Autovalores e Autovetores
|
|
|
- Beatriz Quintanilha Alvarenga
- 9 Há anos
- Visualizações:
Transcrição
1 Autovalores e Autovetores INTRODUÇÃO Essa apostila vai explicar um pouco de Auto Valores e Auto Vetores. A primeira coisa que é importante ressaltar é que essa matéria normalmente cai de forma bem simples nas provas em algumas questões de conta. Mas, é importante, também, entender bem o conceito por trás desse tema. 1 AUTOVETOR/AUTOVALOR Definição: Seja T: V transformação linear. Dizemos que o v não nulo que satisfaz a equação Tv= v é o autovetor associado ao autovalor. Essa a definição é a do livro, mas o que ela quer dizer? Ela mostra que o v é um vetor, que multiplicado por um número (, terá a mesma aplicação da multiplicação pela matriz que serve como transformação linear. Um exemplo: Seja a matriz T=. Concorda que podemos dizer que assim? é o autovetor associado ao auto valor 0? Como Basta ver da definição. Se você multiplicar T por você multiplicar v por 0 (auto valor) o resultado será 0 também., o resultado será 0. Assim como se Concorda também que podemos dizer que (1, -1) é um autovetor associado ao auto valor 2? Por que? Basta ver da definição. Se você multiplicar T por (1,-1) o resultado será (2, -2). Assim como, se você multiplicar (1, -1) por 2 (auto valor), o resultado será também ( 2, -2). Essa é a definição de autovalores e auto vetores. Algumas coisas que não podemos confundir: O v é sempre um vetor (AH VÁ), que terá a mesma quantidade de linhas que a matriz T tem de colunas. Isso é óbvio, pois T x v é uma multiplicação possível.
2 O autovalor pode ser 0, mas v não. Isso é da definição. Caso contrário, v= (0,0) seria sempre autovetor certo? Pois qualquer matriz T multiplicada por v seria 0, assim como, qualquer autovalor multiplicado por T. Se v pertence ao núcleo de T e é não nulo, então, ele é associado ao autovalor 0. Tipo, não aprendemos que os vetores pertencentes ao núcleo de uma matriz T são aqueles que levam T ao vetor 0? Logo, Tv= 0 e como v é não nulo e v =0. Chegamos a conclusão que só pode ser 0. O autovetor associado a um autovalor não é único. Já que, se você multiplicar por um k diferente de 0, ele continuará sendo autovetor. Calculando Autovalor e Autovetor: A gente já sabe que Tv= v. Então, Tv- v=0. Até aí ok... Agora, vem a parte mais complicadinha: v = ( I)v. Cara, quando você multiplica por I, você ta multiplicando por uma matriz identidade. Então, só vai ter valor não nulo nas diagonais, certo? E aí, quando você for multiplicar com v novamente, você vai multiplicar a primeira linha de v pelo primeiro número da diagonal e a segunda linha pelo segundo número da diagonal. Whaaat? Um exemplo básico. Vamos multiplicar (1, -1) por 2. Na fórmula v o resultador seria obviamente (2, -2). Agora se multiplicarmos 2 por I, obteríamos a matriz: multiplicarmos pelo vetor (1, -1), também obteríamos (2, -2). Ou seja, dá no mesmo. e ao E aí fica simples: Tv- v=0. Então Tv- ( I) v= 0 e, colocando v em evidência (T- I) v=0. Agora, vem a grande sacada. A gente viu ali em cima que v (auto vetor) é seeeempre diferente de 0. E a gente quer um v que leve o resultado da operação dessa matriz (T- I) com v a 0, ou seja, é o núcleo dessa matriz que queremos. E o núcleo, só é diferente de 0, se o determinante da matriz é igual a 0. Então, obviamente, o autovalor é calculado igualando o determinante 1- (T- I)=0 e o auto vetor é determinado resolvendo o sistema 2- (T I) v= 0. Cara, é isso... A parte de definição é essa. É legal entender, porque ajuda nas questões mais conceituais, mas vamos praticar um pouco as questões de cálculo mesmo. O que você vai fazer para resolver as questões de cálculo é substituir na fórmula 1 e calcular os autovalores e depois substituir na fórmula 2 e calcula o auto vetor. Só um exemplo pra entender, e depois vamos trabalhar com questões de provas.
3 Ex: Vou usar a matriz que usei acima. Seja : Calcule os autovalores e autovetores. Aplicando na fórmula: det chegamos nos autovalores: 0 e 2. =0. Então, (1- )² - 1=0. Resolvendo essa equação, Agora, aplicamos a Fórmula 2: (T I) v= 0. Para cada autovalor, vamos ter um autovetor. Para o autovalor 0: v=0. E aí chegamos no vetor (1,1). Ou, k(1,1), já que como foi explicado anteriormente, o autovetor multiplicado por um k diferente de 0, continua sendo um autovetor associado ao mesmo autovalor. 2 CONCEITOS FINAIS AutoValores de reflexão no eixo x: Quando você reflete uma reta no eixo x, os valores nesse eixo são preservados e no eixo y são refletidos. Assim, os auto valores são 1 e -1. É só calcular os auto valores da matriz que faz essa transformação, ou seja,. Quer testar? Lança qualquer vetor nessa matriz que o resultado será uma reflexão desse vetor no eixo x. Autovalores de projeção no eixo x: Vetores no eixo x são preservados e no eixo x levados a 0. Assim, os auto valores são 1 e 0. É só lancar na matriz que faz essa transformação, ou seja, que o resultado será a projeção desse vetor no eixo x.. Quer testar? Lança qualquer vetor nessa matriz O determinante de uma matriz é sempre o produto dos seus autovalores. Decora isso! Ajuda bastante! Principalmente quando um dos autovalores é 0, e aí, você pode tirar diversas coisas. Se um dos autovalores é 0, o determinante é 0, então a matriz tem linhas LD, então não é inversível, e blá blá blá. Autovetores associados a autovalores distintos são sempre linearmente independentes. Cada autovetor está associado a apenas um autovalor, ou seja, cada autovetor gera um único autovalor. Entretanto, cada autovalor pode gerar infinitos autovetores.
4 3 DIAGONALIZAÇÃO Essa parte da matéria é mais chatinha, mas é só aplicação de fórmula. Dizemos que uma matriz quadrada A é diagonalizável se existe P invertível tal que P-¹AP=D, ou A= PDP-¹. Dá no mesmo. D é uma matriz diagonal composta pelos autovalores de A. P é uma matriz formada com os autovatores associados aos autovalores de A em suas colunas. Disso, podemos tirar alguns conceitos importante: A matriz só vai poder ser diagonalizável se for possível essa multiplicação, certo? Então, uma matriz nxn tem que ter n autovetores LI. Ou seja, não seria possível uma inversão da matriz P formada por seus autovetores, pois não seria uma matriz quadrada, por exemplo. É bem simples né? Vou trabalhar com questões de provas antigas, agora. É o melhor jeito de estudar, e em cada questão vou tentar explicar um pouco do conceito. Então, se não quiser fazer, vale a pena só ler, pra ver se ta entendendo bem a matéria. [UFRJ-P ] 1- Os autovalores da matriz são: Resposta: Mamatinha né. Iguala o determinante de M- I a 0. E fica (3 ) x(-3- +8= 0. Resolvendo esse sistema: a resposta é 1 e -1. Terceira Prova Seja T: R² R² uma transformação linear que multiplica os vetores (-1,1) e (1,2) por 4. Seja A a matriz de T é uma base qualquer. Calcule a soma dos elementos da diagonal de A. Resposta: Bora lá. O conceito principal de autovalor e autovetor é Tv= v. Vamos aplicar nessa questão. Ele diz que essa T representada por A, multiplica os vetores (- 1, 1) e (1,2) por 4.
5 Ou seja: T(-1,1)= 4(-1,1) T(1,2)= 4(1,2) Isso quer dizer que o vetor (-1, 1) é um autoespaço associado ao autovalor 4 e que o vetor (1, 2) é o autoespaço associado ao autovalor 4. Logo a matriz 2x2 tem seus autovalores = 4. E, seus elementos da diagonal serão 4 e 4. Portanto, a matriz que faz essa transformação é exatamente: Logo, a soma é dos elementos da diagonal é 8. [UFRJ-P ] As matrizes dos enunciados abaixo têm todos os autovalores reais. Ok... (I) Seja A M 7x7 uma matriz não diagonalizável. Suponha que dois dos autovalores de A tenham autoespaços de dimensão 3 e 2 respectivamente. Então A tem exatamente 2 autovalores distintos. (II) Se A M 5x5 possui exatamente 4 autovalores distintos, então A não é diagonalizável. Resposta: Vamos analisar a primeira alternativa. Para ser diagonalizável, a matriz 7x7 tem que ter autovetores de dimensão 7. Para não ser diagonalizável, ela tem que ter autovetores de dimensão menor que 7. O enunciado diz que ela tem no mínimo dimensão 5 com dois autovalores. Entretanto, não podemos afirmar que ela tem exatamente dois autovalores distintos. Poderíamos ter mais um autovalor que gerasse um autovetor de dimensão 1, e a matriz continuaria não diagonalizável. Vamos analisar a segunda alternativa. Um autovalor pode gerar autovetores de infinitas soluções. Ou seja, podemos ter uma matriz A com 4 autovalores distintos, e um desses autovalores gerar dois autovetores. Nesse caso, a matriz seria diagonalizável. #Fikadik Autovalores para Projeção, Reflexão e Rotação.
6 Projeção: Os autovalores associados a uma projeção serão sempre 0 e 1, pois projeções anulam algumas componentes e mantém outras. Por exemplo, a projeção de um vetor no em um plano no terá dois autovalores 1 e um autovalor zero, pois ele anulará apenas uma dimensão. Já de um vetor no projetado no terá apenas um autovalor 1 e dois autovalores 0, pois anulam duas dimensões mantendo apenas uma. Reflexão: Os autovalores associados a uma reflexão serão sempre 1 e -1. Reflexões mantém as dimensões, porém sempre invertem a posição de alguns dos vetores. Rotação: Os autovalores associados serão complexos e variarão com o ângulo que o vetor rotacionará. Por exemplo, o autovalor pode ser escrito na forma trigonométrica por rotacionará o vetor em 45. Showww? Bons Estudos!!. Esse autovalor aumentará o tamanho em do vetor em e Agora é só dar o gás na prova e correr pro abraço!! :P Dúvidas? Acesse o Solucionador na página ou mande para contato@[email protected].
. Repare que ao multiplicar os vetores (-1,1) e
Álgebra Linear II P1-2014.2 Obs: Todas as alternativas corretas são as representadas pela letra A. 1 AUTOVETORES/ AUTOVALORES Essa questão poderia ser resolvida por um sistema bem chatinho. Mas, faz mais
Resolução das objetivas 3ª Prova de Álgebra Linear II da UFRJ, período
www.engenhariafacil.weebly.com Resolução das objetivas 3ª Prova de Álgebra Linear II da UFRJ, período 4. OBS: Todas as alternativas corretas são as letras A. ) Devemos utilizar o teorema que diz: (Im(A
Resolução da 1ª Prova de Álgebra Linear II da UFRJ, período
www.engenhariafacil.net Resolução da 1ª Prova de Álgebra Linear II da UFRJ, período 2014.2 OBS: Todas as alternativas corretas são as letras A. 1) Vamos falar um pouco de interseção, união e soma de subespaços.
5. Seja R : R 3 R 3 uma rotação em torno do eixo gerado por (0, 0, 1). Suponha que R mande o vetor
Universidade Federal do Rio de Janeiro Instituto de Matemática Disciplina: Álgebra Linear II Professor: Bruno Costa, Cesar Niche, Francesco Noseda, Luiz Carlos Guimarães, Mário de Oliveira, Milton Ramirez,
Exercício: Identifique e faça um esboço do conjunto solução da. 3x xy + y 2 + 2x 2 3y = 0
Motivação Exercício: Identifique e faça um esboço do conjunto solução da equação 3x 2 + 2 3xy + y 2 + 2x 2 3y = 0 Motivação Exercício: Identifique e faça um esboço do conjunto solução da equação 3x 2 +
Álgebra Linear II Apostila 2
Álgebra Linear II Apostila 2 1 SISTEMAS LINEARES Um sistema linear é um conjunto de equações de primeiro grau, que se escrevem em função de certas variáveis. A resolução do sistema visa encontrar justamente
Resolução da 1ª Prova de Álgebra Linear II da UFRJ, período Para saber a dimensão disso aqui basta escalonar e resolver o sistema.
www.engenhariafacil.net Resolução da 1ª Prova de Álgebra Linear II da UFRJ, período 2013.2 OBS: Todas as alternativas corretas são as letras A. 1) Para saber a dimensão disso aqui basta escalonar e resolver
GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1).
GAAL - Exame Especial - /julho/3 SOLUÇÕES Questão : Considere os pontos A = (,, 3), B = (, 3, ), C = (3,, ) e D = (,, ) (a) Chame de α o plano que passa pelos pontos A, B e C e de β o plano que passa pelos
Autovalores e Autovetores Determinante de. Motivando com Geometria Definição Calculando Diagonalização Teorema Espectral:
Lema (determinante de matriz ) A B A 0 Suponha que M = ou M =, com A e D 0 D C D matrizes quadradas Então det(m) = det(a) det(d) A B Considere M =, com A, B, C e D matrizes C D quadradas De forma geral,
Diagonalização de Operadores. Teorema Autovetores associados a autovalores distintos de um operador linear T : V V são linearmente independentes.
Teorema Autovetores associados a autovalores distintos de um operador linear T : V V são linearmente independentes. Teorema Autovetores associados a autovalores distintos de um operador linear T : V V
Resolução das objetivas 3ª Prova de Álgebra Linear II da UFRJ, período
www.engenhariafacil.weebly.com Resolução das objetivas 3ª Prova de Álgebra Linear II da UFRJ, período 2013.2 OBS: Todas as alternativas corretas são as letras A. 1) Para encontrar o autovetor associado
5. Seja A uma matriz qualquer. Assinale a afirmativa
UFRJ Instituto de Matemática Disciplina: Algebra Linear II - MAE 125 Professor: Bruno, Gregório, Luiz Carlos, Mario, Milton, Monique e Umberto Data: 12 de julho de 2013 Terceira Prova 1. Considere no espaço
GAAL Exercícios 6: Umas soluções
GAAL Exercícios 6: Umas soluções. Quais dos seguintes vetores são combinação linear de u = (5, 3, ), v = (, 4, 3), w = (, 8, 7)? (a) (, 2, 5) (b) (, 2, 8) (c) ( 2, ) (d) (, 2, 3). O conjunto {u, v, w}
(d) p(λ) = λ(λ + 1) (b) 4 (c) 1 (d) Seja A uma matriz n n. Assinale a alternativa FALSA:
UFRJ Instituto de Matemática Disciplina: Algebra Linear II - MAE 125 Professor: Bruno Costa, Luiz Carlos Guimarães, Mário de Oliveira, Milton Ramirez, Monique Carmona, Nilson Bernardes e Nilson Roberty
MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de T ( p(x) ) = p(x + 1) p(x), (a) 8, (b) 5, (c) 0, (d) 3, (e) 4.
MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de 218 Q1. Considere a transformação linear T : P 3 (R) P 2 (R), dada por T ( p(x) ) = p(x + 1) p(x), para todo p(x) P 3 (R), e seja A
GAAL - Terceira Prova - 15/junho/2013. Questão 1: Analise se a afirmação abaixo é falsa ou verdadeira:
GAAL - Terceira Prova - /junho/3 SOLUÇÕES Questão : Analise se a afirmação abaio é falsa ou verdadeira: [ A matriz A é diagonalizável SOLUÇÃO: Sabemos que uma matriz n n é diagonalizável se ela possuir
G3 de Álgebra Linear I
G3 de Álgebra Linear I 11.1 Gabarito 1) Seja A : R 3 R 3 uma transformação linear cuja matriz na base canônica é 4 [A] = 4. 4 (a) Determine todos os autovalores de A. (b) Determine, se possível, uma forma
Provas. As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor.
Provas As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor. Terceira prova. Sábado, 15/junho, 10:00-12:00 horas, ICEx. Diagonalização
Parte 3 - Produto Interno e Diagonalização
Parte 3 - Produto Interno e Diagonalização Produto Escalar: Sejam u = (u 1,..., u n ) e v = (v 1,..., v n ) dois vetores no R n. O produto escalar, ou produto interno euclidiano, entre esses vetores é
Resolução da 1ª Prova de Álgebra Linear II da UFRJ, período
www.engenhariafacil.net Resolução da 1ª Prova de Álgebra Linear II da UFRJ, período 2013.1 OBS: Todas as alternativas corretas são as letras A. 1) Para ter ao menos uma solução devemos escalonar para ver
Álgebra Linear I - Aula Forma diagonal de uma matriz diagonalizável
Álgebra Linear I - Aula 18 1 Forma diagonal de uma matriz diagonalizável 2 Matrizes ortogonais Roteiro 1 Forma diagonal de uma matriz diagonalizável Sejam A uma transformação linear diagonalizável, β =
Álgebra Linear I - Aula 22
Álgebra Linear I - Aula 1. Bases Ortonormais.. Matrizes Ortogonais. 3. Exemplos. 1 Bases Ortonormais Lembre que uma base β é ortogonal se está formada por vetores ortogonais entre si: para todo par de
. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1
QUESTÕES ANPEC ÁLGEBRA LINEAR QUESTÃO 0 Assinale V (verdadeiro) ou F (falso): (0) Os vetores (,, ) (,,) e (, 0,) formam uma base de,, o espaço vetorial gerado por,, e,, passa pela origem na direção de,,
AUTOVALORES E AUTOVETORES
AUTOVALORES E AUTOVETORES Prof a Simone Aparecida Miloca Definição 1 Uma tranformação linear T : V V é chamada de operador linear. Definição Seja T : V V um operador linear. existirem vetores não-nulos
(c) apenas as afirmações (II) e (III) são necessariamente verdadeiras;
Q1. Considere o espaço vetorial R 4 munido do seu produto interno usual. Sejam B uma base de R 4, A M 4 (R) uma matriz e T : R 4 R 4 a transformação linear tal que [T ] B = A. Considere as seguintes afirmações:
Matemática /09 - Determinantes 37. Determinantes. det A = a 11 a 22 a 12 a 21 = = 2
Matemática - 008/09 - Determinantes Determinantes de ordem e. Determinantes O erminante de uma matriz quadrada é um número real obtido a partir da soma de erminados produtos de elementos da matriz. Vamos
ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1
ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1 *Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções em VETORES Um vetor é uma lista ordenada de números
Matrizes Semelhantes e Matrizes Diagonalizáveis
Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas
Álgebra Linear I - Lista 12. Matrizes semelhantes. Diagonalização. Respostas
Álgebra Linear I - Lista 12 Matrizes semelhantes. Diagonalização Respostas 1) Determine quais das matrizes a seguir são diagonalizáveis. Nos caso afirmativos encontre uma base de autovetores e uma forma
Resolução da 1ª Prova de Álgebra Linear II da UFRJ, período Temos que combinar linearmente os vetores e encontrando o vetor (5,1,-1,0).
www.engenhariafacil.net Resolução da 1ª Prova de Álgebra Linear II da UFRJ, período 2014.1 OBS: Todas as alternativas corretas são as letras A. 1) Bem! Ele nos pede os valores de a partir de uma combinação
Determinante de uma matriz quadrada
Determinante de uma matriz quadrada A toda matriz quadrada A está associado um número real, chamado determinante de A. Ele é obtido por meio de certas operações com os elementos da matriz. O determinante
PLANO DE ENSINO E APRENDIZAGEM
SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE LICENCIATURA PLENA EM MATEMÁTICA PARFOR PLANO E APRENDIZAGEM I IDENTIFICAÇÃO: PROFESSOR (A) DA DISCIPLINA:
P3 de Álgebra Linear I
P3 de Álgebra Linear I 2008.2 Data: 14 de Novembro de 2008. Gabarito. 1) Decida se cada afirmação a seguir é verdadeira ou falsa. Considere uma transformação linear T : R 3 R 3 tal que existem vetores
Universidade Federal Fluminense - GAN
Solimá Gomes Pimentel Universidade Federal Fluminense IM - GAN Solimá Gomes Pimentel, ****- Matemática para Economia III/Solimá Gomes Pimentel 2pt, ; 31cm Inclui Bibliografia. 1. Matemática para Economia
Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia
Álgebra Linear Computacional Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia http://www.matmidia.mat.puc-rio.br 1 Álgebra Linear Computacional - Parte
Álgebra Linear I - Aula 20
Álgebra Linear I - Aula 20 1 Matrizes diagonalizáveis Exemplos 2 Forma diagonal de uma matriz diagonalizável 1 Matrizes diagonalizáveis Exemplos Lembramos que matriz quadrada a 1,1 a 1,2 a 1,n a 2,1 a
6 Matrizes. Matrizes. Aluno Matemática Eletricidade Básica Desenho Técnico A B C D 3 7 4
6 Definição: Chama-se matriz do tipo m x n toda tabela A formada por números reais distribuídos em m linhas e n colunas. Para exemplificar o uso de uma matriz, podemos visualizar a seguir uma tabela representando
Autovalores e Autovetores
Autovalores e Autovetores Maria Luísa B. de Oliveira SME0300 Cálculo Numérico 24 de novembro de 2010 Introdução Objetivo: Dada matriz A, n n, determinar todos os vetores v que sejam paralelos a Av. Introdução
Roteiros e Exercícios - Álgebra Linear v1.0
Roteiros e Exercícios - Álgebra Linear v1.0 Robinson Alves Lemos 14 de janeiro de 2017 Introdução Este material é um roteiro/apoio para o curso de álgebra linear da engenharia civil na UNEMAT de Tangará
Dependência linear e bases
Dependência linear e bases Sadao Massago 2014 Sumário 1 Dependência linear 1 2 ases e coordenadas 3 3 Matriz mudança de base 5 Neste texto, introduziremos o que é uma base do plano ou do espaço 1 Dependência
Legenda. Questões. Lista de Exercícios - Autovalores e autovetores. Cálculos Teoria Geometria
Lista de Exercícios - Autovalores e autovetores Legenda Cálculos Teoria Geometria Questões. Considere o quadrado determinado pelos pontos A(0, 0), B(, 0), C(, ) e D(0, ).Em cada item aplique o referido
Aula 5 - Produto Vetorial
Aula 5 - Produto Vetorial Antes de iniciar o conceito de produto vetorial, precisamos recordar como se calculam os determinantes. Mas o que é um Determinante? Determinante é uma função matricial que associa
Q1. Considere as bases: der 2 e der 3, respectivamente. Seja T :R 2 R 3 a transformação linear Temos que T(1,2) é igual a: [T] BC = 1 0
Q. Considere as bases: B = { (,),(, ) }, C = { (,,),(,,),(,,) }, der e der, respectivamente. Seja T :R R a transformação linear cuja matriz em relação às bases B e C é: [T] BC =. Temos que T(,) é igual
Ficha de Exercícios nº 3
Nova School of Business and Economics Álgebra Linear Ficha de Exercícios nº 3 Transformações Lineares, Valores e Vectores Próprios e Formas Quadráticas 1 Qual das seguintes aplicações não é uma transformação
MAT 138 Noções de Àlgebra Linear
MAT 8 Noções de Àlgebra Linear a LISTA DE EXERCÍCIOS.I. Dentre as transformações T : R R abaixo, verifique quais são lineares. a) Tx, y) = x y, x + 5y) b) Tx, y) = y, x) c) Tx, y) = x +, y) d) Tx, y) =
ÁLGEBRA LINEAR A FICHA 2
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 7/Out/3 ÁLGEBRA LINEAR A FICHA SOLUÇÕES SUMÁRIAS DOS EXERCÍCIOS ÍMPARES Matrizes: Inversão e Formas
Interbits SuperPro Web
1 (Ita 018) Uma progressão aritmética (a 1, a,, a n) satisfaz a propriedade: para cada n, a soma da progressão é igual a n 5n Nessas condições, o determinante da matriz a1 a a a4 a5 a 6 a a a 7 8 9 a)
APLICAÇÃO DE AUTOVALORES E AUTOVETORES NAS POTÊNCIAS DE MATRIZES
Universidade Federal de Goiás Câmpus de Catalão Departamento de Matemática Seminário Semanal de Álgebra APLICAÇÃO DE AUTOVALORES E AUTOVETORES NAS POTÊNCIAS DE MATRIZES Aluno: Ana Nívia Pantoja Daniela
UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CURSO: CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR PROF.: MARCELO SILVA.
UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CURSO: CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR PROF.: MARCELO SILVA Determinantes Introdução Como já vimos, matriz quadrada é a que tem o mesmo número
CM005 Álgebra Linear Lista 3
CM005 Álgebra Linear Lista 3 Alberto Ramos Seja T : V V uma transformação linear. Se temos que T v = λv, v 0, para λ K. Dizemos que λ é um autovalor de T e v autovetor de T associado a λ. Observe que λ
Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá. 21 de outubro de 2011
APLICAÇÕES DA DIAGONALIZAÇÃO Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá IEFF-ITA 21 de outubro de 2011 Roteiro 1 2 3 Roteiro 1 2 3 Introdução Considere a equação de uma cônica: Forma Geral Ax 2 + Bxy
Matrizes material teórico
M A T R I Z E S A Matemática é a mais simples, a mais perfeita e a mais antiga de todas as ciências. (Jacques Hadarmard) "Aqueles que estudam seriamente a matemática acabam tomados de uma espécie de paixão
2 Álgebra Linear (revisão)
Teoria de Controle (sinopse) 2 Álgebra Linear (revisão) J. A. M. Felippe de Souza Neste capítulo vamos citar os principais tópicos de Álgebra Linear que são necessários serem revistos para o acompanhamento
Aula 1 Autovetores e Autovalores de Matrizes Aula 2 Autovetores e Autovalores de Matrizes Casos Especiais 17
Sumário Aula 1 Autovetores e Autovalores de Matrizes.......... 8 Aula 2 Autovetores e Autovalores de Matrizes Casos Especiais 17 Aula 3 Polinômio Característico................. 25 Aula 4 Cálculo de Autovalores
Álgebra Linear Semana 04
Álgebra Linear Semana 04 Diego Marcon 17 de Abril de 2017 Conteúdo 1 Produto de matrizes 1 11 Exemplos 2 12 Uma interpretação para resolução de sistemas lineares 3 2 Matriz transposta 4 3 Matriz inversa
G4 de Álgebra Linear I
G4 de Álgebra Linear I 27.1 Gabarito 1) Considere a base η de R 3 η = {(1, 1, 1); (1,, 1); (2, 1, )} (1.a) Determine a matriz de mudança de coordenadas da base canônica para a base η. (1.b) Considere o
Álgebra Linear I - Aula Matrizes simultaneamente ortogonais e simétricas
Álgebra Linear I - Aula 22 1. Matrizes 2 2 ortogonais e simétricas. 2. Projeções ortogonais. 3. Matrizes ortogonais e simétricas 3 3. Roteiro 1 Matrizes simultaneamente ortogonais e simétricas 2 2 Propriedade
1. Entre as funções dadas abaixo, verifique quais são transformações lineares: x y z
MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA 657- - VIÇOSA - MG BRASIL a LISTA DE EXERCÍCIOS DE MAT 8 I SEMESTRE DE Entre as funções dadas abaixo, verifique quais são transformações
- identificar operadores ortogonais e unitários e conhecer as suas propriedades;
DISCIPLINA: ELEMENTOS DE MATEMÁTICA AVANÇADA UNIDADE 3: ÁLGEBRA LINEAR. OPERADORES OBJETIVOS: Ao final desta unidade você deverá: - identificar operadores ortogonais e unitários e conhecer as suas propriedades;
Gabarito Lista 3 Cálculo FAU
Gabarito Lista Cálculo FAU Prof. Jaime Maio 018 Questão 1. O produto vetorial entre dois vetores a = (a 1, a, a ) e b = (b 1, b, b ) em R é um terceiro vetor c, ortogonal a ambos a e b, dado por c = a
Álgebra Linear. Transformações Lineares
Álgebra Linear Transformações Lineares Fórmulas e Resumo Teórico Para fins gerais, considere V um espaço vetorial e uma transformação T: V W. Propriedades de Transformações Lineares - T é linear se: Para
Lista 8 de Álgebra Linear /01 Produto Interno
Lista 8 de Álgebra Linear - / Produto Interno. Sejam u = (x x e v = (y y. Mostre que temos um produto interno em R nos seguintes casos: (a u v = x y + x y. (b u v = x y x y x y + x y.. Sejam u = (x y z
Álgebra Linear I - Aula Matriz de uma transformação linear em uma base. Exemplo e motivação
Álgebra Linear I - Aula 19 1. Matriz de uma transformação linear em uma base. Exemplo e motivação 2. Matriz de uma transformação linear T na base β 1 Matriz de uma transformação linear em uma base. Exemplo
Fração, Potenciação, Radiciação, Matrizes e Sistemas Lineares - Ozias Jr.
Conjuntos Números naturais, N: {0,1,2,3,..} Números inteiros, Z: {...,-3,-2,-1,0,1,2,3,...} Números racionais, Q: {..., -3,565656..., -2, 0, 1,888..., 3,...} Números irracionais: I: {, 3, 5, π, e 1, }
Escalonamento. Sumário. 1 Pré-requisitos. 2 Sistema Linear e forma matricial. Sadao Massago a Pré-requisitos 1
Escalonamento Sadao Massago 2011-05-05 a 2014-03-14 Sumário 1 Pré-requisitos 1 2 Sistema Linear e forma matricial 1 3 Forma escalonada 3 4 Método de eliminação de Gauss (escalonamento) 5 5 A matriz inversa
Determinantes. det A 6 ( 4) a a a. a a a. det A a a a. a a a
Determinantes 1 Introdução Até agora nós estudamos vários tipos de matrizes e suas mais diversas ordens Em especial, vimos a matriz quadrada, que tinha o mesmo número de linhas e colunas Toda matriz quadrada
Álgebra Linear I - Aula Bases Ortonormais e Matrizes Ortogonais
Álgebra Linear I - Aula 19 1. Bases Ortonormais e Matrizes Ortogonais. 2. Matrizes ortogonais 2 2. 3. Rotações em R 3. Roteiro 1 Bases Ortonormais e Matrizes Ortogonais 1.1 Bases ortogonais Lembre que
Nas P1s caem os conceitos de limites, continuidade, derivadas e suas aplicações. Então vamos começar falando de limites.
Limites INTRODUÇÃO Fala, galera! Vamos começar a agora o tão temido, aquela matéria cabulosa em que todos reprovam. Cara, RELAXA! Felizmente nem é assim. Dedique parte de seu tempo para os estudos, pois
5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão Encontre os autovalores, os autovetores e a exponencial e At para
5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 2008 1. Encontre os autovalores, os autovetores e a exponencial e At para [ ] 1 1 1 1 2. Uma matriz diagonal Λ satisfaz a regra usual
Apostila de Matemática 11 Determinante
Apostila de Matemática 11 Determinante 1.0 Definições A determinante só existe se a matriz for quadrada. A tabela é fechada por 2 traços. Determinante de matriz de ordem 1 a 11. 1 2.0 Determinante Matriz
SME Cálculo Numérico. Lista de Exercícios: Gabarito
Exercícios de prova SME0300 - Cálculo Numérico Segundo semestre de 2012 Lista de Exercícios: Gabarito 1. Dentre os métodos que você estudou no curso para resolver sistemas lineares, qual é o mais adequado
Matrizes e Sistemas Lineares
MATEMÁTICA APLICADA Matrizes e Sistemas Lineares MATRIZES E SISTEMAS LINEARES. Matrizes Uma matriz de ordem mxn é uma tabela, com informações dispostas em m linhas e n colunas. Nosso interesse é em matrizes
Sistema de Equaçõs Lineares
Summary Sistema de Equaçõs Lineares Hector L. Carrion ECT-UFRN Agosto, 2010 Summary Equações Lineares 1 Sistema de Eq. Lineares 2 Eliminação Gaussiana-Jordan 3 retangular 4 5 Regra de Cramer Summary Equações
Notas em Álgebra Linear
Notas em Álgebra Linear 1 Pedro Rafael Lopes Fernandes Definições básicas Uma equação linear, nas variáveis é uma equação que pode ser escrita na forma: onde e os coeficientes são números reais ou complexos,
Matriz, Sistema Linear e Determinante
Matriz, Sistema Linear e Determinante 1.0 Sistema de Equações Lineares Equação linear de n variáveis x 1, x 2,..., x n é uma equação que pode ser expressa na forma a1x1 + a 2 x 2 +... + a n x n = b, onde
Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática
1 Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática Lista 4 - MAT 137 -Introdução à Álgebra Linear 2017/II 1. Entre as funções dadas abaixo, verifique quais
étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO
Profs. Alexandre Lima e Moraes Junior 1
Raciocínio Lógico-Quantitativo para Traumatizados Aula 07 Matrizes, Determinantes e Solução de Sistemas Lineares. Conteúdo 7. Matrizes, Determinantes e Solução de Sistemas Lineares...2 7.1. Matrizes...2
EAD DETERMINANTES CONCEITO:
1 EAD DETERMINANTES CONCEITO: Dada uma Matriz Quadrada de ordem n, dizemos que Determinante de ordem n é um número associado a essa Matriz conforme determinadas leis. Representamos o Determinante de uma
Acadêmico(a) Turma: Capítulo 2: MATRIZES
1 Acadêmico(a) Turma: 2.1. Definição Capítulo 2: MATRIZES A teoria das matrizes e a teoria dos determinantes são pré-requisitos para resolução e discussão de um sistema linear. Define-se matriz m x n uma
Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017
º Sábado - Matrizes - //7. Plano e Programa de Ensino. Matrizes. Exemplos. Ordem de Uma Matriz. Exemplos. Representação 7. Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz Coluna. Exemplos. Diagonal
G4 de Álgebra Linear I
G4 de Álgebra Linear I 013.1 8 de junho de 013. Gabarito (1) Considere o seguinte sistema de equações lineares x y + z = a, x z = 0, a, b R. x + ay + z = b, (a) Mostre que o sistema é possível e determinado
Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017
º Sábado - Matrizes - //7. Plano e Programa de Ensino. Definição de Matrizes. Exemplos. Definição de Ordem de Uma Matriz. Exemplos. Representação Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz
Matrizes e Determinantes
Aula 10 Matrizes e Determinantes Matrizes e Determinantes se originaram no final do século XVIII, na Alemanha e no Japão, com o intuito de ajudar na solução de sistemas lineares baseados em tabelas formadas
Cálculo Numérico Prof. Guilherme Amorim 26/11/2013. Aula 11 Sistemas de Equações Lineares / Parte 4 Convergência e Sistemas mal-condicionados
Cálculo Numérico Prof. Guilherme Amorim 26/11/2013 Aula 11 Sistemas de Equações Lineares / Parte 4 Convergência e Sistemas mal-condicionados Aula passada... Métodos Iterativos Jacobi Gauss-Seidel Pergunta...
n. 35 AUTOVALORES e AUTOVETORES ou VALORES e VETORES PRÓPRIOS ou VALORES CARACTERÍSTICOS e VETORES CARACTERÍSTICOS
n. 35 AUTOVALORES e AUTOVETORES ou VALORES e VETORES PRÓPRIOS ou VALORES CARACTERÍSTICOS e VETORES CARACTERÍSTICOS Aplicações: estudo de vibrações, dinâmica populacional, estudos referentes à Genética,
Álgebra Linear I - Aula 21
Álgebra Linear I - Aula 1 1. Matrizes ortogonalmente diagonalizáveis: exemplos. Matrizes simétricas. Roteiro 1 Matrizes ortogonalmente diagonalizáveis: exemplos Exemplo 1. Considere a matriz M = 4 4 4
Instituto Superior Técnico Departamento de Matemática Última actualização: 3/Dez/2003 ÁLGEBRA LINEAR A
Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Última actualização: 3/Dez/2003 ÁLGEBRA LINEAR A REVIÃO DA PARTE IV Parte IV - Diagonalização Conceitos: valor próprio, vector
Álgebra Linear II - Poli - Gabarito Prova SUB-tipo 00
Álgebra Linear II - Poli - Gabarito Prova SUB-tipo 00 [ ] 4 2 Questão 1. Seja T : R 2 R 2 o operador linear cuja matriz, com respeito à base canônica de R 2, é. 1 3 [ ] 2 0 Seja B uma base de R 2 tal que
3 a Avaliação Parcial - Álgebra Linear
3 a Avaliação Parcial - Álgebra Linear - 016.1 1. Considere a função T : R 3 R 3 dada por T(x, y, z) = (x y z, x y + z, x y z) e as bases de R 3 B = (1, 1, 1), (1, 0, 1), ( 1,, 0)} (a) Encontre [T] B B.
Aula 1: Reconhecendo Matrizes
Aula 1: Reconhecendo Matrizes Caro aluno, nesta aula você aprenderá a reconhecer matrizes, posteriormente vamos identificar os tipos de matrizes existentes e como realizar algumas operações entre elas.
