Teste de Gaussianidade 2
|
|
|
- Terezinha Fortunato de Almeida
- 9 Há anos
- Visualizações:
Transcrição
1 Teste de Gaussianidade 2 Leonardo T^orres 3 de agosto de 2 Resumo Breve revis~ao do teste 2 usado para determinar se a func~ao densidade de probabilidade associada a variavel observada de um instrumento e Gaussiana ou n~ao, com um certo nvel de signic^ancia (chance de cometer um equvoco). O problema Precisamos descobrir se os diversos valores observados em um instrumento de medic~ao est~ao distribudos segundo uma func~ao de densidade de probabilidade Gaussiana, para o caso em que a variavel desejada e mantida xa. Isto e, desejamos saber se a func~ao de densidade de probabilidade associada a pode ser escrita como f( ) = s obs p 2 e ( x ) 2 obs 2s 2 obs ; () sendo a media amostral dos valores observados e s obs o desvio padr~ao amostral dos valores observados: X = N (k) N k= s obs X = [ (k) ] 2 N 2 O Histograma Suponha que foram observados N = valores de para um dado instrumento, mantendo-se a variavel desejada constante. Fazendo-se um histograma para visualizar a distribuic~ao de valores, obtem-se a Fig.a. A partir dos valores de e s obs calculados dos dados observados, e conhecendo-se a express~ao (), obtem-se a curva vermelha mostrada na Fig.b, que corresponde ao numero
2 (a) 2 Histograma dos valores observados (N = ) 2 o (b) Ajuste do histograma a curva Gaussiana o (asteriscos) e nk e (curva vermelha) Figura : (a) Histograma para valores de. curva Normal com par^ametros e s obs. (b) Pontos do histograma sobre a de valores que deveriam ter sido observados, se a variavel realmente fosse Gaussiana e o numero de pontos N! : e = f(xk obs )N ; (2) sendo o numero de amostras e esperadas no intervalo k, xk obs o valor medio do intervalo k; N o numero total de valores observados e o tamanho dos intervalos (classes) do histograma. 3 A variavel Q 2 A m de medir o quanto os pontos da curva vermelha (Fig.b) se distanciam dos pontos obtidos para o histograma dos valores observados, podemos denir a variavel Q 2, que 2
3 pode ser vista como um ndice de qualidade de ajuste da curva: Q 2 = XNc ( e o )2 k= e (3) sendo N c o numero de classes do histograma e o o numero de valores observados na classe k do histograma tracado. Como Q 2 e uma variavel formada pela composic~ao de valores aleatorios, e tambem uma variavel aleatoria. Um fato interessante e que a func~ao de densidade de probabilidade da nova variavel Q 2 tende para uma fdp conhecida como func~ao de densidade de probabilidade 2, mostrada na Fig.2, ou seja: lim N! Q2 = 2 : Figura 2: Func~oes de densidade de probabilidade 2 para diferentes graus de liberdade. A fdp 2 e caracterizada pelo numero de graus de liberdade g, denido como g = N c p ; sendo N c o numero de classes do histograma e p o numero de par^ametros que precisaram ser estimados, pois n~ao eram conhecidos a priori, para tracar a func~ao de densidade de probabilidade No presente caso, usamos a media e desvio-padr~ao amostrais para este m, e portanto temos p = 2. 4 O Teste de Ader^encia 2 O teste de Gaussianidade 2, tambem chamado de teste de ader^encia 2 (qui-quadrado), fundamenta-se na minimizac~ao da chance de se cometer o seguinte equvoco, conhecido como Erro do Tipo I [Magalh~aes and de Lima, 22]: 3
4 Rejeitar a hipotese de que os dados observados t^em distribuic~ao Gaussiana, para o caso em que os dados observados t^em realmente distribuic~ao Para isto, observamos que quanto maior for o valor de Q 2 em (3), maior sera a discrep^ancia entre o histograma obtido e a curva Gaussiana (ou curva Normal) correspondente, indicando que ha maior chance de os dados n~ao estarem distribudos de forma.6 Teste de aderencia.4.2. fdp χ Chance de se cometer o Erro Tipo I χ 2 Figura 3: Exemplo de aplicac~ao do teste de ader^encia 2 para um nvel de siginic^ancia = %, ou seja, q c,, para g =. q c Para avaliarmos a chance de cometermos o equvoco supracitado, denimos um limite para o valor de Q 2, tal que:. Se Q 2 q c ) rejeitamos a hipotese de que os dados observados t^em distribuic~ao 2. Se Q 2 < q c ) aceitamos a hipotese de que os dados observados t^em distribuic~ao Neste caso, quanto maior o valor de q c, menor sera a chance de cometermos o erro do Tipo I, ao rejeitarmos a hipotese de que a distribuic~ao e Por outro lado, mais facil sera aceitarmos que a distribuic~ao e Gaussiana, mesmo que ela n~ao seja (Erro Tipo II)! E possvel mostrar que, infelizmente, n~ao conseguimos minimizar simultaneamente tanto a chance de cometermos o Erro Tipo I, quanto a chance de cometermos o Erro Tipo II. Escolhe-se, usualmente, a minimizac~ao do Erro Tipo I, como descrito neste documento. 4
5 Em func~ao disto, dizemos que aceitamos ou rejeitamos a hipotese de que os dados t^em distribuic~ao Normal, a um nvel de signic^ancia de, onde e a chance de cometermos o Erro Tipo I. Esta chance corresponde a area sob a curva da func~ao de densidade de probabilidade 2, com g graus de liberdade, para o intervalo 2 > q c, conforme mostrado na Fig.3. Os valores de q c s~ao obtidos de tabelas que contem valores para as probabilidades cumulativas 2, para diferentes graus de liberdade, em func~ao do nvel de signic^ancia [Magalh~aes and de Lima, 22]. Refer^encias [Magalh~aes and de Lima, 22] Magalh~aes, M. N. and de Lima, A. C. P. (22). Noc~oes de Probabilidade e Estatstica. EdUSP.
Instrumentação Industrial. Fundamentos de Instrumentação Industrial: Introdução a Metrologia Incerteza na Medição
Instrumentação Industrial Fundamentos de Instrumentação Industrial: Introdução a Metrologia Incerteza na Medição Introdução a Metrologia O que significa dizer: O comprimento desta régua é 30cm. A temperatura
Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Testes de Hipóteses Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais
Testes de Hipóteses. Henrique Dantas Neder
Testes de Hipóteses Henrique Dantas Neder Vimos no capítulo anterior como construir intervalos de conança para parâmetros da população. Um outro procedimento muito utilizado em inferência é o estabelecimento
Professora Ana Hermínia Andrade. Período
Teste de Hipóteses Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.1 Teste de Hipóteses O Teste de Hipóteses
DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA)
1. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância
NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional
NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional Estimação Teste de Hipóteses Qual é a probabilidade de "cara no lançamento de uma moeda? A moeda é honesta ou desequilibrada?
b) Variáveis Aleatórias Contínuas
Disciplina: 1171 b) Variáveis Aleatórias Contínuas Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1 Uma variável aleatória é contínua (v.a.c.) se seu conjunto de valores é qualquer intervalo
Testes de Hipóteses para. uma Única Amostra. Objetivos de Aprendizagem. 9.1 Teste de Hipóteses. UFMG-ICEx-EST-027/031 07/06/ :07
-027/031 07/06/2018 10:07 9 ESQUEMA DO CAPÍTULO 9.1 TESTE DE HIPÓTESES 9.2 TESTES PARA A MÉDIA DE UMA DISTRIBUIÇÃO NORMAL, VARIÂNCIA CONHECIDA 9.3 TESTES PARA A MÉDIA DE UMA DISTRIBUIÇÃO NORMAL, VARIÂNCIA
Estatística e Probabilidade. Aula 11 Cap 06
Aula 11 Cap 06 Intervalos de confiança para variância e desvio padrão Confiando no erro... Intervalos de Confiança para variância e desvio padrão Na produção industrial, é necessário controlar o tamanho
1 Probabilidade - Modelos Probabilísticos
1 Probabilidade - Modelos Probabilísticos Modelos probabilísticos devem, de alguma forma, 1. identificar o conjunto de resultados possíveis do fenômeno aleatório, que costumamos chamar de espaço amostral,
Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Testes de Hipóteses Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais
Instrumentação Industrial. Fundamentos de Instrumentação Industrial: Caracterização Estática
Instrumentação Industrial Fundamentos de Instrumentação Industrial: Caracterização Estática Caracterização Estática de Instrumentos Definição: determinação da relação entre a entrada e a saída do instrumento,
Inferência Estatística Básica. Teste de Hipóteses: decidindo na presença de incerteza
Inferência Estatística Básica Teste de Hipóteses: decidindo na presença de incerteza Exemplo Inicial A ProCare Industries LTDA lançou, certa vez, um produto chamado Gender Choice. De acordo com a propaganda,
Razão para rejeitar H 0
Processo do teste de hipótese Hipótese de pesquisa: a idade média da população é 5 H : μ = 5 H 1 : μ 5 É X = improvável se μ =5? População Selecionar amostra aleatória Sim: Rejeite Ho Para definir pouco
Análise de Aderência e de Associação
Análise de Aderência e de Associação Capítulo 14, Estatística Básica (Bussab & Morettin, 8a Edição) Capítulo 8, Introdução Computacional à Probabilidade e Estatística (Pedrosa & Gama, Porto Editora) 8a
INFERÊNCIA ESTATÍSTICA. ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p
INFERÊNCIA ESTATÍSTICA ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (desconhecida) de elementos em uma população, apresentando certa característica de interesse, a partir
Métodos Estatísticos em Física Experimental. Prof. Zwinglio Guimarães 1 o semestre de 2015 Aulas 11 e 12
Métodos Estatísticos em Física Experimental Prof. Zwinglio Guimarães 1 o semestre de 015 Aulas 11 e 1 O método dos mínimos quadrados (revisão) O método dos mínimos quadrados consiste em determinar os parâmetros
AULA 8 Experimentos multinomiais e tabelas de contingência
1 AULA 8 Experimentos multinomiais e tabelas de contingência Ernesto F. L. Amaral 05 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas
AULA 05 Teste de Hipótese
1 AULA 05 Teste de Hipótese Ernesto F. L. Amaral 03 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F. 2008. Introdução
10. Aplicação das Técnicas de Probabilidade e Estatística em Hidrologia
10.1. Determinação do valor de projeto Em favor da segurança, geralmente as obras de recursos hídricos são dimensionadas para valores extremos ou característicos que garantam ao mesmo tempo a segurança
( x) = a. f X. = para x I. Algumas Distribuições de Probabilidade Contínuas
Probabilidade e Estatística I Antonio Roque Aula Algumas Distribuições de Probabilidade Contínuas Vamos agora estudar algumas importantes distribuições de probabilidades para variáveis contínuas. Distribuição
b) Variáveis Aleatórias Contínuas
Disciplina: 221171 b) Variáveis Aleatórias Contínuas Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1 Uma variável aleatória é contínua (v.a.c.) se seu conjunto de valores é qualquer intervalo
Tratamento Estatístico de dados em Física Experimental
Tratamento Estatístico de dados em Física Experimental Prof. Zwinglio Guimarães 2 o semestre de 2017 Tópico 6 - Testes estatísticos (Chi-quadrado, z e t ) O método dos mínimos quadrados (revisão) O método
CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO
CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO Ana Paula Araujo Correa Eder Queiroz Newton Trevisan DEFINIÇÃO É um teste de hipóteses que se destina a encontrar um valor da dispersão para duas variáveis
MAE Introdução à Probabilidade e Estatística II Resolução Lista 5
MAE 229 - Introdução à Probabilidade e Estatística II Resolução Lista 5 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 (a) De uma forma geral, o desvio padrão é usado para medir a dispersão
Variável Aleatória Contínua:
Distribuição Contínua Normal Luiz Medeiros de Araujo Lima Filho Departamento de Estatística UFPB Variável Aleatória Contínua: Assume valores num intervalo de números reais. Não é possível listar, individualmente,
X ~ Binomial (n ; p) H: p = p 0 x A: p p 0 (ou A: p > p 0 ou A: p < p 0 ) { X k 1 } U { X k 2 } (ou { X k } ou { X k }) x RC não rejeitamos H
NOÇÕES DE TESTE DE HIPÓTESES (II) Nível Descritivo valor P Resumo X ~ Binomial (n ; p) (1) Estabelecer as hipóteses sobre p: H: p = p 0 x A: p p 0 (ou A: p > p 0 ou A: p < p 0 ) (2) Escolher um nível de
Testes de Hipóteses sobre a média: Várias Amostras
Testes de Hipóteses sobre a média: Várias Amostras Na aula de hoje veremos como comparar mais de duas populações, baseados em dados fornecidos por amostras dessas populações. A Análise de Variância (ANOVA)
- Testes Qui-quadrado - Aderência e Independência
- Testes Qui-quadrado - Aderência e Independência 1 1. Testes de Aderência Objetivo: Testar a validade de um modelo probabilístico discreto a um conjunto de dados observados Exemplo 1: Segundo Mendel (geneticista
Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma:
46 VALOR ESPERADO CONDICIONADO Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: Variável contínua E + ( X Y
rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias nuas
ITA - Laboratório rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aula 04: Variáveis Aleatórias Contínuas nuas Função densidade de probabilidade contínua nua f(x) a b f(x) 0 para
- desvio padrão, caracteriza a dispersão dos resultados
O resultado da experiência, então, pode ser expresso na forma < x > ± x n (veja a explicação mais adiante) - desvio padrão, caracteriza a dispersão dos resultados Histograma de frequências Histograma
Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE
Funções Geradoras de Variáveis Aleatórias 1 Funções Geradoras de Variáveis Aleatórias Nos programas de simulação existe um GNA e inúmeras outras funções matemáticas descritas como Funções Geradoras de
Intervalos de Confiança
Intervalos de Confiança INTERVALOS DE CONFIANÇA.1 Conceitos básicos.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição numérica de
Tratamento Estatístico de Dados em Física Experimental
Tratamento Estatístico de Dados em Física Experimental Prof. Zwinglio Guimarães o semestre de 06 Tópico 7 - Ajuste de parâmetros de funções (Máxima Verossimilhança e Mínimos Quadrados) Método da máxima
AULA 17 - Distribuição Uniforme e Normal
AULA 17 - Distribuição Uniforme e Normal Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Distribuições Contínuas Em muitos problemas se torna matematicamente mais simples considerar um espaço
Exercícios de programação
Exercícios de programação Estes exercícios serão propostos durante as aulas sobre o Mathematica. Caso você use outra linguagem para os exercícios e problemas do curso de estatística, resolva estes problemas,
- Testes Qui-quadrado - Aderência e Independência
- Testes Qui-quadrado - Aderência e Independência 1 1. Testes de Aderência Objetivo: Testar a adequabilidade de um modelo probabilístico a um conjunto de dados observados Exemplo 1: Segundo Mendel (geneticista
PHD 5742 Estatística Aplicada ao Gerenciamento dos Recursos Hídricos. 6 a aula Testes de Hipóteses
PHD 5742 Estatística Aplicada ao Gerenciamento dos Recursos Hídricos 6 a aula Testes de Hipóteses Mario Thadeu Leme de Barros Luís Antonio Villaça de Garcia Abril / 2007 Estatística Aplicada ao Gerenciamento
UFPE - Universidade Federal de Pernambuco Curso: Economia Disciplina: Estatística Econômica Professor: Waldemar Araújo de S. Cruz Oliveira Júnior
UFPE - Universidade Federal de Pernambuco Curso: Economia Disciplina: Estatística Econômica Professor: Waldemar Araújo de S. Cruz Oliveira Júnior TESTE DE HIPÓTESES 1 Introdução Considere a seguinte situação:
Nosso objetivo agora é apresentar procedimentos estatísticos simples para verificar se um conjunto de dados amostrais dá ou não suporte à uma
TESTE DE HIPÓTESES Em geral. Feita determinada afirmação sobre uma população, usualmente sobre um parâmetro dessa, desejamos saber se os resultados experimentais provenientes de uma amostra contrariam
Modelagem e Avaliação de Desempenho. Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2014
Modelagem e Avaliação de Desempenho Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2014 Análise de desempenho São disponíveis duas abordagens para realizar a análise de desempenho:
Aula 10 Estimação e Intervalo de Confiança
Aula 10 Estimação e Intervalo de Confiança Objetivos da Aula Fixação dos conceitos de Estimação; Utilização das tabelas de Distribuição Normal e t de Student Introdução Freqüentemente necessitamos, por
Aula 16: Análise de Aderência e Associação
Aula 16: Análise de Aderência e Associação Professor: José Luiz Padilha da Silva email: [email protected] Departamento de Estatística Universidade Federal do Paraná Curitiba, 2018 José Luiz Padilha da
a) 19% b) 20% c) Aproximadamente 13% d) 14% e) Qualquer número menor que 20%
0. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância
Capítulo 3. Introdução à Probabilidade E à Inferência Estatística
Capítulo 3 Introdução à Probabilidade E à Inferência Estatística definições e propriedades: Propriedade 5: A probabilidade condicional reflete como a probabilidade de um evento pode mudar se soubermos
HIDROLOGIA. Aula vazões mínimas de referência. Prof. Enoque
HIDROLOGIA Aula vazões mínimas de referência Prof. Enoque CRITÉRIOS PARA DEFINIÇÃO DA VAZÃO A SER OUTORGADA A vazão mínima é caracterizada pela sua duração e freqüência, sendo utilizada para os seguintes
AULA 7 - Inferência em MQO: ICs e Testes de
AULA 7 - Inferência em MQO: ICs e Testes de Hipóteses Susan Schommer Econometria I - IE/UFRJ Nosso primeiro objetivo aqui é relembrar a diferença entre estimação de ponto vs estimação de intervalo. Vamos
Simulação com Modelos Teóricos de Probabilidade
Simulação com Modelos Teóricos de Probabilidade p. 1/21 Algumas distribuições teóricas apresentam certas características que permitem uma descrição correta de variáveis muito comuns em processos de simulação.
Testes de hipóteses. Wagner H. Bonat Fernando P. Mayer Elias T. Krainski
Testes de hipóteses Wagner H. Bonat Fernando P. Mayer Elias T. Krainski Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação 07/06/2018 WB, FM, EK ( LEG/DEST/UFPR
Distribuição de Probabilidade. Prof.: Joni Fusinato
Distribuição de Probabilidade Prof.: Joni Fusinato [email protected] [email protected] Variáveis Aleatórias Contínuas Distribuição de Probabilidade Contínua Modelo Normal Modelo t de Student
Medidas de Dispersão. Prof.: Joni Fusinato
Medidas de Dispersão Prof.: Joni Fusinato [email protected] [email protected] 1 Dispersão Estatística As medidas de posição (média, mediana, moda) descrevem características dos valores numéricos
Testes de Hipóteses I
Testes de Hipóteses I Capítulo 12, Estatística Básica (Bussab&Morettin, 8a Edição) 5a AULA 23/04/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues 1. Introdução Neste capítulo pretendemos resolver
Aula 5. Teste de Hipóteses II. Capítulo 12, Bussab&Morettin Estatística Básica 7ª Edição
Aula 5. Teste de Hipóteses II. Capítulo 12, Bussab&Morettin Estatística Básica 7ª Edição Procedimento teste de hipótese para proporção. Resumo. (1) Estabelecer as hipóteses: H: p = p 0 contra uma das alternativas
Econometria Semestre
Econometria Semestre 2010.01 174 174 21.4. PROCESSOS ESTOCÁSTICOS INTEGRADOS O passeio aleatório é apenas um caso particular de uma classe de processos estocásticos conhecidos como processos integrados.
TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA
TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA Suponha que numa amostra aleatória de tamanho n de uma dada população são observados dois atributos ou características A e B (qualitativas ou quantitativas), uma
Probabilidade Aula 08
332 Probabilidade Aula 8 Magno T. M. Silva Escola Politécnica da USP Maio de 217 A maior parte dos exemplos dessa aula foram extraídos de Jay L. Devore, Probabilidade e Estatística para engenharia e ciências,
MAE Introdução à Probabilidade e Estatística II Resolução Lista 4
MAE 9 - Introdução à Probabilidade e Estatística II Resolução Lista 4 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 Antes de testar se a produtividade média dos operários do período diurno
Distribuição Normal. Prof a Dr a Alcione Miranda dos Santos. Abril, 2011
Distribuição Normal Prof a Dr a Alcione Miranda dos Santos Universidade Federal do Maranhão Programa de Pós-Graduação em Saúde Coletiva email:[email protected] Abril, 2011 1 / 18 Sumário Introdução
Teste de hipóteses para proporção populacional p
Teste de hipóteses para proporção populacional p 1 Métodos Estatísticos Métodos Estatísticos Estatística Descritiva Inferência Estatística Estimação Teste de Hipóteses 2 TESTE DE HIPÓTESES Eu acredito
Distribuição Gaussiana
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Distribuição Gaussiana Introdução à Bioestatística Turma Nutrição Aula 7: Distribuição Normal (Gaussiana) Distribuição
Stela Adami Vayego DEST/UFPR
Resumo 9 Modelos Probabilísticos Variável Contínua Vamos ver como criar um modelo probabilístico, o que é uma função densidade de probabilidade (fdp), e como calcular probabilidades no caso de variáveis
Capítulo 2. Distribuições de Probabilidade Estimativas de parâmetros e tempos-atéfalha. Flávio Fogliatto
Capítulo 2 Distribuições de Probabilidade Estimativas de parâmetros e tempos-atéfalha Flávio Fogliatto 1 Ajustes de distribuições Em estudos de confiabilidade, dados são amostrados a partir de uma população
EXPERIMENTAÇÃO ZOOTÉCNICA. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
EXPERIMENTAÇÃO ZOOTÉCNICA Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari [email protected] INTRODUÇÃO Um dos principais objetivos da estatística é a tomada de decisões a respeito da população,
Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias
Aula de hoje! Tópicos! Distribuição de probabilidades! Variáveis aleatórias! Variáveis discretas! Variáveis contínuas! Distribuição binomial! Distribuição normal! Referências! Barrow, M. Estatística para
Análise da Regressão múltipla: MQO Assintótico y = β 0 + β 1 x 1 + β x +... β k x k + u 3. Propriedades assintóticas Antes, propriedades sobre amostra
Análise da Regressão múltipla: MQO Assintótico Capítulo 5 do Wooldridge Análise da Regressão múltipla: MQO Assintótico y = β 0 + β 1 x 1 + β x +... β k x k + u 3. Propriedades assintóticas Antes, propriedades
Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira
Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite Professora Ariane Ferreira Modelos Probabilísticos de v.a. continuas Distribuição de Probabilidades 2 IPRJ UERJ Ariane Ferreira
