Filtros de Média Movente
|
|
|
- Moisés Molinari Borja
- 9 Há anos
- Visualizações:
Transcrição
1 Processamento Digital de Sinais Filtros de Média Movente Prof. Dr. Carlos Alberto Ynoguti
2 Características É o filtro ótimo para a tarefa de remover ruído aleatório de um sinal, e manter uma resposta a degrau aguda. Ainda assim, é o filtro mais simples de ser implementado. Tem um desempenho péssimo no domínio da freqüência, embora existam filtros relativos a este, com um desempenho não tão ruim.
3 Implementação por convolução O filtro de média movente opera realizando médias de um número de pontos do sinal de entrada para produzir cada amostra no sinal de saída. M 1 y [i]= 1 M j =0 x [i j] Exemplo: para M=5 y [80]= x [80] x [81] x [82] x [83] x [84] 5
4 Observações Alternativamente, o grupo de pontos do sinal de entrada pode ser escolhido simetricamente ao redor do ponto de saída: y [80]= x [78] x [79] x [80] x [81] x [82] 5 Isto faz com que o sinal de saída não tenha atraso em relação ao de entrada, mas faz com que o sistema torne-se não causal. Você já deve ter percebido que o filtro MA na verdade tem um kerel muito simples: h[n]=1/m,n=0,...,m 1
5 Redução de ruído vs resposta a degrau A redução de ruído é proporcional à raiz quadrada do número de pontos do kernel do filtro.
6 Porque é o filtro ótimo? Imagine que queremos projetar um filtro com um tempo de subida fixo para a resposta a degrau (por exemplo 11 amostras). Isto requer que o kernel do filtro tenha 11 pontos. Como escolher os valores destes 11 pontos de modo a minimizar o ruído no sinal de saída? Desde que o ruído é aleatório, nenhuma amostra de entrada é especial; cada uma é tão ruidosa quanto sua vizinha. Assim, é inútil tratar de forma especial qualquer amostra da entrada: o menor ruído é obtido quando todas as amostras são tratadas igualmente.
7 Resposta em frequência H f = sen fm M sen f O roll off é bastante lento, e a atenuação na banda de bloqueio é horrível: este filtro não serve para separar uma banda de frequências da outra.
8 Relativos do filtro MA Vimos anteriormente que filtros que têm um bom desempenho no domínio do tempo, apresentam um desempenho ruim no domínio da freqüência e viceversa. Entretanto, existem casos em que ambos os domínios são simultaneamente importantes: remoção de interferência de sinal de 60Hz (frequência) em um sinal de vídeo (tempo); monitoramento de temperatura ao longo do tempo (tempo), com transdutores sujeitos a contaminação de uma estação de AM local mais um ruído de 60Hz (frequência).
9 Relativos do filtro MA Os relativos do filtro MA apresentam uma resposta em frequência um pouco melhor, e podem ser úteis nestas aplicações de domínios mistos. Os filtros mais utilizados para este fim são: Filtros MA de múltiplos passos Filtros Gaussianos Filtros de Blackman
10 Filtros MA de múltiplos passos Envolvem a passagem do sinal de entrada através de um filtro MA duas ou mais vezes.
11 Observações Duas passagens equivale a um filtro com kernel triangular. Depois de quatro ou mais passagens, o kernel fica cada vez mais parecido com uma gaussiana (lembra do Teorema do Limite Central?) A resposta a degrau fica cada vez mais arredondada à medida que passamos mais vezes pelo filtro O roll-off melhora um pouquinho, assim como a atenuação na banda de bloqueio, à medida que fazemos mais passagens pelo filtro.
12 Filtros Gaussiano e de Blackman Estes filtros utilizam como kernel uma função gaussiana e uma janela de Blackman, respectivamente.
13 MA vs relativos Os relativos são melhores pois: conseguem maior atenuação na banda de bloqueio os kernels possuem elementos de baixa amplitude em suas extremidades, o que dá menor importância às amostras de entrada nestas regiões as respostas a degrau são curvas suaves (isto pode não ser bom em alguns casos) Outras considerações Em termos de redução de ruído, todos são equivalentes Usando um algoritmo recursivo, o filtro MA é muito mais rápido que os relativos (aproximadamente 10x o número de pontos no filtro. Exemplo: um filtro gaussiano de 100 pontos é aproximadamente 1000 vezes mais lento que um MA de mesmo comprimento)
14 Implementação recursiva Vamos imaginar que estamos passando um sinal x[] por um filtro MA de 7 amostras. As amostras y[50] e y[51], por exemplo, são calculadas através de: y [50]=x [47] x[48] x [49] x [50] x [51] x [52] x [53] y [51]=x [48] x[49] x [50] x [51] x [52] x [53] x [54] Note que grande parte do esforço computacional usado para calcular y[50] é repetido no cálculo de y[51] (em destaque) Podemos reescrever a segunda equação como: y [51]=y [50] x [54] x[47]
15 Implementação recursiva Uma vez que temos y[51], podemos calcular y[52] da mesma maneira: subtrai-se o primeiro elemento e adiciona-se o último. Desta forma, cada ponto da saída pode ser obtido efetuando-se apenas uma soma e uma subtração, independentemente do comprimento do filtro! Este procedimento pode ser generalizado como: y [i]=y [i 1] x[i p] x[i q] onde: p= M 1 /2 q=p 1
16 Considerações sobre precisão Surpreendentemente, a representação em ponto fixo (números inteiros) funciona melhor do que a representação em ponto flutuante (números reais) neste caso, além de ser muito mais rápida. Por que? As operações em ponto fixo são realizadas muito mais rapidamente pelos processadores Em ponto fixo não há propagação de erros de arredondamento, o que certamente ocorre quando usamos ponto flutuante.
Filtros Digitais. Filtros básicos, parâmetros no domínio do tempo e frequência, classificação de filtros
Filtros Digitais Filtros básicos, parâmetros no domínio do tempo e frequência, classificação de filtros Filtros são usados basicamente para dois propósitos: Separação de sinais combinados; Restauração
Aula 6 PS Prof. César Janeczko. Filtros Digitais
Aula 6 PS Prof. César Janeczko Filtros Digitais Filtros digitais são usados em geral para dois propósitos: 1 o separação de sinais que foram combinados, por exemplo, modulados; 2 o restauração de sinais
Introdução aos Filtros Digitais
Processamento Digital de Sinais Introdução aos Filtros Digitais Prof. Dr. Carlos Alberto Ynoguti Conceitos Básicos Funções principais dos filtros: separação de sinais Exemplo: monitorar o sinal de ECG
Curso de Engenharia Elétrica Processamento Digital de Sinais II Exercícios sobre filtros não recursivos Data de entrega: 17/11/2015
Curso de Engenharia Elétrica Processamento Digital de Sinais II Exercícios sobre filtros não recursivos Data de entrega: 17/11/2015 1) Projete um filtro FIR passa baixas de 3 etapas com frequência de corte
Introdução a filtros digitais. Theo Pavan e Adilton Carneiro TAPS
Introdução a filtros digitais Theo Pavan e Adilton Carneiro TAPS Filtro anti-aliasing Com um sinal já digitalizado não é possível distinguir entre uma frequência alias e uma frequência que realmente esteja
Um filtro digital é uma implementação de um filtro através de operações matemáticas aplicadas em um sinal amostrado (e quantizado);
Filtros Digitais Filtros Digitais Um filtro digital é uma implementação de um filtro através de operações matemáticas aplicadas em um sinal amostrado (e quantizado); São usados para dois propósitos básicos:
Processamento Digital de Sinais. Convolução. Prof. Dr. Carlos Alberto Ynoguti
Processamento Digital de Sinais Convolução Prof. Dr. Carlos Alberto Ynoguti Convolução É uma operação matemática formal, assim como a soma. Soma: toma dois números e gera um terceiro. Convolução: toma
Processamento Digital de Sinais. Aplicações da DFT. Prof. Dr. Carlos Alberto Ynoguti
Processamento Digital de Sinais Aplicações da DFT Prof. Dr. Carlos Alberto Ynoguti Aplicações da DFT Nesta seção iremos apresentar três aplicações bastante comuns da DFT: 1) Análise espectral de sinais
ERROS DE QUANTIZAÇÃO
ERROS DE QUANTIZAÇÃO I) INTRODUÇÃO Neste capítulo serão analisados os erros causados por uma palavra de comprimento finito e seu comportamento no controlador digital. Como a palavra binária sempre será
Sumário. 1 Sinais e sistemas no tempo discreto 1. 2 As transformadas z e de Fourier 79
Sumário 1 Sinais e sistemas no tempo discreto 1 1.1 Introdução 1 1.2 Sinais no tempo discreto 2 1.3 Sistemas no tempo discreto 7 1.3.1 Linearidade 8 1.3.2 Invariância no tempo 8 1.3.3 Causalidade 9 1.3.4
Processamento Digital de Sinais. Aplicações da DFT. Prof. Dr. Carlos Alberto Ynoguti
Processamento Digital de Sinais Aplicações da DFT Prof. Dr. Carlos Alberto Ynoguti Aplicações da DFT Nesta seção iremos apresentar três aplicações bastante comuns da DFT: 1) Análise espectral de sinais
Técnicas de Projeto de Filtros
Técnicas de Projeto de Filtros Carlos Alexandre Mello Técnicas de Projeto de Filtros O projeto de um filtro tem três passos: Especificações Determinada pela aplicação Aproximações Projeto do filtro especificamente
Disciplina: Processamento Digital de Sinais Aula 05 - Implementação de Sistemas de Processamento Digital de Sinais (Parte 01)
Disciplina: Processamento Digital de Sinais Aula 05 - Implementação de Sistemas de Processamento Digital de Sinais (Parte 01) Prof. ([email protected]) Programa de Pós-Graduação em Engenharia Elétrica
Convolução Correlação. Profs. Theo Pavan e Adilton Carneiro TAPS
Convolução Correlação Profs. Theo Pavan e Adilton Carneiro TAPS Sistema Sistema processo em que os sinais de entrada são transformados resultando em um outro sinal de saída. x(t) Sistema de tempo contínuo
Representações de Números Inteiros: Sinal e Magnitude e Representação em Excesso de k
Representações de Números Inteiros: Sinal e Magnitude e Representação em Excesso de k Cristina Boeres Instituto de Computação (UFF) Fundamentos de Arquiteturas de Computadores Material de Fernanda Passos
Processamento de Imagem. Convolução Filtragem no Domínio da Frequência (Fourier) Professora Sheila Cáceres
Processamento de Imagem Convolução Filtragem no Domínio da Frequência (Fourier) Professora Sheila Cáceres Lembrando Filtragem Correlação A correlação e a convolução sãos dois conceitos relacionados a filtragem.
Transformada Discreta de Fourier
Processamento Digital de Sinais Transformada Discreta de Fourier Prof. Dr. Carlos Alberto Ynoguti Jean Baptiste Joseph Fourier Nascimento: 21 de março de 1768 em Auxerre, Bourgogne, França Morte: 16 de
Transformada Discreta de Fourier
Processamento Digital de Sinais Transformada Discreta de Fourier Prof. Dr. Carlos Alberto Ynoguti Jean Baptiste Joseph Fourier Nascimento: 21 de março de 1768 em Auxerre, Bourgogne, França Morte: 16 de
Filtros espaciais (suavizaçào)
Processamento de Imagens Médicas Filtros espaciais (suavizaçào) Prof. Luiz Otavio Murta Jr. Informática Biomédica Depto. de Física e Matemática (FFCLRP/USP) 1 Necessidade de pré-processamento 2 Propriedades
Efeitos da filtragem sobre sinais de onda quadrada
Efeitos da filtragem sobre sinais de onda quadrada Autores: Pedro Rodrigues e André F. Kohn Introdução O texto a seguir ilustra efeitos que diferentes sistemas lineares invariantes no tempo (SLIT) podem
Cálculo Numérico Noções básicas sobre erros
Cálculo Numérico Noções básicas sobre erros Profa. Vanessa Rolnik 1º semestre 2015 Fases da resolução de problemas através de métodos numéricos Problema real Levantamento de Dados Construção do modelo
Projeto de Filtros FIR
Projeto de Filtros FIR Estudaremos três técnicas de projeto de filtros FIR de fase linear: Método de Janelas: baseado no janelamento da resposta ao impulso de um filtro ideal; Método da Amostragem em Frequência:
T4.1 Processamento de Imagem
T4.1 Processamento de Imagem Proc. Sinal e Imagem Mestrado em Informática Médica Miguel Tavares Coimbra Resumo 1. Manipulação ponto a ponto 2. Filtros espaciais 3. Extracção de estruturas geométricas 4.
Filtros espaciais. Processamento e Recuperação de Imagens Médicas. Prof. Luiz Otavio Murta Jr. Depto. De Computação e Matemática (FFCLRP/USP)
Processamento e Recuperação de Imagens Médicas Prof. Luiz Otavio Murta Jr. Depto. De Computação e Matemática (FFCLRP/USP) 1 Propriedades Operadores de suavização os elementos da máscara são positivos e
Capítulo III Processamento de Imagem
Capítulo III Processamento de Imagem Proc. Sinal e Imagem Mestrado em Informática Médica Miguel Tavares Coimbra Resumo 1. Manipulação ponto a ponto 2. Filtros espaciais 3. Extracção de estruturas geométricas
Instrumentação e Técnicas de Medida EEL710 03/05/2017
Instrumentação e Técnicas de Medida EEL710 03/05/2017 Nome: PARA ESTA PROVA, POR FAVOR, RESPEITE ESTAS REGRAS 1) COLOQUE SEU NOME E NUMERE AS FOLHAS DOS CADERNOS DE RESPOSTA 2) RESPONDA AS QUESTÕES EM
Filtragem no domínio de frequência
Filtragem no domínio de frequência Filtragem no domínio de frequência Modificar a transformada de Fourier de uma imagem e computar a inversa para obter o resultado. Dada uma imagem f(x,y), MxN, a equação
Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima:
Cálculo Numérico 1 Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo.
Introdução FILTRAGEM NO DOMÍNIO DA FREQUÊNCIA
FILTRAGEM NO DOMÍNIO DA FREQUÊNCIA Introdução Um sinal no domínio do espaço (x,y) pode ser aproximado através de uma soma de senos e cossenos com frequências (f, f2, f3,...fn) de amplitudes (a, a2,...
INSTRUMENTAÇÃO ELECTRÓNICA EXERCÍCIOS FILTROS
INSTRUMENTAÇÃO ELECTRÓNICA EXERCÍCIOS FILTROS 1. Num determinado sinal oriundo de um transdutor, observouse a presença de ruído de 100 Hz com a amplitude de 50 mvpp. O sinal de interesse pode apresentar
SEL 0412 Tecnologia Digital Teoria
SEL 0412 Tecnologia Digital Teoria Aquisição de Dados Profa. Tania Regina Tronco Conceito É a coleta de informações para fins de análise dos dados e consequente controle e monitoramento de um processo;
ESTRUTURAS DE REPETIÇÃO - PARTE 1
AULA 15 ESTRUTURAS DE REPETIÇÃO - PARTE 1 15.1 O comando enquanto-faca- Considere o problema de escrever um algoritmo para ler um número inteiro positivo, n, e escrever todos os números inteiros de 1 a
Parâmetros importantes de um Analisador de Espectros: Faixa de frequência. Exatidão (frequência e amplitude) Sensibilidade. Resolução.
Parâmetros importantes de um Analisador de Espectros: Faixa de frequência Exatidão (frequência e amplitude) Sensibilidade Resolução Distorção Faixa dinâmica Faixa de frequência: Determina as frequências
Processamento Digital de Sinais. Conversão A/D e D/A. Prof. Dr. Carlos Alberto Ynoguti
Processamento Digital de Sinais Conversão A/D e D/A Prof. Dr. Carlos Alberto Ynoguti Introdução A maioria dos sinais encontrados na natureza é contínua Para processá-los digitalmente, devemos: Converter
Filtros Digitais FIR (Finite Impulse Response) Prof. Juan Mauricio Villanueva
Filtros Digitais FIR (Finite Impulse Response) Prof. Juan Mauricio Villanueva [email protected] www.cear.ufpb.br/juan 1 Filtros FIR (Finite Impulse Response) Para um sistema FIR de ordem M Com função
ELE-31 Principios de Telecomunicações
ELE-31 Principios de Telecomunicações Prof. Manish Sharma August 3, 2015 1 Introdução 1.1 Elementos de um sistema de comunicação Os objetivos de um sistema de comunicações são: Transferir informação de
4. O algoritmo LMS e variantes
Apontamentos de Processamento Adaptativo de Sinais 4. O algoritmo LMS e variantes Família de algoritmos do gradiente Na prática usam-se estimativas do gradiente, ˆ (n), em vez do verdadeiro gradiente (n),
MÉTODOS NEWTON E QUASE-NEWTON PARA OTIMIZAÇÃO IRRESTRITA
MÉTODOS NEWTON E QUASE-NEWTON PARA OTIMIZAÇÃO IRRESTRITA Marlon Luiz Dal Pasquale Junior, UNESPAR/FECILCAM, [email protected] Solange Regina dos Santos (OR), UNESPAR/FECILCAM, [email protected]
FREQUÊNCIA EM IMAGENS DIGITAIS
PROCESSAMENTO DIGITAL DE IMAGENS (SERP11) FILTRAGEM NO DOMÍNIO ESPACIAL E DAS FREQUÊNCIAS Daniel C. Zanotta FREQUÊNCIA EM IMAGENS DIGITAIS Análise da intensidade dos NCs da imagem Banda 7 Landsat TM ao
Aula 9: Estouro e Representação em Ponto Flutuante
Aula 9: Estouro e Representação em Ponto Flutuante Diego Passos Universidade Federal Fluminense Fundamentos de Arquiteturas de Computadores Diego Passos (UFF) Estouro e Ponto Flutuante FAC 1 / 43 Revisão
Processamento Digital de Sinais
Processamento Digital de Sinais Outline: Filtros Digitais Caracterização de Filtros Digitais Metodologia de Projeto de Filtros Digitais Filtros FIR Finite Impulse Response Filtros de Fase Linear Projeto
FACULDADE DE TALENTOS HUMANOS DEPARTAMENTO DE ENGENHARIA ELÉTRICA PROCEDIMENTOS EXPERIMENTAIS DE COMUNICAÇÃO DIGITAL II PARA TELECOMUNICAÇÃO
FACULDADE DE TALENTOS HUMANOS DEPARTAMENTO DE ENGENHARIA ELÉTRICA PROCEDIMENTOS EXPERIMENTAIS DE COMUNICAÇÃO DIGITAL II PARA TELECOMUNICAÇÃO PROF. ENG. ESP. ANTONIO CARLOS LEMOS JÚNIOR [email protected]
CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano
CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano [email protected] Aula 7 04/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproximados para as soluções (raízes) de equações da
MORFOLOGIA MATEMÁTICA
MORFOLOGIA MATEMÁTICA Morfologia Na Biologia área que trata com a forma e a estrutura de plantas e animais Processamento de Imagens Ferramenta para extração de componentes de imagens que sejam úteis na
T4 Processamento de Imagem
T4 Processamento de Imagem Proc. Sinal e Imagem Mestrado em Informática Médica Hélder Filipe Pinto de Oliveira Resumo 1. Manipulação ponto a ponto 2. Conetividade 3. Filtros espaciais 4. Extração de estruturas
Aula 7: Representações de Números Inteiros: Sinal e Magnitude e Representação em Excesso de k
Aula 7: Representações de Números Inteiros: Sinal e Magnitude e Representação em Excesso de k Diego Passos Universidade Federal Fluminense Fundamentos de Arquiteturas de Computadores Diego Passos (UFF)
Fundamentos da Computação Gráfica
Fundamentos da Computação Gráfica Trabalho 2 Visão. Detecção de cantos. Manuel Alejandro Nodarse Moreno (1322198) Introdução. Detecção de cantos é uma abordagem utilizada em sistemas de visão computacional
Técnicas de Projeto de Filtros IIR
Carlos Alexandre Mello 1 A técnica básica de projeto de filtros IIR transforma filtros analógicos bem conhecidos em filtros digitais A vantagem dessa técnica está no fato que tanto tabelas de filtros analógicos
Distribuição Normal. Prof a Dr a Alcione Miranda dos Santos. Abril, 2011
Distribuição Normal Prof a Dr a Alcione Miranda dos Santos Universidade Federal do Maranhão Programa de Pós-Graduação em Saúde Coletiva email:[email protected] Abril, 2011 1 / 18 Sumário Introdução
08/12/97 Luiz Feijó Jr.
Cálculo da Incerteza da medição guia prático A Medição A palavra medição tem múltiplos significados: pode ser o processo de quantificação pode ser o número resultante Resultado de uma medição Para um leigo:
étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO
FILTRAGEM DE IMAGEM NO DOMÍNIO ESPACIAL (Operações aritméticas orientadas à vizinhança)
PROCESSAMENTO DE IMAGEM #5 Operações Aritméticas Orientadas à Vizinhanças Filtragem no Domínio Espacial (Máscaras) Máscaras de suavização (média e mediana) e aguçamento (laplaciano) Correlação x Convolução
SEL Processamento Digital de Imagens Médicas. Aula 4 Transformada de Fourier. Prof. Dr. Marcelo Andrade da Costa Vieira
SEL 0449 - Processamento Digital de Imagens Médicas Aula 4 Transformada de Fourier Prof. Dr. Marcelo Andrade da Costa Vieira [email protected] Jean Baptiste Joseph Fourier 2 Exemplo: Função Degrau 3 Exemplo:
Aula 4: Gráficos lineares
Aula 4: Gráficos lineares 1 Introdução Um gráfico é uma curva que mostra a relação entre duas variáveis medidas. Quando, em um fenômeno físico, duas grandezas estão relacionadas entre si o gráfico dá uma
Transformada Rápida de Fourier (FFT)
Transformada Rápida de Fourier (FFT) A FFT é um algoritmo eficiente para calcular a DFT A DFT de uma sequência x n de comprimento finito N é definida como: N 1 N 1 X k = x n e j2π N kn = x n W N kn, 0
Processamento Digital de Sinais II Exercícios sobre Transformada z Data de entrega: 17/11/2015
Processamento Digital de Sinais II Exercícios sobre Transformada z Data de entrega: 17/11/2015 1) Determine a transformada inversa de, aplicando: a) Desenvolvimento em série de potências b) Divisão direta
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/27 4 - INTROD. À ANÁLISE COMBINATÓRIA 4.1) Arranjos
Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima:
Cálculo Numérico 1 Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo.
Modulação SSB e Transmissão Digital
Modulação SSB e Transmissão Digital 1 Modulação em SSB Vimos que na modulação AM, a portadora é mantida e o sinal modulante produz dois sinais laterais com a informação que estamos transmitindo. Fig. 1
étodos uméricos Erros Visão Geral Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
étodos uméricos Erros Visão Geral Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA
ÍNDICE LISTA DE FIGURAS LISTA DE TABELAS PREFÁCIO AGRADECIMENTOS
ÍNDICE LISTA DE FIGURAS LISTA DE TABELAS PREFÁCIO AGRADECIMENTOS 1 O SISTEMA TELEFÓNICO 1.1 Introdução 1.2 Terminais telefónicos 1.3 Rede telefónica 1.4 Princípios de comutação telefónica 1.4.1 Introdução
Circuitos RC com corrente alternada. 5.1 Material. resistor de 10 Ω; capacitor de 2,2 µf.
Circuitos RC com corrente alternada 5 5.1 Material resistor de 1 Ω; capacitor de, µf. 5. Introdução Como vimos na aula sobre capacitores, a equação característica do capacitor ideal é dada por i(t) = C
Processamento de Sinais DEL/Poli/UFRJ. Estruturas de Filtros Digitais
Processamento de Sinais DEL/Poli/UFRJ Estruturas de Filtros Digitais Elementos Básicos Os filtros discretos no tempo são formados por 4 elementos básicos: somador ponto de tomada atrasador unitário multiplicador
Capítulo 2- Funções. Dado dois conjuntos não vazios e e uma lei que associa a cada elemento de um único elemento de, dizemos que é uma função de em.
Conceitos Capítulo 2- Funções O termo função foi primeiramente usado para denotar a dependência entre uma quantidade e outra. A função é usualmente denotada por uma única letra,,,... Definição: Dado dois
CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano
CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano [email protected] Aula 7 04/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproximados para as soluções (raízes) de equações da
Analisador de espectros por FFT
Analisador de espectros por FFT A transformada de Fourier (FT) é uma ferramenta matemática utilizada essencialmente para decompor ou separar uma função ou forma de onda em senóides de diferentes frequências
Resumo. Filtragem Adaptativa. Filtros adaptativos. Tarefas desempenhadas pelos filtros
Resumo Filtragem Adaptativa Luís Caldas de Oliveira lco@istutlpt Instituto Superior Técnico Sistemas de filtragem adaptativa Conceitos de filtragem adaptativa Filtro de Wiener Algoritmo steepest descent
FILTROS ESPACIAIS PASSA-BAIXA
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO CMP65 - INTRODUÇÃO AO PROCESSAMENTO DE IMAGENS PROFESSOR JACOB SCARCHANSKI FILTROS ESPACIAIS PASSA-BAIXA POR DANIEL NEHME
CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.
CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano [email protected] Aula 4 09/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma:
Processamento digital de imagens
Processamento digital de imagens Agostinho Brito Departamento de Engenharia da Computação e Automação Universidade Federal do Rio Grande do Norte 6 de outubro de 2016 Segmentação de imagens A segmentação
1.1 Etapas na solução de um problema. 1.3 Tipos de erros. 1.4 Aritmética de ponto flutuante.
1. Computação numérica 1.1 Etapas na solução de um problema. 1.2 Notação algorítmica. 1.3 Tipos de erros. 1.4 Aritmética de ponto flutuante. Algoritmos Numéricos Cap.1: Computaç~ao numérica Ed1.0 c 2001
AGG0330 Processamento de Sinais Digitais
AGG0330 Processamento de Sinais Digitais www.iag.usp.br/~agg330 Liliana Alcazar Diogo [email protected] & Marcelo Bianchi [email protected] 2017 AGG0330 Processamento de sinais digitais Teoria
Agenda do Dia Aula 14 (19/10/15) Sistemas Lineares: Introdução Classificação
Agenda do Dia Aula 14 (19/10/15) Sistemas Lineares: Introdução Classificação Sistemas Lineares Sistemas lineares são sistemas de equações com m equações e n incógnitas formados por equações lineares. Um
VISÃO COMPUTACIONAL. Marcelo Henrique dos Santos
VISÃO COMPUTACIONAL Marcelo Henrique dos Santos [email protected] São Paulo SP, Agosto/2013 INTRODUÇÃO Processamento de imagens é um processo onde a entrada do sistema é uma imagem e a saída é
UNIDADE I Aula 3 Sinal. Fonte: Rodrigo Semente
UNIDADE I Aula 3 Sinal Fonte: Rodrigo Semente Vimos na aula passada o seguinte... A transmissão da informação em Sistemas de Comunicação pressupõe a passagem de sinais através de meios físicos. Neste sentido,
Organização e Arquitetura de Computadores I
Organização e Arquitetura de Computadores I Aritmética Computacional Slide 1 Sumário Unidade Lógica e Aritmética Representação de Números Inteiros Representação de Números de Ponto Flutuante Aritmética
Diagrama do olho PROJETO E AVALIAÇÃO SISTÊMICOS por Mônica de Lacerda Rocha - CPqD
1 A técnica de medida conhecida como diagrama de olho, feita no domínio do tempo, é uma ferramenta importante para se avaliar o desempenho de um sistema óptico digital, pois permite uma visualização da
SEL-0339 Introdução à Visão Computacional. Aula 2 Processamento Espacial (Parte 2)
Departamento de Engenharia Elétrica - EESC-USP SEL-0339 Introdução à Visão Computacional Aula 2 Processamento Espacial (Parte 2) Prof. Dr. Marcelo Andrade da Costa Vieira Prof. Dr. Adilson Gonzaga [email protected]
Noções sobre Erros em Matemática Computacional
Noções sobre Erros em Matemática Computacional Sumário Representação de Números em Ponto Flutuante Erros em Expressões Definições Úteis Ponto Flutuante em Computadores Representação de Números em Ponto
FILTRAGEM NO DOMÍNIO ESPACIAL. Daniel C. Zanotta 10/06/2016
FILTRAGEM NO DOMÍNIO ESPACIAL Daniel C. Zanotta 10/06/2016 Passa-Baixas O efeito visual de um filtro passa-baixa é o de suavização da imagem e a diminuição de mudanças abruptas de níveis de cinza. As altas
parciais primeira parte
MÓDULO - AULA 3 Aula 3 Técnicas de integração frações parciais primeira parte Objetivo Aprender a técnica de integração conhecida como frações parciais. Introdução A técnica que você aprenderá agora lhe
Filtros Digitais. Capítulo 6.0 PDS Prof. César Janeczko (2 o semestre 2009) 10 A
Capítulo 6.0 PDS Prof. César Janeczko (2 o semestre 2009) Filtros Digitais Filtros digitais são usados em geral para dois propósitos: 1 o separação de sinais que foram combinados, por exemplo, modulados;
Sílvio A. Abrantes Faculdade de Engenharia Universidade do Porto, Portugal
Apontamentos de Processamento Adaptativo de Sinais Sílvio A. Abrantes Faculdade de Engenharia Universidade do Porto, Portugal Apontamentos de Processamento Adaptativo de Sinais 1. Introdução Introdução
6.Elaboração de algoritmos...13
Índice de conteúdos Capítulo 1. Computação Científica...1 1.Definição...1 2.Modelo genérico...2 3.Modelo matemático...2 4.Tipos de modelos matemáticos...3 5.Modelação matemática...5 5.1.Definição (formulação)
Métodos Computacionais em Física
Métodos Computacionais em Física Tatiana G. Rappoport [email protected] 2014-1 Integração usando o método da rejeição Queremos calcular a integral Definimos um retângulo de altura H que contenha a
SME0300 Cálculo Numérico Aula 4
SME0300 Cálculo Numérico Aula 4 Maria Luísa Bambozzi de Oliveira marialuisa @ icmc. usp. br Sala: 3-241 Página: tidia-ae.usp.br 13 de agosto de 2015 Aula Passada Operações Aritméticas: Arredondamento a
