Exame MACS- Inferência-Intervalos.

Tamanho: px
Começar a partir da página:

Download "Exame MACS- Inferência-Intervalos."

Transcrição

1 Exame MACS- Iferêcia-Itervalos. No iício deste capítulo, surgem algumas ideias que devemos ter presetes: O objectivo da iferêcia estatística é usar uma amostra e tirar coclusões para toda a população. Os pricipais cuidado a ter com a escolha da amostra são: ela ser represetativa, isto é, represetar bem a população a que se refere e também o tamaho. A amostra ão pode ser muito pequea, caso cotrário, a margem de erro é muito grade. Exemplos: ) Explique por suas palavras os cuidados que devemos ter para obtermos uma boa qualidade a estimação da média. ) Num pequeo texto, explique qual é o pricipal objectivo da iferêcia estatística. Dê exemplos ilustrativos. Teorema do Limite Cetral O Teorema do Limite cetral diz-os que, se tivermos amostras com 30 ou mais elemetos, as médias das mostras têm distribuição aproximadamete ormal. No caso da amostragem da média, a distribuição de amostragem é do tipo: X distribuição Normal A média das médias amostrais é igual à própria média populacioal, isto é: E X e o desvio- padrão de amostragem da média é igual ao desvio-padrão populacioal, a dividir pela raiz quadrada do úmero de elemetos da amostra: X

2 1) Os pacotes de açucar produzidos por uma máquia têm peso médio 15 gramas e desvio-padrão 3 gramas. Cosidere uma amostra aleatória com 50 elemetos. Idique a média e o desvio-padrão(ou erro padrão) de amostragem da média. Do mesmo modo, o teorema do limite Cetral pode ser aplicado o caso de uma proporção: Pˆ tem distribuição Normal A média é a própria proporção EP P e o desvio padrão amostral é do tipo: Pˆ ˆ 1 ) Admitido que 10% dos aluos de uma escola usam óculos, cosidere uma amostra aleatória com 50 elemetos. Idique a média e o desvio padrão de amostragem da proporção de aluos com óculos. Itervalo de Cofiaça para a média: Itervalo de cofiaça para o valor médio: x z, x z Repare que a margem de erro é dada pela expressão: A Amplitude do itervalo é o dobro da margem de erro. z ) Pretedemos avaliar os cohecimetos em Matemática de uma população de 5000 aluos de uma escola. Sabemos que o desvio padrão é 2,6. Recolhemos uma amostra com 50 aluos e obtivemos a média amostral x ) Obteha um itervalo de 95% de cofiaça para a média..2) Idique o valor da margem de erro do itervalo da alíea aterior.

3 Itervalo de cofiaça para a proporção: p ˆ - z 1-1- ; z A margem de erro é dada por: z 1 ) Cosidere uma amostra de 500 estudates que respoderam a um teste de Matemática a ível acioal, dos quais 105 tiraram egativa. Determie, com ível de cofiaça de 95%, um itervalo para estimar a proporção de estudates que a ível acioal tiraram egativa o exame. ( sugestão: faça 105 p ˆ ) 500 Tamaho da amostra Média Quado os pedem o tamaho da amostra para uma determiada margem de erro, devemos começar por fazer: z igual à margem de erro pretedida e, o fial, devemos garatir que a expressão fica com o aspecto: 2 z. Proporção Págia 218 do livro Quado os pedem o tamaho da amostra para uma determiada margem de erro, devemos começar por fazer: z 1 igual à margem de erro pretedida z e o fial, garatir que fica com o aspecto. 1 ode Ɛ é a margem de erro. 2

4 Exemplos: ) Pretedemos avaliar os cohecimetos em Matemática de uma população de 5000 aluos de uma escola. Para isso foi feito um teste de cohecimetos gerais desta disciplia e aalisados os resultados uma escala de zero a vite valores. Sabemos que o desvio padrão foi de 2,6. Recolhemos uma amostra com 50 aluos e obtivemos a média amostral x ) Obteha um itervalo de 95% de cofiaça para a média e idique também o valor da amplitude e o valor da margem de erro desse itervalo. 3.2) matedo o ível de cofiaça, o desvio padrão e a média amostral, qual deveria ser o tamaho da amostra de modo a obter uma margem de erro iferior a 0.2 ) Supoha que estamos iteressados em estimar a proporção de portugueses que vão votar o partido "A" as próximas eleições e que os resultados de uma sodagem aterior apotam para uma proporção de 15%. Qual é a dimesão da amostra ecessária de forma a obtermos um itervalo de 95% de cofiaça com uma margem de erro de 4 %? Formulário Itervalo de cofiaça para a proporção: p ˆ - z 1-1- ; z dimesão da amostra x - média amostral - proporção amostral - desvio padrão da variável z valor relacioado com o ível de cofiaça (*) (*) Valores de z para os íveis de cofiaça mais usuais Nível de cofiaça 90% 95% 99% z 1,645 1,960 2,576

5 Cosidere o itervalo: ] 5; 18 [ a amplitude é 18-5=13 e a margem de erro é 13/2 = 6.5 Neste caso, a média seria o úmero (5+18)/2 = 11.5 Notas: Quado aumetamos o tamaho da amostra, a margem de erro dimiui e o itervalo fica com melhor precisão. Quado aumetamos a cofiaça, z, o itervalo fica com maior margem de erro e o itervalo fica com meor precisão. Exemplo ) Cosidere que foi obtido um itervalo de cofiaça para a média..1) Matedo a média, desvio padrão e a dimesão da amostra e aumetado o grau de cofiaça, o que acotece à amplitude do itervalo?.2) Matedo a média, desvio padrão e o grau de cofiaça e aumetado a dimesão da amostra, o que acotece à amplitude do itervalo?

Capítulo 5- Introdução à Inferência estatística.

Capítulo 5- Introdução à Inferência estatística. Capítulo 5- Itrodução à Iferêcia estatística. 1.1) Itrodução.(184) Na iferêcia estatística, aalisamos e iterpretamos amostras com o objetivo de tirar coclusões acerca da população de ode se extraiu a amostra.

Leia mais

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Itervalo Amostragem e iferêcia estatística População: cosiste a totalidade das observações em que estamos iteressados. Nº de observações a população é deomiado tamaho=n. Amostra:

Leia mais

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma amostra.

Leia mais

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra.

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra. UNIVERSIDADE FEDERAL DA PARAÍBA Distribuição Amostral Luiz Medeiros de Araujo Lima Filho Departameto de Estatística INTRODUÇÃO A Iferêcia Estatística é um cojuto de técicas que objetiva estudar a população

Leia mais

Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004

Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Estatística para Cursos de Egeharia e Iformática Pedro Alberto Barbetta / Marcelo Meezes Reis / Atoio Cezar Boria São Paulo: Atlas, 004 Cap. 7 - DistribuiçõesAmostrais e Estimaçãode deparâmetros APOIO:

Leia mais

ESTIMAÇÃO DE PARÂMETROS

ESTIMAÇÃO DE PARÂMETROS ESTIMAÇÃO DE PARÂMETROS 1 Estimação de Parâmetros uiverso do estudo (população) dados observados O raciocíio idutivo da estimação de parâmetros Estimação de Parâmetros POPULAÇÃO p =? AMOSTRA Observações:

Leia mais

Distribuições de Estatísticas Amostrais e Teorema Central do Limite

Distribuições de Estatísticas Amostrais e Teorema Central do Limite Distribuições de Estatísticas Amostrais e Teorema Cetral do Limite Vamos começar com um exemplo: A mega-sea de 996 a N 894 úmeros de a 6: Média: m 588 Desvio padrão: 756 49 amostras de 6 elemetos Frequêcia

Leia mais

Exercícios de Intervalos de Confiança para media, variância e proporção

Exercícios de Intervalos de Confiança para media, variância e proporção Exercícios de Itervalos de Cofiaça para media, variâcia e proporção 1. Se uma amostra aleatória =5, tem uma média amostral de 51,3 e uma desvio padrão populacioal de σ=. Costrua o itervalo com 95% de cofiaça

Leia mais

Uma amostra aleatória simples de n elementos é selecionada a partir da população. Calcula-se o valor da média a partir da amostra

Uma amostra aleatória simples de n elementos é selecionada a partir da população. Calcula-se o valor da média a partir da amostra Distribuição amostral de Um dos procedimetos estatísticos mais comus é o uso de uma média da amostra ( ) para fazer iferêcias sobre uma população de média µ. Esse processo é apresetado a figura abaio.

Leia mais

1 Distribuições Amostrais

1 Distribuições Amostrais 1 Distribuições Amostrais Ao retirarmos uma amostra aleatória de uma população e calcularmos a partir desta amostra qualquer quatidade, ecotramos a estatística, ou seja, chamaremos os valores calculados

Leia mais

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia ROTEIRO DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL 1. Itrodução. Teorema Cetral do Limite 3. Coceitos de estimação potual 4. Métodos de estimação potual 5. Referêcias Estatística Aplicada à Egeharia 1 Estatística

Leia mais

Virgílio A. F. Almeida DCC-UFMG 1/2005

Virgílio A. F. Almeida DCC-UFMG 1/2005 Virgílio A. F. Almeida DCC-UFMG 1/005 !" # Comparado quatitativamete sistemas eperimetais: Algoritmos, protótipos, modelos, etc Sigificado de uma amostra Itervalos de cofiaça Tomado decisões e comparado

Leia mais

Intervalos de Confiança

Intervalos de Confiança Itervalos de Cofiaça Prof. Adriao Medoça Souza, Dr. Departameto de Estatística - PPGEMQ / PPGEP - UFSM - 0/9/008 Estimação de Parâmetros O objetivo da Estatística é a realização de iferêcias acerca de

Leia mais

Avaliação de Desempenho de Sistemas Discretos

Avaliação de Desempenho de Sistemas Discretos Distribuições Comus Avaliação de Desempeho de Sistemas Discretos Probabilidade e Estatística 2 Uiforme Normal Poisso Hipergeométrica Biomial Studet's Geométrica Logormal Expoecial Beta Gamma Qui-Quadrado

Leia mais

MAE116 Noções de Estatística

MAE116 Noções de Estatística Exercício 1 A Secretaria de Saúde de um muicípio vem realizado um programa educativo etre as gestates mostrado a importâcia da amametação. Para averiguar a eficácia do programa pretede-se realizar uma

Leia mais

INFERÊNCIA. Fazer inferência (ou inferir) = tirar conclusões

INFERÊNCIA. Fazer inferência (ou inferir) = tirar conclusões INFERÊNCIA Fazer iferêcia (ou iferir) = tirar coclusões Iferêcia Estatística: cojuto de métodos de aálise estatística que permitem tirar coclusões sobre uma população com base em somete uma parte dela

Leia mais

Métodos de Amostragem

Métodos de Amostragem Métodos de Amostragem Amostragem aleatória Este é o procedimeto mais usual para ivetários florestais e baseia-se o pressuposto de que todas as uidades amostrais têm a mesma chace de serem amostradas a

Leia mais

d) A partir do item c) encontre um estimador não viciado para σ 2.

d) A partir do item c) encontre um estimador não viciado para σ 2. Uiversidade de Brasília Departameto de Estatística 6 a Lista de PE 1 Seja X 1,, X ) uma AAS tal que EX i ) = µ e VarX i ) = σ 2 a) Ecotre EXi 2 ) e E X 2) b) Calcule EX i X) X i X) 2 c) Se T =, mostre

Leia mais

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança Teorema do Limite Cetral, distribuição amostral, estimação por poto e itervalo de cofiaça Prof. Marcos Pó Métodos Quatitativos para Ciêcias Sociais Distribuição amostral Duas amostrages iguais oriudas

Leia mais

INTERVALOS DE CONFIANÇA

INTERVALOS DE CONFIANÇA INTRVALOS D CONFIANÇA 014 stimação por itervalos 1,..., é uma amostra aleatória de uma variável cuja distribuição depede do parâmetro. Se L( 1,..., ) e U( 1,..., ) são duas fuções tais que L < U e P(L

Leia mais

Revisando... Distribuição Amostral da Média

Revisando... Distribuição Amostral da Média Estatística Aplicada II DISTRIBUIÇÃO AMOSTRAL MÉDIA AULA 08/08/16 Prof a Lilia M. Lima Cuha Agosto de 016 Revisado... Distribuição Amostral da Média Seja X uma v. a. de uma população com média µ e variâcia

Leia mais

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Teoria da amostragem

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Teoria da amostragem Estatística: Aplicação ao Sesoriameto Remoto SER 04 - ANO 017 Teoria da amostragem Camilo Daleles Reó [email protected] http://www.dpi.ipe.br/~camilo/estatistica/ Algumas Cosiderações... É importate ter

Leia mais

Estimativa de Parâmetros

Estimativa de Parâmetros Estimativa de Parâmetros ENG09004 04/ Prof. Alexadre Pedott [email protected] Trabalho em Grupo Primeira Etrega: 7/0/04. Plao de Amostragem - Cotexto - Tipo de dado, frequêcia de coleta, quatidade

Leia mais

Objetivo. Estimar a média µ de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra.

Objetivo. Estimar a média µ de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra. ESTIMAÇÃO PARA A MÉDIAM Objetivo Estimar a média µ de uma variável aleatória X, que represeta uma característica de iteresse de uma população, a partir de uma amostra. Exemplos: µ : peso médio de homes

Leia mais

Estatística. Estatística II - Administração. Prof. Dr. Marcelo Tavares. Distribuições de amostragem. Estatística Descritiva X Estatística Inferencial

Estatística. Estatística II - Administração. Prof. Dr. Marcelo Tavares. Distribuições de amostragem. Estatística Descritiva X Estatística Inferencial Estatística II - Admiistração Prof. Dr. Marcelo Tavares Distribuições de amostragem Na iferêcia estatística vamos apresetar os argumetos estatísticos para fazer afirmações sobre as características de uma

Leia mais

Objetivo. Estimar a média de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra.

Objetivo. Estimar a média de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra. Objetivo Estimar a média de uma variável aleatória X, que represeta uma característica de iteresse de uma população, a partir de uma amostra. Exemplos: : peso médio de homes a faixa etária de 20 a 30 aos,

Leia mais

10 - Medidas de Variabilidade ou de Dispersão

10 - Medidas de Variabilidade ou de Dispersão 10 - Medidas de Variabilidade ou de Dispersão 10.1 Itrodução Localizado o cetro de uma distribuição de dados, o próximo passo será verificar a dispersão desses dados, buscado uma medida para essa dispersão.

Leia mais

FICHA DE TRABALHO 11º ANO. Sucessões

FICHA DE TRABALHO 11º ANO. Sucessões . Observe a sequêcia das seguites figuras: FICHA DE TRABALHO º ANO Sucessões Vão-se costruido, sucessivamete, triâgulos equiláteros os vértices dos triâgulos equiláteros já existetes, prologado-se os seus

Leia mais

Faculdade de Economia Universidade Nova de Lisboa ESTATÍSTICA. Exame Final 2ª Época 26 de Junho de Grupo I (3 valores)

Faculdade de Economia Universidade Nova de Lisboa ESTATÍSTICA. Exame Final 2ª Época 26 de Junho de Grupo I (3 valores) Faculdade de Ecoomia Uiversidade Nova de Lisboa ESTATÍSTIA Exame Fial ª Época 6 de Juho de 00 Ateção:. Respoda a cada grupo em folhas separadas. Idetifique todas as folhas.. Todas as respostas devem ser

Leia mais

Caderno de Exercício 3

Caderno de Exercício 3 1 Cadero de Exercício 3 Esaios de Hipóteses e Regressão Liear 1. Exercícios Aulas 1. Exercício 10.11 do livro Statistics for Ecoomics ad Busiess 2. Exercício 10.27 do livro Statistics for Ecoomics ad Busiess

Leia mais

Lista de Exercícios #4 Assunto: Variáveis Aleatórias Contínuas

Lista de Exercícios #4 Assunto: Variáveis Aleatórias Contínuas . ANPEC 8 - Questão Seja x uma variável aleatória com fução desidade de probabilidade dada por: f(x) = x, para x f(x) =, caso cotrário. Podemos afirmar que: () E[x]=; () A mediaa de x é ; () A variâcia

Leia mais

CAPÍTULO 6 ESTIMATIVA DE PARÂMETROS PPGEP. Introdução. Introdução. Estimativa de Parâmetros UFRGS

CAPÍTULO 6 ESTIMATIVA DE PARÂMETROS PPGEP. Introdução. Introdução. Estimativa de Parâmetros UFRGS CAPÍTULO 6 Itrodução Uma variável aleatória é caracterizada ou descrita pela sua distribuição de probabilidade. ETIMATIVA DE PARÂMETRO URG Em aplicações idustriais, as distribuições de probabilidade são

Leia mais

Estimação por Intervalo (Intervalos de Confiança):

Estimação por Intervalo (Intervalos de Confiança): Estimação por Itervalo (Itervalos de Cofiaça): 1) Itervalo de Cofiaça para a Média Populacioal: Muitas vezes, para obter-se a verdadeira média populacioal ão compesa fazer um levatameto a 100% da população

Leia mais

MOQ-13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel

MOQ-13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel MOQ-13 PROILIDDE E ESTTÍSTIC Professor: Rodrigo. Scarpel [email protected] www.mec.ita.br/~rodrigo Programa do curso: Semaas 1 3 4 5 6 7 8 9 10 11 1 13 14 15 e 16 Itrodução à probabilidade (evetos, espaço

Leia mais

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem Mestrado Itegrado em Egeharia Civil Disciplia: TRNSPORTES Prof. Resposável: José Mauel Viegas Sessão Prática 4: mostragem Istituto Superior Técico / Mestrado Itegrado Egª Civil Trasportes ulas Práticas

Leia mais

PROVA 1 27/10/ Os dados apresentados na seqüência mostram os resultados de colesterol

PROVA 1 27/10/ Os dados apresentados na seqüência mostram os resultados de colesterol PROVA 1 7/10/009 Nome: GABARITO 1. Os dados apresetados a seqüêcia mostram os resultados de colesterol mg /100ml em dois grupos de aimais. O grupo A é formado por 10 total ( ) aimais submetidos a um cotrole

Leia mais