticos em Física Experimental Prof. Zwinglio Guimarães 1 o semestre de 015 Aulas 11 e 1 O método dos mínimos quadrados (revisão) O método dos mínimos quadrados consiste em determinar os parâmetros

Leia mais

AULA 8 Experimentos multinomiais e tabelas de contingência

AULA 8 Experimentos multinomiais e tabelas de contingência 1 AULA 8 Experimentos multinomiais e tabelas de contingência Ernesto F. L. Amaral 05 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas

Leia mais

AULA 05 Teste de Hipótese

AULA 05 Teste de Hipótese 1 AULA 05 Teste de Hipótese Ernesto F. L. Amaral 03 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F. 2008. Introdução

Leia mais

10. Aplicação das Técnicas de Probabilidade e Estatística em Hidrologia

10. Aplicação das Técnicas de Probabilidade e Estatística em Hidrologia 10.1. Determinação do valor de projeto Em favor da segurança, geralmente as obras de recursos hídricos são dimensionadas para valores extremos ou característicos que garantam ao mesmo tempo a segurança

Leia mais

( x) = a. f X. = para x I. Algumas Distribuições de Probabilidade Contínuas

( x) = a. f X. = para x I. Algumas Distribuições de Probabilidade Contínuas Probabilidade e Estatística I Antonio Roque Aula Algumas Distribuições de Probabilidade Contínuas Vamos agora estudar algumas importantes distribuições de probabilidades para variáveis contínuas. Distribuição

Leia mais

b) Variáveis Aleatórias Contínuas

b) Variáveis Aleatórias Contínuas Disciplina: 221171 b) Variáveis Aleatórias Contínuas Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1 Uma variável aleatória é contínua (v.a.c.) se seu conjunto de valores é qualquer intervalo

Leia mais

Tratamento Estatístico de dados em Física Experimental

Tratamento Estatístico de dados em Física Experimental Tratamento Estatístico de dados em Física Experimental Prof. Zwinglio Guimarães 2 o semestre de 2017 Tópico 6 - Testes estatísticos (Chi-quadrado, z e t ) O método dos mínimos quadrados (revisão) O método

Leia mais

CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO

CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO Ana Paula Araujo Correa Eder Queiroz Newton Trevisan DEFINIÇÃO É um teste de hipóteses que se destina a encontrar um valor da dispersão para duas variáveis

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5 MAE 229 - Introdução à Probabilidade e Estatística II Resolução Lista 5 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 (a) De uma forma geral, o desvio padrão é usado para medir a dispersão

Leia mais

Variável Aleatória Contínua:

Variável Aleatória Contínua: Distribuição Contínua Normal Luiz Medeiros de Araujo Lima Filho Departamento de Estatística UFPB Variável Aleatória Contínua: Assume valores num intervalo de números reais. Não é possível listar, individualmente,

Leia mais

X ~ Binomial (n ; p) H: p = p 0 x A: p p 0 (ou A: p > p 0 ou A: p < p 0 ) { X k 1 } U { X k 2 } (ou { X k } ou { X k }) x RC não rejeitamos H

X ~ Binomial (n ; p) H: p = p 0 x A: p p 0 (ou A: p > p 0 ou A: p < p 0 ) { X k 1 } U { X k 2 } (ou { X k } ou { X k }) x RC não rejeitamos H NOÇÕES DE TESTE DE HIPÓTESES (II) Nível Descritivo valor P Resumo X ~ Binomial (n ; p) (1) Estabelecer as hipóteses sobre p: H: p = p 0 x A: p p 0 (ou A: p > p 0 ou A: p < p 0 ) (2) Escolher um nível de

Leia mais

Testes de Hipóteses sobre a média: Várias Amostras

Testes de Hipóteses sobre a média: Várias Amostras Testes de Hipóteses sobre a média: Várias Amostras Na aula de hoje veremos como comparar mais de duas populações, baseados em dados fornecidos por amostras dessas populações. A Análise de Variância (ANOVA)

Leia mais

- Testes Qui-quadrado - Aderência e Independência

- Testes Qui-quadrado - Aderência e Independência - Testes Qui-quadrado - Aderência e Independência 1 1. Testes de Aderência Objetivo: Testar a validade de um modelo probabilístico discreto a um conjunto de dados observados Exemplo 1: Segundo Mendel (geneticista

Leia mais

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma:

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: 46 VALOR ESPERADO CONDICIONADO Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: Variável contínua E + ( X Y

Leia mais

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias nuas

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias nuas ITA - Laboratório rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aula 04: Variáveis Aleatórias Contínuas nuas Função densidade de probabilidade contínua nua f(x) a b f(x) 0 para

Leia mais

- desvio padrão, caracteriza a dispersão dos resultados

- desvio padrão, caracteriza a dispersão dos resultados O resultado da experiência, então, pode ser expresso na forma < x > ± x n (veja a explicação mais adiante) - desvio padrão, caracteriza a dispersão dos resultados Histograma de frequências Histograma

Leia mais

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE Funções Geradoras de Variáveis Aleatórias 1 Funções Geradoras de Variáveis Aleatórias Nos programas de simulação existe um GNA e inúmeras outras funções matemáticas descritas como Funções Geradoras de

Leia mais

Intervalos de Confiança

Intervalos de Confiança Intervalos de Confiança INTERVALOS DE CONFIANÇA.1 Conceitos básicos.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição numérica de

Leia mais

Tratamento Estatístico de Dados em Física Experimental

Tratamento Estatístico de Dados em Física Experimental Tratamento Estatístico de Dados em Física Experimental Prof. Zwinglio Guimarães o semestre de 06 Tópico 7 - Ajuste de parâmetros de funções (Máxima Verossimilhança e Mínimos Quadrados) Método da máxima

Leia mais

AULA 17 - Distribuição Uniforme e Normal

AULA 17 - Distribuição Uniforme e Normal AULA 17 - Distribuição Uniforme e Normal Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Distribuições Contínuas Em muitos problemas se torna matematicamente mais simples considerar um espaço

Leia mais

Exercícios de programação

Exercícios de programação Exercícios de programação Estes exercícios serão propostos durante as aulas sobre o Mathematica. Caso você use outra linguagem para os exercícios e problemas do curso de estatística, resolva estes problemas,

Leia mais

- Testes Qui-quadrado - Aderência e Independência

- Testes Qui-quadrado - Aderência e Independência - Testes Qui-quadrado - Aderência e Independência 1 1. Testes de Aderência Objetivo: Testar a adequabilidade de um modelo probabilístico a um conjunto de dados observados Exemplo 1: Segundo Mendel (geneticista

Leia mais

PHD 5742 Estatística Aplicada ao Gerenciamento dos Recursos Hídricos. 6 a aula Testes de Hipóteses

PHD 5742 Estatística Aplicada ao Gerenciamento dos Recursos Hídricos. 6 a aula Testes de Hipóteses PHD 5742 Estatística Aplicada ao Gerenciamento dos Recursos Hídricos 6 a aula Testes de Hipóteses Mario Thadeu Leme de Barros Luís Antonio Villaça de Garcia Abril / 2007 Estatística Aplicada ao Gerenciamento

Leia mais

UFPE - Universidade Federal de Pernambuco Curso: Economia Disciplina: Estatística Econômica Professor: Waldemar Araújo de S. Cruz Oliveira Júnior

UFPE - Universidade Federal de Pernambuco Curso: Economia Disciplina: Estatística Econômica Professor: Waldemar Araújo de S. Cruz Oliveira Júnior UFPE - Universidade Federal de Pernambuco Curso: Economia Disciplina: Estatística Econômica Professor: Waldemar Araújo de S. Cruz Oliveira Júnior TESTE DE HIPÓTESES 1 Introdução Considere a seguinte situação:

Leia mais

Nosso objetivo agora é apresentar procedimentos estatísticos simples para verificar se um conjunto de dados amostrais dá ou não suporte à uma

Nosso objetivo agora é apresentar procedimentos estatísticos simples para verificar se um conjunto de dados amostrais dá ou não suporte à uma TESTE DE HIPÓTESES Em geral. Feita determinada afirmação sobre uma população, usualmente sobre um parâmetro dessa, desejamos saber se os resultados experimentais provenientes de uma amostra contrariam

Leia mais

Modelagem e Avaliação de Desempenho. Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2014

Modelagem e Avaliação de Desempenho. Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2014 Modelagem e Avaliação de Desempenho Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2014 Análise de desempenho São disponíveis duas abordagens para realizar a análise de desempenho:

Leia mais

Aula 10 Estimação e Intervalo de Confiança

Aula 10 Estimação e Intervalo de Confiança Aula 10 Estimação e Intervalo de Confiança Objetivos da Aula Fixação dos conceitos de Estimação; Utilização das tabelas de Distribuição Normal e t de Student Introdução Freqüentemente necessitamos, por

Leia mais

Aula 16: Análise de Aderência e Associação

Aula 16: Análise de Aderência e Associação Aula 16: Análise de Aderência e Associação Professor: José Luiz Padilha da Silva email: [email protected] Departamento de Estatística Universidade Federal do Paraná Curitiba, 2018 José Luiz Padilha da

Leia mais

a) 19% b) 20% c) Aproximadamente 13% d) 14% e) Qualquer número menor que 20%

a) 19% b) 20% c) Aproximadamente 13% d) 14% e) Qualquer número menor que 20% 0. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância

Leia mais

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística Capítulo 3 Introdução à Probabilidade E à Inferência Estatística definições e propriedades: Propriedade 5: A probabilidade condicional reflete como a probabilidade de um evento pode mudar se soubermos

Leia mais

HIDROLOGIA. Aula vazões mínimas de referência. Prof. Enoque

HIDROLOGIA. Aula vazões mínimas de referência. Prof. Enoque HIDROLOGIA Aula vazões mínimas de referência Prof. Enoque CRITÉRIOS PARA DEFINIÇÃO DA VAZÃO A SER OUTORGADA A vazão mínima é caracterizada pela sua duração e freqüência, sendo utilizada para os seguintes

Leia mais

AULA 7 - Inferência em MQO: ICs e Testes de

AULA 7 - Inferência em MQO: ICs e Testes de AULA 7 - Inferência em MQO: ICs e Testes de Hipóteses Susan Schommer Econometria I - IE/UFRJ Nosso primeiro objetivo aqui é relembrar a diferença entre estimação de ponto vs estimação de intervalo. Vamos

Leia mais

Simulação com Modelos Teóricos de Probabilidade

Simulação com Modelos Teóricos de Probabilidade Simulação com Modelos Teóricos de Probabilidade p. 1/21 Algumas distribuições teóricas apresentam certas características que permitem uma descrição correta de variáveis muito comuns em processos de simulação.

Leia mais

Testes de hipóteses. Wagner H. Bonat Fernando P. Mayer Elias T. Krainski

Testes de hipóteses. Wagner H. Bonat Fernando P. Mayer Elias T. Krainski Testes de hipóteses Wagner H. Bonat Fernando P. Mayer Elias T. Krainski Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação 07/06/2018 WB, FM, EK ( LEG/DEST/UFPR

Leia mais

Distribuição de Probabilidade. Prof.: Joni Fusinato

Distribuição de Probabilidade. Prof.: Joni Fusinato Distribuição de Probabilidade Prof.: Joni Fusinato [email protected] [email protected] Variáveis Aleatórias Contínuas Distribuição de Probabilidade Contínua Modelo Normal Modelo t de Student

Leia mais

Medidas de Dispersão. Prof.: Joni Fusinato

Medidas de Dispersão. Prof.: Joni Fusinato Medidas de Dispersão Prof.: Joni Fusinato [email protected] [email protected] 1 Dispersão Estatística As medidas de posição (média, mediana, moda) descrevem características dos valores numéricos

Leia mais

Testes de Hipóteses I

Testes de Hipóteses I Testes de Hipóteses I Capítulo 12, Estatística Básica (Bussab&Morettin, 8a Edição) 5a AULA 23/04/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues 1. Introdução Neste capítulo pretendemos resolver

Leia mais

Aula 5. Teste de Hipóteses II. Capítulo 12, Bussab&Morettin Estatística Básica 7ª Edição

Aula 5. Teste de Hipóteses II. Capítulo 12, Bussab&Morettin Estatística Básica 7ª Edição Aula 5. Teste de Hipóteses II. Capítulo 12, Bussab&Morettin Estatística Básica 7ª Edição Procedimento teste de hipótese para proporção. Resumo. (1) Estabelecer as hipóteses: H: p = p 0 contra uma das alternativas

Leia mais

Econometria Semestre

Econometria Semestre Econometria Semestre 2010.01 174 174 21.4. PROCESSOS ESTOCÁSTICOS INTEGRADOS O passeio aleatório é apenas um caso particular de uma classe de processos estocásticos conhecidos como processos integrados.

Leia mais

TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA

TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA Suponha que numa amostra aleatória de tamanho n de uma dada população são observados dois atributos ou características A e B (qualitativas ou quantitativas), uma

Leia mais

Probabilidade Aula 08

Probabilidade Aula 08 332 Probabilidade Aula 8 Magno T. M. Silva Escola Politécnica da USP Maio de 217 A maior parte dos exemplos dessa aula foram extraídos de Jay L. Devore, Probabilidade e Estatística para engenharia e ciências,

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 4

MAE Introdução à Probabilidade e Estatística II Resolução Lista 4 MAE 9 - Introdução à Probabilidade e Estatística II Resolução Lista 4 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 Antes de testar se a produtividade média dos operários do período diurno

Leia mais

Distribuição Normal. Prof a Dr a Alcione Miranda dos Santos. Abril, 2011

Distribuição Normal. Prof a Dr a Alcione Miranda dos Santos. Abril, 2011 Distribuição Normal Prof a Dr a Alcione Miranda dos Santos Universidade Federal do Maranhão Programa de Pós-Graduação em Saúde Coletiva email:[email protected] Abril, 2011 1 / 18 Sumário Introdução

Leia mais

Teste de hipóteses para proporção populacional p

Teste de hipóteses para proporção populacional p Teste de hipóteses para proporção populacional p 1 Métodos Estatísticos Métodos Estatísticos Estatística Descritiva Inferência Estatística Estimação Teste de Hipóteses 2 TESTE DE HIPÓTESES Eu acredito

Leia mais

Distribuição Gaussiana

Distribuição Gaussiana Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Distribuição Gaussiana Introdução à Bioestatística Turma Nutrição Aula 7: Distribuição Normal (Gaussiana) Distribuição

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 9 Modelos Probabilísticos Variável Contínua Vamos ver como criar um modelo probabilístico, o que é uma função densidade de probabilidade (fdp), e como calcular probabilidades no caso de variáveis

Leia mais

Capítulo 2. Distribuições de Probabilidade Estimativas de parâmetros e tempos-atéfalha. Flávio Fogliatto

Capítulo 2. Distribuições de Probabilidade Estimativas de parâmetros e tempos-atéfalha. Flávio Fogliatto Capítulo 2 Distribuições de Probabilidade Estimativas de parâmetros e tempos-atéfalha Flávio Fogliatto 1 Ajustes de distribuições Em estudos de confiabilidade, dados são amostrados a partir de uma população

Leia mais

EXPERIMENTAÇÃO ZOOTÉCNICA. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

EXPERIMENTAÇÃO ZOOTÉCNICA. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari EXPERIMENTAÇÃO ZOOTÉCNICA Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari [email protected] INTRODUÇÃO Um dos principais objetivos da estatística é a tomada de decisões a respeito da população,

Leia mais

Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias

Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias Aula de hoje! Tópicos! Distribuição de probabilidades! Variáveis aleatórias! Variáveis discretas! Variáveis contínuas! Distribuição binomial! Distribuição normal! Referências! Barrow, M. Estatística para

Leia mais

Análise da Regressão múltipla: MQO Assintótico y = β 0 + β 1 x 1 + β x +... β k x k + u 3. Propriedades assintóticas Antes, propriedades sobre amostra

Análise da Regressão múltipla: MQO Assintótico y = β 0 + β 1 x 1 + β x +... β k x k + u 3. Propriedades assintóticas Antes, propriedades sobre amostra Análise da Regressão múltipla: MQO Assintótico Capítulo 5 do Wooldridge Análise da Regressão múltipla: MQO Assintótico y = β 0 + β 1 x 1 + β x +... β k x k + u 3. Propriedades assintóticas Antes, propriedades

Leia mais

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite Professora Ariane Ferreira Modelos Probabilísticos de v.a. continuas Distribuição de Probabilidades 2 IPRJ UERJ Ariane Ferreira

Leia mais