Instrumentação e Medidas
|
|
|
- Mario Viveiros Henriques
- 9 Há anos
- Visualizações:
Transcrição
1 strumetação e Medidas Liceciatura em Egeharia Electrotécica Exame (ª Chamada) 20 de Juho de 20 tes de começar o exame leia atetamete as seguites istruções: Para além da calculadora, só é permitido ter em cima da mesa de exame, os euciados e folhas etregues pelo docete. detifique, de forma legível, o cabeçalho de todas as folhas de exame que etregar. idetificação imprópria de uma folha de exame implica a sua iutilização. cotação das pergutas ecotra-se idicada, o fim das mesmas, etre parêtesis rectos. O aluo detectado a plagiar verá o seu exame aulado e poderá icorrer em processo discipliar. Duração da prova: hora e /2. ) Cosidere o voltímetro DC da figura. Pretede-se que o voltímetro teha uma sesibilidade de 5kΩ/, com escalas de 5 e. a) Projecte o voltímetro determiado os valores dos compoetes R, R2 e Rs. [5 valores] b) Este voltímetro foi utilizado para medir uma fote de tesão DC. O valor lido o voltímetro foi de 4.8. Qual é a escala mais adequada para medir este valor? Justifique. [2 valores] c) abedo-se que o voltímetro, após testes, é de ídice de classe e que a fote de tesão da alíea aterior tem uma resistêcia itera de 20kΩ, determie o itervalo de valores ode se ecotra o real valor da tesão da fote em aberto as codições idicadas e determiadas a alíea b). [4 valores] Resolução: a) Começa-se por obter as equações de operação para cada escala. Para (escala de ) têmse: ( ) = R+ R2 + R Ode se refere à correte que circula o ramo das resistêcias R e R2 e a correte que passa o microamperímetro. correte pode ser relacioada com a correte por: R + R = R /6 strumetação Electróica e Medidas o Lectivo 20/20
2 O mesmo pode ser dito a respeito da escala de 5. Neste caso, 2= R2 + R Ode, mais uma vez, R + R = R Quado a tesão aplicada à etrada do voltímetro, para cada uma das escalas, for o valor de fimde-escala etão a correte que deve atravessar o microamperímetro também deve ser a correte de fim-de-escala. ssim sedo obtém-se: R + R = R ( R R ) R R + R 5 = R2 0 + R 0 R () edo três icógitas, R, R2 e R, é ecessária uma terceira equação. Essa última é obtida da iformação acerca da sesibilidade do aparelho. Como se sabe a sesibilidade é idepedete da escala e é igual a: R = i FE Ode Ri se refere à resistêcia de etrada do aparelho para a escala cujo valor limite é fe. Por exemplo para a escala de 5 a resistêcia itera é: R = = = 25KΩ i FE Para a mesma escala a resistêcia itera é dada por: RR Ri = R2 + R // R = R2+ Ou seja, R R = R Exprimido a equação aterior em ordem a R2 e substituido em () obtém-se R R R = RR 5 = R 0 3 R Resolvedo em ordem a R obtém-se: 2/6 strumetação Electróica e Medidas o Lectivo 20/20
3 R R 5 = R 0 R = R = KΩ 3 6 R R ubstituido este resultado em () e resolvedo em ordem a R2 obtém-se: 4 R2= = 20KΩ O valor de R é por isso, ( R ) 3 6 = R 9 = = KΩ b) Ler acetatos c) O circuito equivalete de que fala o exercício tem o seguite aspecto: tesão medida pelo aparelho é, efectivamete, o valor da queda de tesão a resistêcia de 25KΩ. e o erro de medida do aparelho fosse ulo etão o valor real da tesão da fote DC seria: 45 DC = 4.8 = No etato o voltímetro ão é ideal. Pertece à classe o que sigifica que possui, como majorate do erro relativo, fe 5 ε = ic = =.04% 4.8 Ou etão, m fe δ = ic = O que sigifica que o valor real medido pelo voltímetro se situa etre 4.75 e O que leva a que o valor real da fote esteja etre 8.55 e /6 strumetação Electróica e Medidas o Lectivo 20/20
4 2) Cosidere o sistema de medição de temperatura etre 0ºC e 200ºC represetado a seguir. O trasdutor é um P0 de resistêcia variável com a temperatura, dada por: R P = 0 + α ode se refere à temperatura em graus cetígrados, a sesibilidade α = 0,4 Ω/ºC a) Determie a expressão da tesão diferecial, fução da correte e da temperatura, e o seu valor para a temperatura máxima de 200 ºC. [4 valores] b) Para uma fote de correte com = m e sabedo que a gama de saída do amplificador é de 0 a 5, determie o gaho do amplificador. [2 valores] Resolução: a) dmite-se que a impedâcia de etrada do amplificador é ifiita. Neste caso, = + Ode X X Y R2 + R3 = P Como, X + = RPX e Y + = R3 Obtém-se: = + P e Y 2 3 Y P 4/6 strumetação Electróica e Medidas o Lectivo 20/20
5 = = R R D X Y P X 3 Y ( ) ( ) R R R R R R P P P 2 3 D = = R+ R2 + R3 + RP R+ R2 + R3 + RP isto que, = RP e que R=R2=R3=0Ω obtém-se: RP 0 D = 0 = R Para =200ºC, 200 D = 40 = b) e =m etão, para =200ºC, Etão = 0.67 D P Para que a tesão à saída do amplificador seja 5 é ecessário que o seu gaho seja, 5 = = ) figura que segue apreseta a resposta em frequêcia de um galvaómetro de quadro móvel. magie que pretede utilizar esse elemeto a cocepção de um voltímetro C. Diga, justificado coveietemete, para qual das frequêcias f, f 2 ou f 3 o aparelho estará habilitado a fazer medições. [3 valores] Resolução: Um voltímetro C baseado o valor médio requer que o microamperímetro se comporte como um itegrador para a frequêcia do sial de correte aplicado ao aparelho. Na figura apeas o sial com a frequêcia f3 estará em codições de ser correctamete medido. 5/6 strumetação Electróica e Medidas o Lectivo 20/20
6 FORMULÁRO: Erros de Medida - Erro de Medida Δ x= x x Real Medido - alor bsoluto do Erro δ x= Δ x = x x Real - Erro Relativo ε x =δx xreal δ x x Medido Medido - e x é uma gradeza fução de gradezas parciais y, y 2,..., y com erros de medida ε y, ε y2,..., ε y2 respectivamete, o erro relativo majorado de x é dado por: f( y,..., y) yi εx εy i y f( y,..., y ) i Estatística da Medida - Média ritmética μ= xi - alor Médio o = v() t dt - alor Eficaz 2 2 RM = v () t dt - Factor de Crista p FC = RM Medida de Gradezas Eléctricas - esibilidade Ri = C FE Ri = RM - Deflexão i D = F - Desvio Médio bsoluto δ= x μ =μ ε i - Desvio Padrão ( x ) 2 σ= μ i Exactidão a strumetação alógica - Erro bsoluto Máximo δ = ic fe 0 - Erro Relativo Máximo ε = ic fe m Exactidão a strumetação Digital - Especificação da Exactidão ±ε + LD [ ] i - Erro Relativo Máximo Resolução ε =ε i + 0 m - Erro bsoluto Máximo m ε εim δ = = + Resolução 0 0 ial 6/6 strumetação Electróica e Medidas o Lectivo 20/20
FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 4 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 3
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 4
FICHA de AVALIAÇÃO de MATEMÁTICA A º Teste º Ao de escolaridade Versão Nome: Nº Turma: Professor: José Tioco 9//8 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Aluo: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Aluo: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 3
FICHA de AVALIAÇÃO de MATEMÁTICA A º Teste º Ao de escolaridade Versão Nome: Nº Turma: Professor: José Tioco 9//8 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar
AULA Matriz inversa Matriz inversa.
Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira ÓPICOS Matriz iversa. U 6 Chama-se a ateção para a importâcia do trabalho pessoal a realizar
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO 12º B1. Grupo I
ESCOLA SECUNDÁRIA COM º CICLO D. DINIS COIMBRA º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO º B Grupo I As três questões deste grupo são de escolha múltipla. Para cada uma delas são idicadas quatro
==Enunciado== 2. (a) Mostre que se h(t) é uma função seccionalmente contínua e periódica, de período T, que admite transformada de Laplace, então
Departameto de Matemática - Escola Superior de ecologia - Istituto Politécico de Viseu Complemetos de Aálise Matemática Egeharia de Sistemas e Iformática Euciado e Resolução da a. Frequêcia de 5/6 Duração:
Representação em espaço de estado de sistemas de enésima ordem. Função de perturbação não envolve termos derivativos.
VARIÁVEIS DE ESTADO Defiições MODELAGEM E DINÂMICA DE PROCESSOS Profa. Ofélia de Queiroz Ferades Araújo Estado: O estado de um sistema diâmico é o cojuto míimo de variáveis (chamadas variáveis de estado)
ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003
ÁLGEBRA Liceciatura em Egeharia Electrotécica e de Computadores LEEC Ao lectivo de 00/003 Apotametos para a resolução dos exercícios da aula prática 5 MATRIZES ELIMINAÇÃO GAUSSIANA a) Até se obter a forma
Eletrônica 1. Aula 05 (Amplificador Classe A) CIn-UPPE
Eletrôica 1 Aula 05 (Amplificador Classe A) CI-UPPE Amplificador básico (classe A) Amplificador básico É um circuito eletrôico, baseado em um compoete ativo, como o trasistor ou a válvula, que tem como
DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:
48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as ustificações
Cálculo Diferencial e Integral I Resolução do 2 ō Teste - LEIC
Cálculo Diferecial e Itegral I Resolução do ō Teste - LEIC Departameto de Matemática Secção de Àlgebra e Aálise I.. Determie o valor dos seguites itegrais (i) e x se x dx x + (ii) x (x + ) dx (i) Visto
Aplicações lineares. Capítulo Seja T: a) Quais dos seguintes vectores estão em Im( T )? 1 i) 4. 3 iii) ii)
Capítulo Aplicações lieares Seja T: R R a multiplicação por 8 a) Quais dos seguites vectores estão em Im( T )? i) ii) 5 iii) b) Quais dos seguites vectores estão em Ker( T)? i) ii) iii) c) Qual a dimesão
Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema III Sucessões Reais. TPC nº11 (entregar no dia 20 de Maio de 2011) 1ª Parte
Escola Secudária com 3º ciclo D. Diis º Ao de Matemática A Tema III Sucessões Reais TPC º (etregar o dia 0 de Maio de 0) ª Parte As cico questões deste grupo são de escolha múltipla. Para cada uma delas
( ) 4. Novo Espaço Matemática A 12.º ano Proposta de Teste de Avaliação [maio 2015] GRUPO I. f x
Novo Espaço Matemática A º ao Proposta de Teste de Avaliação [maio 05] Nome: Ao / Turma: Nº: Data: - - GRUPO I Os sete ites deste grupo são de escolha múltipla Em cada um deles, são idicadas quatro opções,
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 5 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
Exercícios de DSP: 1) Determine se os sinais abaixo são periódicos ou não e para cada sinal periódico, determine o período fundamental.
Exercícios de DSP: 1) Determie se os siais abaixo são periódicos ou ão e para cada sial periódico, determie o período fudametal a x[ ] = cos( 0,15 π ) 1 18 b x [ ] = Re{ e } Im{ } jπ + e jπ c x[ ] = se(
GRUPO I Duração: 50 minutos
Matemática A. o ao TESTE DE AVALIAÇÃO GLOBAL MATEMÁTICA A.º ANO O teste é costituído por dois grupos (I e II). Utiliza apeas caeta ou esferográfica de tita azul ou preta. Só é permitido o uso de calculadora
Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença?
Amostras Aleatórias e Distribuições Amostrais Probabilidade e Estatística: afial, qual é a difereça? Até agora o que fizemos foi desevolver modelos probabilísticos que se adequavam a situações reais. Por
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 4
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ao de escolaridade Versão 4 Nome: N.º Turma: Professor: José Tioco //8 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 3
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ao de escolaridade Versão Nome: N.º Turma: Professor: José Tioco //8 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar
PROVA DE MATEMÁTICA 2 a FASE
PROVA DE MATEMÁTICA a FASE DEZ/04 Questão 1 a)o faturameto de uma empresa esse ao foi 10% superior ao do ao aterior; obteha o faturameto do ao aterior sabedo-se que o desse ao foi de R$1 40 000,00 b)um
( ) ( ) Novo Espaço Matemática A 12.º ano Proposta de Teste [abril 2018] CADERNO 1 (É permitido o uso de calculadora gráfica)
Proposta de Teste [abril 08] Nome: Ao / Turma: N.º: Data: - - Não é permitido o uso de corretor. Deves riscar aquilo que pretedes que ão seja classificado. A prova iclui um formulário. As cotações dos
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 1
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ao de escolaridade Versão Nome: N.º Turma: Professor: José Tioco /0/08 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ao de escolaridade Versão Nome: N.º Turma: Professor: José Tioco /0/08 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar
5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO
5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO 5.1 INTRODUÇÃO Um sistema é defiido como todo o cojuto de compoetes itercoectados, previamete determiados, de forma a realizar um cojuto
Novo Espaço Matemática A 12.º ano Proposta de Teste [março ]
Proposta de Teste [março - 08] Nome: Ao / Turma: N.º: Data: / / Não é permitido o uso de corretor. Deves riscar aquilo que pretedes que ão seja classificado. A prova iclui um formulário. As cotações dos
Série Trigonométrica de Fourier
studo sobre a Série rigoométrica de Fourier Série rigoométrica de Fourier Uma fução periódica f( pode ser decomposta em um somatório de seos e seos eqüivaletes à fução dada f ( o ( ( se ( ) ode: o valor
Provas de Matemática Elementar - EAD. Período
Provas de Matemática Elemetar - EAD Período 01. Sérgio de Albuquerque Souza 4 de setembro de 014 UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departameto de Matemática http://www.mat.ufpb.br/sergio 1 a Prova
Duração: 90 minutos 5º Teste, Junho Nome Nº T:
Escola Secudária Dr. Âgelo Augusto da Silva Teste de MATEMÁTICA A 11º Ao Duração: 90 miutos 5º Teste, Juho 006 Nome Nº T: Classificação O Prof. (Luís Abreu) 1ª PARTE Para cada uma das seguites questões
Capítulo I Séries Numéricas
Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...
Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos
Aálise de Algoritmos Aálise de Algoritmos Prof Dr José Augusto Baraauskas DFM-FFCLRP-USP A Aálise de Algoritmos é um campo da Ciêcia da Computação que tem como objetivo o etedimeto da complexidade dos
Critérios de Avaliação e Cotação
Elemetos de Probabilidades e Estatística (37) Elemetos de Probabilidades e Estatística (37) Ao letivo 06-7 E-Fólio A 7 a 6 de abril 07 Critérios de correção e orietações de resposta No presete relatório
ENGC33: Sinais e Sistemas II. 28 de novembro de 2016
Somatório de covolução ENGC33: Siais e Sistemas II Departameto de Egeharia Elétrica - DEE Uiversidade Federal da Bahia - UFBA 8 de ovembro de 6 Prof. Tito Luís Maia Satos / 57 Sumário Itrodução Revisão
Probabilidades e Estatística LEAN, LEGI, LEGM, LMAC, MEAer, MEAmbi, MEC
Duração: 90 miutos Grupo I Probabilidades e Estatística LEAN, LEGI, LEGM, LMAC, MEAer, MEAmbi, MEC Justifique coveietemete todas as respostas o semestre 207/208 8//207 :00 o Teste B 0 valores. Um teste
Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Sistemas Elétricos de Automação e Energia ENG10026 Robótica A
Uiversidade Federal do Rio Grade do Sul Escola de Egeharia Departameto de Sistemas Elétricos de Automação e Eergia ENG0026 Robótica A Itrodução Cotrole Idepedete por Juta Prof. Walter Fetter Lages 9 de
Critérios de correção e orientações de resposta p-fólio
Miistério da Ciêcia, Tecologia e Esio Superior U.C. 037 Elemetos de Probabilidade e Estatística de Juho de 0 Critérios de correção e orietações de resposta p-fólio Neste relatório apresetam-se os critérios
Proposta de Exame de Matemática A 12.º ano
Proposta de Eame de Matemática A 1.º ao Nome da Escola Ao letivo 0-0 Matemática A 1.º ao Nome do Aluo Turma N.º Data Professor - - 0 GRUP I Na resposta aos ites deste grupo, selecioe a opção correta. Escreva,
Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem
Mestrado Itegrado em Egeharia Civil Disciplia: TRNSPORTES Prof. Resposável: José Mauel Viegas Sessão Prática 4: mostragem Istituto Superior Técico / Mestrado Itegrado Egª Civil Trasportes ulas Práticas
3ª Lista de Exercícios de Programação I
3ª Lista de Exercícios de Programação I Istrução As questões devem ser implemetadas em C. 1. Desevolva um programa que leia dois valores a e b ( a b ) e mostre os seguites resultados: (1) a. Todos os úmeros
DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular
Sistemas de Processameto Digital Egeharia de Sistemas e Iformática Ficha 4 5/6 4º Ao/ º Semestre DFS Série Discreta de Fourier DFT Trasformada Discreta de Fourier Covolução Circular Para calcular a DFT,
Questão 1. Questão 2. Questão 3. Resposta. Resposta. Resposta
Questão 1 a) O faturameto de uma empresa este ao foi 1% superior ao do ao aterior; oteha o faturameto do ao aterior, saedo que o deste ao foi de R$1.4.,. ) Um comerciate compra calças a um custo de R$6,
Capítulo 5- Introdução à Inferência estatística.
Capítulo 5- Itrodução à Iferêcia estatística. 1.1) Itrodução.(184) Na iferêcia estatística, aalisamos e iterpretamos amostras com o objetivo de tirar coclusões acerca da população de ode se extraiu a amostra.
Secção 1. Introdução às equações diferenciais
Secção. Itrodução às equações difereciais (Farlow: Sec..,.) Cosideremos um exemplo simples de um feómeo que pode ser descrito por uma equação diferecial. A velocidade de um corpo é defiida como o espaço
Transformadores. Sistemas Electromecânicos - Lic. Eng. Aeroespacial
Trasformadores Objectivos: - estudo do pricípio de fucioameto dos trasformadores; - represetação do trasformador por variáveis globais (corretes, tesões, fluxos), represetação em termos de circuito equivalete;
Novo Espaço Matemática A 12.º ano Proposta de Teste [outubro ]
Proposta de Teste [outubro - 017] Nome: Ao / Turma: N.º: Data: / / Não é permitido o uso de corretor. Deves riscar aquilo que pretedes que ão seja classificado. A prova iclui um formulário. As cotações
Lista de Exercícios #4 Assunto: Variáveis Aleatórias Contínuas
. ANPEC 8 - Questão Seja x uma variável aleatória com fução desidade de probabilidade dada por: f(x) = x, para x f(x) =, caso cotrário. Podemos afirmar que: () E[x]=; () A mediaa de x é ; () A variâcia
INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA
INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA o Teste SEMESTRE PAR /7 Data: 3 de Juho de 7 Duração: h m Tóicos de Resolução.
UFV - Universidade Federal de Viçosa CCE - Departamento de Matemática
UFV - Uiversidade Federal de Viçosa CCE - Departameto de Matemática a Lista de exercícios de MAT 47 - Cálculo II 6-II. Determie os ites se existirem: + x x se x b x x c d x + x arcta x x x a x e, < a x
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO 12º A1. Grupo I
ESCOLA SECUNDÁRIA COM º CICLO D. DINIS COIMBRA º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO º A Grupo I As três questões deste grupo são de escolha múltipla. Para cada uma delas são idicadas quatro
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2/4
FICHA de AVALIAÇÃO de MATEMÁTICA A º Ao Versão /4 Nome: Nº Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias Quado, para
AULA Subespaço, Base e Dimensão Subespaço.
Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira TÓPICOS Subespaço. ALA Chama-se a ateção para a importâcia do trabalho pessoal a realizar
2 - PRINCÍPIO DE FUNCIONAMENTO DO GERADOR DE CORRENTE CONTINUA
2 - PRICÍPIO D FUCIOAMTO DO GRADOR D CORRT COTIUA 2.1 - A FORÇA LTROMOTRIZ IDUZIDA O pricípio de fucioameto do gerador de correte cotíua tem por base a Lei de Faraday que estabelece que, se o fluxo magético
Resolva os grupos do exame em folhas separadas. O uso de máquinas de calcular e telemóveis não é permitido. Não se esqueça que tudo é para justificar.
Eame em 6 de Jaeiro de 007 Cálculo ATENÇÃO: FOLHAS DE EXAME NÃO IDENTIFICADAS NÃO SERÃO COTADAS Cálculo / Eame fial 06 Jaeiro de 007 Resolva os grupos do eame em folhas separadas O uso de máquias de calcular
