Exame MACS- Inferência-Intervalos.
|
|
|
- Eduardo Anjos Esteves
- 9 Há anos
- Visualizações:
Transcrição
1 Exame MACS- Iferêcia-Itervalos. No iício deste capítulo, surgem algumas ideias que devemos ter presetes: O objectivo da iferêcia estatística é usar uma amostra e tirar coclusões para toda a população. Os pricipais cuidado a ter com a escolha da amostra são: ela ser represetativa, isto é, represetar bem a população a que se refere e também o tamaho. A amostra ão pode ser muito pequea, caso cotrário, a margem de erro é muito grade. Exemplos: ) Explique por suas palavras os cuidados que devemos ter para obtermos uma boa qualidade a estimação da média. ) Num pequeo texto, explique qual é o pricipal objectivo da iferêcia estatística. Dê exemplos ilustrativos. Teorema do Limite Cetral O Teorema do Limite cetral diz-os que, se tivermos amostras com 30 ou mais elemetos, as médias das mostras têm distribuição aproximadamete ormal. No caso da amostragem da média, a distribuição de amostragem é do tipo: X distribuição Normal A média das médias amostrais é igual à própria média populacioal, isto é: E X e o desvio- padrão de amostragem da média é igual ao desvio-padrão populacioal, a dividir pela raiz quadrada do úmero de elemetos da amostra: X
2 1) Os pacotes de açucar produzidos por uma máquia têm peso médio 15 gramas e desvio-padrão 3 gramas. Cosidere uma amostra aleatória com 50 elemetos. Idique a média e o desvio-padrão(ou erro padrão) de amostragem da média. Do mesmo modo, o teorema do limite Cetral pode ser aplicado o caso de uma proporção: Pˆ tem distribuição Normal A média é a própria proporção EP P e o desvio padrão amostral é do tipo: Pˆ ˆ 1 ) Admitido que 10% dos aluos de uma escola usam óculos, cosidere uma amostra aleatória com 50 elemetos. Idique a média e o desvio padrão de amostragem da proporção de aluos com óculos. Itervalo de Cofiaça para a média: Itervalo de cofiaça para o valor médio: x z, x z Repare que a margem de erro é dada pela expressão: A Amplitude do itervalo é o dobro da margem de erro. z ) Pretedemos avaliar os cohecimetos em Matemática de uma população de 5000 aluos de uma escola. Sabemos que o desvio padrão é 2,6. Recolhemos uma amostra com 50 aluos e obtivemos a média amostral x ) Obteha um itervalo de 95% de cofiaça para a média..2) Idique o valor da margem de erro do itervalo da alíea aterior.
3 Itervalo de cofiaça para a proporção: p ˆ - z 1-1- ; z A margem de erro é dada por: z 1 ) Cosidere uma amostra de 500 estudates que respoderam a um teste de Matemática a ível acioal, dos quais 105 tiraram egativa. Determie, com ível de cofiaça de 95%, um itervalo para estimar a proporção de estudates que a ível acioal tiraram egativa o exame. ( sugestão: faça 105 p ˆ ) 500 Tamaho da amostra Média Quado os pedem o tamaho da amostra para uma determiada margem de erro, devemos começar por fazer: z igual à margem de erro pretedida e, o fial, devemos garatir que a expressão fica com o aspecto: 2 z. Proporção Págia 218 do livro Quado os pedem o tamaho da amostra para uma determiada margem de erro, devemos começar por fazer: z 1 igual à margem de erro pretedida z e o fial, garatir que fica com o aspecto. 1 ode Ɛ é a margem de erro. 2
4 Exemplos: ) Pretedemos avaliar os cohecimetos em Matemática de uma população de 5000 aluos de uma escola. Para isso foi feito um teste de cohecimetos gerais desta disciplia e aalisados os resultados uma escala de zero a vite valores. Sabemos que o desvio padrão foi de 2,6. Recolhemos uma amostra com 50 aluos e obtivemos a média amostral x ) Obteha um itervalo de 95% de cofiaça para a média e idique também o valor da amplitude e o valor da margem de erro desse itervalo. 3.2) matedo o ível de cofiaça, o desvio padrão e a média amostral, qual deveria ser o tamaho da amostra de modo a obter uma margem de erro iferior a 0.2 ) Supoha que estamos iteressados em estimar a proporção de portugueses que vão votar o partido "A" as próximas eleições e que os resultados de uma sodagem aterior apotam para uma proporção de 15%. Qual é a dimesão da amostra ecessária de forma a obtermos um itervalo de 95% de cofiaça com uma margem de erro de 4 %? Formulário Itervalo de cofiaça para a proporção: p ˆ - z 1-1- ; z dimesão da amostra x - média amostral - proporção amostral - desvio padrão da variável z valor relacioado com o ível de cofiaça (*) (*) Valores de z para os íveis de cofiaça mais usuais Nível de cofiaça 90% 95% 99% z 1,645 1,960 2,576
5 Cosidere o itervalo: ] 5; 18 [ a amplitude é 18-5=13 e a margem de erro é 13/2 = 6.5 Neste caso, a média seria o úmero (5+18)/2 = 11.5 Notas: Quado aumetamos o tamaho da amostra, a margem de erro dimiui e o itervalo fica com melhor precisão. Quado aumetamos a cofiaça, z, o itervalo fica com maior margem de erro e o itervalo fica com meor precisão. Exemplo ) Cosidere que foi obtido um itervalo de cofiaça para a média..1) Matedo a média, desvio padrão e a dimesão da amostra e aumetado o grau de cofiaça, o que acotece à amplitude do itervalo?.2) Matedo a média, desvio padrão e o grau de cofiaça e aumetado a dimesão da amostra, o que acotece à amplitude do itervalo?
Capítulo 5- Introdução à Inferência estatística.
Capítulo 5- Itrodução à Iferêcia estatística. 1.1) Itrodução.(184) Na iferêcia estatística, aalisamos e iterpretamos amostras com o objetivo de tirar coclusões acerca da população de ode se extraiu a amostra.
Cap. 4 - Estimação por Intervalo
Cap. 4 - Estimação por Itervalo Amostragem e iferêcia estatística População: cosiste a totalidade das observações em que estamos iteressados. Nº de observações a população é deomiado tamaho=n. Amostra:
ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p
ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma amostra.
A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra.
UNIVERSIDADE FEDERAL DA PARAÍBA Distribuição Amostral Luiz Medeiros de Araujo Lima Filho Departameto de Estatística INTRODUÇÃO A Iferêcia Estatística é um cojuto de técicas que objetiva estudar a população
Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004
Estatística para Cursos de Egeharia e Iformática Pedro Alberto Barbetta / Marcelo Meezes Reis / Atoio Cezar Boria São Paulo: Atlas, 004 Cap. 7 - DistribuiçõesAmostrais e Estimaçãode deparâmetros APOIO:
ESTIMAÇÃO DE PARÂMETROS
ESTIMAÇÃO DE PARÂMETROS 1 Estimação de Parâmetros uiverso do estudo (população) dados observados O raciocíio idutivo da estimação de parâmetros Estimação de Parâmetros POPULAÇÃO p =? AMOSTRA Observações:
Distribuições de Estatísticas Amostrais e Teorema Central do Limite
Distribuições de Estatísticas Amostrais e Teorema Cetral do Limite Vamos começar com um exemplo: A mega-sea de 996 a N 894 úmeros de a 6: Média: m 588 Desvio padrão: 756 49 amostras de 6 elemetos Frequêcia
Exercícios de Intervalos de Confiança para media, variância e proporção
Exercícios de Itervalos de Cofiaça para media, variâcia e proporção 1. Se uma amostra aleatória =5, tem uma média amostral de 51,3 e uma desvio padrão populacioal de σ=. Costrua o itervalo com 95% de cofiaça
Uma amostra aleatória simples de n elementos é selecionada a partir da população. Calcula-se o valor da média a partir da amostra
Distribuição amostral de Um dos procedimetos estatísticos mais comus é o uso de uma média da amostra ( ) para fazer iferêcias sobre uma população de média µ. Esse processo é apresetado a figura abaio.
1 Distribuições Amostrais
1 Distribuições Amostrais Ao retirarmos uma amostra aleatória de uma população e calcularmos a partir desta amostra qualquer quatidade, ecotramos a estatística, ou seja, chamaremos os valores calculados
DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia
ROTEIRO DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL 1. Itrodução. Teorema Cetral do Limite 3. Coceitos de estimação potual 4. Métodos de estimação potual 5. Referêcias Estatística Aplicada à Egeharia 1 Estatística
Virgílio A. F. Almeida DCC-UFMG 1/2005
Virgílio A. F. Almeida DCC-UFMG 1/005 !" # Comparado quatitativamete sistemas eperimetais: Algoritmos, protótipos, modelos, etc Sigificado de uma amostra Itervalos de cofiaça Tomado decisões e comparado
Intervalos de Confiança
Itervalos de Cofiaça Prof. Adriao Medoça Souza, Dr. Departameto de Estatística - PPGEMQ / PPGEP - UFSM - 0/9/008 Estimação de Parâmetros O objetivo da Estatística é a realização de iferêcias acerca de
Avaliação de Desempenho de Sistemas Discretos
Distribuições Comus Avaliação de Desempeho de Sistemas Discretos Probabilidade e Estatística 2 Uiforme Normal Poisso Hipergeométrica Biomial Studet's Geométrica Logormal Expoecial Beta Gamma Qui-Quadrado
MAE116 Noções de Estatística
Exercício 1 A Secretaria de Saúde de um muicípio vem realizado um programa educativo etre as gestates mostrado a importâcia da amametação. Para averiguar a eficácia do programa pretede-se realizar uma
INFERÊNCIA. Fazer inferência (ou inferir) = tirar conclusões
INFERÊNCIA Fazer iferêcia (ou iferir) = tirar coclusões Iferêcia Estatística: cojuto de métodos de aálise estatística que permitem tirar coclusões sobre uma população com base em somete uma parte dela
Métodos de Amostragem
Métodos de Amostragem Amostragem aleatória Este é o procedimeto mais usual para ivetários florestais e baseia-se o pressuposto de que todas as uidades amostrais têm a mesma chace de serem amostradas a
d) A partir do item c) encontre um estimador não viciado para σ 2.
Uiversidade de Brasília Departameto de Estatística 6 a Lista de PE 1 Seja X 1,, X ) uma AAS tal que EX i ) = µ e VarX i ) = σ 2 a) Ecotre EXi 2 ) e E X 2) b) Calcule EX i X) X i X) 2 c) Se T =, mostre
Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança
Teorema do Limite Cetral, distribuição amostral, estimação por poto e itervalo de cofiaça Prof. Marcos Pó Métodos Quatitativos para Ciêcias Sociais Distribuição amostral Duas amostrages iguais oriudas
INTERVALOS DE CONFIANÇA
INTRVALOS D CONFIANÇA 014 stimação por itervalos 1,..., é uma amostra aleatória de uma variável cuja distribuição depede do parâmetro. Se L( 1,..., ) e U( 1,..., ) são duas fuções tais que L < U e P(L
Revisando... Distribuição Amostral da Média
Estatística Aplicada II DISTRIBUIÇÃO AMOSTRAL MÉDIA AULA 08/08/16 Prof a Lilia M. Lima Cuha Agosto de 016 Revisado... Distribuição Amostral da Média Seja X uma v. a. de uma população com média µ e variâcia
Estatística: Aplicação ao Sensoriamento Remoto SER ANO Teoria da amostragem
Estatística: Aplicação ao Sesoriameto Remoto SER 04 - ANO 017 Teoria da amostragem Camilo Daleles Reó [email protected] http://www.dpi.ipe.br/~camilo/estatistica/ Algumas Cosiderações... É importate ter
Estimativa de Parâmetros
Estimativa de Parâmetros ENG09004 04/ Prof. Alexadre Pedott [email protected] Trabalho em Grupo Primeira Etrega: 7/0/04. Plao de Amostragem - Cotexto - Tipo de dado, frequêcia de coleta, quatidade
Objetivo. Estimar a média µ de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra.
ESTIMAÇÃO PARA A MÉDIAM Objetivo Estimar a média µ de uma variável aleatória X, que represeta uma característica de iteresse de uma população, a partir de uma amostra. Exemplos: µ : peso médio de homes
Estatística. Estatística II - Administração. Prof. Dr. Marcelo Tavares. Distribuições de amostragem. Estatística Descritiva X Estatística Inferencial
Estatística II - Admiistração Prof. Dr. Marcelo Tavares Distribuições de amostragem Na iferêcia estatística vamos apresetar os argumetos estatísticos para fazer afirmações sobre as características de uma
Objetivo. Estimar a média de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra.
Objetivo Estimar a média de uma variável aleatória X, que represeta uma característica de iteresse de uma população, a partir de uma amostra. Exemplos: : peso médio de homes a faixa etária de 20 a 30 aos,
10 - Medidas de Variabilidade ou de Dispersão
10 - Medidas de Variabilidade ou de Dispersão 10.1 Itrodução Localizado o cetro de uma distribuição de dados, o próximo passo será verificar a dispersão desses dados, buscado uma medida para essa dispersão.
FICHA DE TRABALHO 11º ANO. Sucessões
. Observe a sequêcia das seguites figuras: FICHA DE TRABALHO º ANO Sucessões Vão-se costruido, sucessivamete, triâgulos equiláteros os vértices dos triâgulos equiláteros já existetes, prologado-se os seus
Faculdade de Economia Universidade Nova de Lisboa ESTATÍSTICA. Exame Final 2ª Época 26 de Junho de Grupo I (3 valores)
Faculdade de Ecoomia Uiversidade Nova de Lisboa ESTATÍSTIA Exame Fial ª Época 6 de Juho de 00 Ateção:. Respoda a cada grupo em folhas separadas. Idetifique todas as folhas.. Todas as respostas devem ser
Caderno de Exercício 3
1 Cadero de Exercício 3 Esaios de Hipóteses e Regressão Liear 1. Exercícios Aulas 1. Exercício 10.11 do livro Statistics for Ecoomics ad Busiess 2. Exercício 10.27 do livro Statistics for Ecoomics ad Busiess
Lista de Exercícios #4 Assunto: Variáveis Aleatórias Contínuas
. ANPEC 8 - Questão Seja x uma variável aleatória com fução desidade de probabilidade dada por: f(x) = x, para x f(x) =, caso cotrário. Podemos afirmar que: () E[x]=; () A mediaa de x é ; () A variâcia
CAPÍTULO 6 ESTIMATIVA DE PARÂMETROS PPGEP. Introdução. Introdução. Estimativa de Parâmetros UFRGS
CAPÍTULO 6 Itrodução Uma variável aleatória é caracterizada ou descrita pela sua distribuição de probabilidade. ETIMATIVA DE PARÂMETRO URG Em aplicações idustriais, as distribuições de probabilidade são
Estimação por Intervalo (Intervalos de Confiança):
Estimação por Itervalo (Itervalos de Cofiaça): 1) Itervalo de Cofiaça para a Média Populacioal: Muitas vezes, para obter-se a verdadeira média populacioal ão compesa fazer um levatameto a 100% da população
MOQ-13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel
MOQ-13 PROILIDDE E ESTTÍSTIC Professor: Rodrigo. Scarpel [email protected] www.mec.ita.br/~rodrigo Programa do curso: Semaas 1 3 4 5 6 7 8 9 10 11 1 13 14 15 e 16 Itrodução à probabilidade (evetos, espaço
Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem
Mestrado Itegrado em Egeharia Civil Disciplia: TRNSPORTES Prof. Resposável: José Mauel Viegas Sessão Prática 4: mostragem Istituto Superior Técico / Mestrado Itegrado Egª Civil Trasportes ulas Práticas
PROVA 1 27/10/ Os dados apresentados na seqüência mostram os resultados de colesterol
PROVA 1 7/10/009 Nome: GABARITO 1. Os dados apresetados a seqüêcia mostram os resultados de colesterol mg /100ml em dois grupos de aimais. O grupo A é formado por 10 total ( ) aimais submetidos a um cotrole
