FUNDAMENTOS DE LÓGICA E ALGORITMOS
|
|
|
- Maria do Pilar Domingos Barreto
- 9 Há anos
- Visualizações:
Transcrição
1 INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE FUNDAMENTOS DE LÓGICA E ALGORITMOS AULA 01 Docente: Éberton da Silva Marinho [email protected] 27/05/2016
2 SUMÁRIO Introdução à Lógica Histórico da Lógica Lógica Proposicional 2
3 INTRODUÇÃO À LÓGICA A Lógica, ao que tudo indica, foi descoberta por Aristóteles ( a.c). Os registros se encontram em seu famoso livro Metafísica em grego antigo: Μετά τα φυσικά, translit. metà ta physikà, "depois dos livros de Física", mas também "além das coisas físicas Depois de sua descoberta, ela permaneceu praticamente intecta por mais de dois mil anos.
4 INTRODUÇÃO À LÓGICA As grandes mudanças começaram a ocorrer notadamente com George Boole ( ) e contemporâneos com a introdução da simbolização na Lógica. Outros como Gottfried Wilhelm von Leibniz ( ), Augustus De Morgan ( ), Johann Heinrich Lambert ( ) e outros, contribuíram enormemente para a evolução da lógica de predicados
5 INTRODUÇÃO À LÓGICA O que é Lógica? Lógica é um substantivo feminino com origem no termo grego logiké, relacionado com o logos, razão,palavra ou discurso, que significa a ciência do raciocínio. Em sentido figurado, a palavra lógica está relacionada com um maneira específica de raciocinar, de forma acertada. Por exemplo: Isso nunca vai funcionar! O teu plano não tem lógica nenhuma!
6 INTRODUÇÃO À LÓGICA Lógica aristotélica De acordo com Aristóteles, a lógica tem como objeto de estudo o pensamento, assim como as leis e regras que o controlam, para que esse pensamento seja correto. Para o filósofo grego, os elementos constituintes da lógica são o conceito, juízo e raciocínio. Pensadores medievais como Galeno, Porfírio e Alexandre de Afrodísia classificavam a lógica como a ciência de julgar corretamente, que possibilita alcançar raciocínios corretos e formalmente válidos.
7 INTRODUÇÃO À LÓGICA Lógica de argumentação A lógica de argumentação permite verificar a validade ou se um enunciado é verdadeiro ou não. Não é feito com conceitos relativos nem subjetivos.são proposições tangíveis cuja validade podem ser verificada. Neste caso, a lógica tem como objetivo avaliar a forma das proposições e não o conteúdo. Por exemplo: O Fubá é um cachorro. Todos os cachorros são mamíferos. Logo, o Fubá é um mamífero.
8 INTRODUÇÃO À LÓGICA Lógica matemática A lógica matemática (ou lógica formal) estuda a lógica segundo a sua estrutura ou forma. A lógica matemática consiste em um sistema dedutivo de enunciados que tem como objetivo criar um grupo de leis e regras para determinar a validade dos raciocínios. Assim, um raciocínio é considerado válido se é possível alcançar uma conclusão verdadeira a partir de premissas verdadeiras.
9 INTRODUÇÃO À LÓGICA Lógica de programação A lógica de programação é a linguagem usada para criar um programa de computador. A lógica de programação é essencial para desenvolver programas e sistemas informáticos, pois ela define o encadeamento lógico para esse desenvolvimento. Os passos para esse desenvolvimento são conhecidos como algoritmo, que consiste em uma sequência lógica de instruções para que a função seja executada.
10 INTRODUÇÃO À LÓGICA O que é o Raciocínio lógico? Raciocínio lógico é um processo de estruturação do pensamento de acordo com as normas da lógica que permite chegar a uma determinada conclusão ou resolver um problema. Um raciocínio lógico requer consciência e capacidade de organização do pensamento. Existem diferentes tipos de raciocínio lógico, como o dedutivo, indutivo e abdução.
11 INTRODUÇÃO À LÓGICA Raciocínio lógico Frequentemente, o raciocínio lógico é usado para fazer inferências, sendo que começa com uma afirmação ou proposição inicial, seguido de uma afirmação intermediária e uma conclusão.
12 INTRODUÇÃO À LÓGICA Leitura de texto sobre Aristóteles
13 INTRODUÇÃO AO CÁLCULO PROPOSICIONAL
14 INTRODUÇÃO Definição de Verdadeiro conformidade entre o pensamento ou a sua expressão e o obje to de pensamento qualidade do que é verdadeiro; realidade exatidão, rigor, precisão representação fiel boa-fé; sinceridade coisa certa axioma, premissa evidente
15 INTRODUÇÃO Definição de Falso que não é verdadeiro; fingido, simulado em que há mentira; mentiroso, desleal, traidor que imita o verdadeiro; falsificado que não assenta em bases sólidas; suposto, aparente indivíduo traiçoeiro aquilo que não é verdadeiro local oculto em edifício ou móvel, geralmente usado p ara guardar algo
16 INTRODUÇÃO Analise as seguintes frases O céu é azul A Lua é menor que a Terra O quadro é Negro Se não lavar a louça do jantar vou colocá-la de castigo O Brasil tem o melhor time de futebol do mundo Amanhã vai chover As frases acima são verdadeiras ou falsas?
17 PARADOXOS Um paradoxo é uma declaração aparentemente verdadeira que leva a uma contradição lógica, ou a uma situação que contradiz a intuição comum. Os paradoxos foram objetos de estudos e inquietações por parte de filósofos e lógicos, desde os tempos da Antiga Grécia. Os paradoxos podem ser classificados como semânticos e lógicos
18 PARADOXO SEMÂNTICO Paradoxo do mentiroso Partimos do pré-suposto que toda declaração da língua portuguesa ou é verdadeira ou é falsa, mas nunca ambas simultaneamente. Temos a seguinte frase: S1: A sentença escrita neste slide contém oito palavras* A sentença S1 é verdadeira, pois S1 contém realmente oito palavras. * unidade linguística dotada de sentido, constituída por fonemas organizados numa determinada ordem, que pertence a uma (ou mais) categoria(s) sintática(s) e que, na escrita, é delimitada por espaços brancos;
19 PARADOXO SEMÂNTICO Paradoxo do mentiroso Agora temos a seguinte frase: S2: A sentença escrita neste slide contém onze palavras A sentença S2 é falsa, pois S2 contém realmente oito palavras e não onze.
20 PARADOXO SEMÂNTICO Paradoxo do mentiroso Agora temos as seguintes frases: S3: A sentença escrita neste slide é falsa Se S3 é verdadeira, é verdadeiro que a sentença é falsa. Se S3 é falsa, é falso que S3 é falso, logo S3 é verdadeiro
21 PARADOXO SEMÂNTICO Paradoxo do Cartão A sentença escrita no verso deste cartão é verdadeira A sentença escrita no verso deste cartão é falsa Cada uma das sentenças é verdadeira, se e somente se, for falsa.
22 PARADOXO SEMÂNTICO Paradoxo do Barbeiro Suponha-se que exista uma cidade com apenas um barbeiro, do sexo masculino. Nesta cidade, todos os homens se mantém bem barbeados. O barbeiro é um homem da cidade que faz a barba de todos aqueles, e somente dos homens da cidade que não barbeiam a si mesmos. Quem barbeia o barbeiro? Se o barbeiro barbear-se a si mesmo, então o barbeiro (ele mesmo) não deve barbear a si mesmo. Se o barbeiro não barbeia-se a si mesmo, então ele (o barbeiro) deve barbear a si mesmo.
23 LINGUAGENS ARTIFICIAIS Não é toda linguagem que pode ser utilizada para o tratamento da lógica Toda a linguagem universal que tem a capacidade de referir-se a si própria, sem quaisquer restrições, leva inevitavelmente a contradições Precisamos então construir uma linguagem formal para o tratamento da lógica Por que não utilizamos a língua portuguesa?
24 POSSÍVEIS PROPOSIÇÕES
25 LINGUAGENS ARTIFICIAIS Língua portuguesa Nível de detalhamento Não definido Interpretação Ambíguo e depende do contexto Se modifica em um tempo muito curto Irregularidade Sintática Paradoxos de implicação Conclusão? *Não é ideal para representar a lógica
26 LINGUAGENS ARTIFICIAIS Linguagem proposicional Utilizaremos uma parte da língua portuguesa, porções da matemática e de noções ditadas pelo senso comum Nível de detalhamento bem definido Interpretação precisa Não se modifica em um tempo muito curto Não possui irregularidade Sintática Precisaremos de uma meta-liguagem: Uma linguagem que explique os elemento de outra linguagem
27 LINGUAGEM PROPOSICIONAL Sentenças: Declarações afirmativas verdadeiras ou falsas A neve é branca (verdadeira) = 5 (falsa) Há cinco milhões de grãos de areia na lua (falsa) Adotaremos a notação booleana para designar uma sentença verdadeira ou falsa como abaixo 1 designa o valor verdadeiro 0 designa o valor falso
28 LINGUAGEM PROPOSICIONAL Tabela da verdade: Tabela onde são enumeradas todas as proposições e os valores que as mesmas podem assumir em uma sentença. Essa tabela nos permite verificar se uma sentença é verdadeira ou não. Proposição Modificadores (Operadores) Valor 01 Valor 03 Valor 02 Valor 04
29 TABELA DA VERDADE Enumeram-se todas as possibilidades de combinação de valores das proposições Separam-se os operadores do mais interno para o mais externo em sentenças Faz-se a avaliação de cada sentença
30 LINGUAGEM PROPOSICIONAL O cálculo proposicional é o estudo da linguagem proposicional. Ela estuda basicamente cinco símbolos: Negação: ~ Conjunção: /\ Disjunção: \/ Implicação: -> Bi-implicação: <->
31 LINGUAGEM PROPOSICIONAL Tabela Verdade da Negação (Operador Não) Seja a letra A minha proposição A ~A
32 EXEMPLOS Vamos ver algumas afirmações Todo homem é mortal Possíveis negações Todo homem não é mortal Nenhum Homem é Mortal Por que não seria correto afirmar que Nem todo homem é mortal seria uma negação da expressão acima? Seja a proposição: Todo homem é mortal, podemos utilizar letras como a letra A para sua representação em lógica proposicional. Logo, ~A seria a negação da primeira proposição.
33 LINGUAGEM PROPOSICIONAL Tabela Verdade da Conjunção (operador E) Sejam as letras A e B minhas proposições A B A /\ B
34 EXEMPLOS Vamos ver algumas afirmações Bianca não estudava e era mal educada Está chovendo e fazendo frio Chiquinho é esperto e atento Represente as afirmações acima em lógica proposicional
35 LINGUAGEM PROPOSICIONAL Tabela Verdade da Disjunção (operador OU) Sejam as letras A e B minhas proposições A B A \/ B
36 LINGUAGEM PROPOSICIONAL Tabela Verdade da Implicação Sejam as letras A e B minhas proposições Na proposição A -> B, A é o antecedente da implicação e B o consequente A B A -> B
37 EXEMPLOS Vamos ver algumas afirmações Se este pote d água for colocado no fogo no instante t0 então a água ferverá Se este pote d água for colocado no fogo no instante t0 -> então a água ferverá A -> B Se você estudar você ficará mais inteligente Se você estudar -> você ficará mais inteligente A -> B Faça a tabela da verdade para as sentenças acima
38 LINGUAGEM PROPOSICIONAL O equivalente da implicação A -> B é (~A) \/ B Faça a tabela da verdade das duas sentenças e compare
39 LINGUAGEM PROPOSICIONAL Tabela Verdade da Bi-implicação Sejam as letras A e B minhas proposições Na proposição A <-> B, se e somente se A e B possuem o mesmo valor A B A <-> B
40 EXEMPLOS Vamos ver algumas afirmações É verão somente se está calor Nunca é verão se não está calor O brasil será campeão da copa do mundo se e somente se for o melhor Faça a tabela da verdade para as sentenças acima
41 EXEMPLOS Faça as tabelas da verdade das seguintes expressões ((p /\ q) -> r) ((p \/ q) /\ (~ (p /\ q)))
42 EXEMPLOS Faça as tabelas da verdade das seguintes expressões ((p \/ q) -> (~ p)) -> (q /\ p))
43 LEITURAS EM LÓGICA PROPOSICIONAL Sentença em Lógica Proposicional Sentença em Português ~A Não A; Não se dá que A; Não é fato que A; Não é verdade que A; Não é que A; Não se tem A A /\ B A e B; A, mas B; A, embora B; A, assim como B; A e também B; Não só A, mas também B; A, apesar de B
44 LEITURAS EM LÓGICA PROPOSICIONAL Sentença em Lógica Proposicional A \/ B Sentença em Português A ou B ou ambos A -> B Se A, então B; Se A, isto significa B; Quando A, então B; Quando A, então B; Sempre que A, B; B sempre que se tenha A; B, contanto que A; A é condição suficiente para B; B é condição necessária para A; Uma condição suficiente para B é A; Uma condição necessária para A é B; B, se A
45 LEITURAS EM LÓGICA PROPOSICIONAL Sentença em Lógica Proposicional Sentença em Português A -> B B, quando A; B, no caso de A; A, só se B; A, somente quando B; A, só no caso de B; A implica B; A acarreta B; B é implicada por A A <-> B A se e só se B; A se e somente se B; A quando e somente quando B; A equivalente a B; Uma condição necessária e suficiente para A é B; A é condição necessária e suficiente para B
46 REFERÊNCIA BIBLIOGRÁFICA Livro Infopédia. Porto: Porto Editora, [Consult ]. Disponível na www: <URL:
47 DÚVIDAS Assunto: Turma Endereço eletrônico da disciplina: 47
Matemática discreta e Lógica Matemática
AULA 1 - Lógica Matemática Prof. Dr. Hércules A. Oliveira UTFPR - Universidade Tecnológica Federal do Paraná, Ponta Grossa Departamento Acadêmico de Matemática Ementa 1. Lógica proposicional: introdução,
Matemática discreta e Lógica Matemática
AULA 1 - Lógica Matemática Prof. Dr. Hércules A. Oliveira UTFPR - Universidade Tecnológica Federal do Paraná, Ponta Grossa Departamento Acadêmico de Matemática Ementa 1 Lógica Sentenças, representação
Como primeira e indispensável parte da Lógica Matemática temos o Cálculo Proporcional ou Cálculo Sentencial ou ainda Cálculo das Sentenças.
NE-6710 - SISTEMAS DIGITAIS I LÓGICA PROPOSICIONAL, TEORIA CONJUNTOS. A.0 Noções de Lógica Matemática A,0.1. Cálculo Proposicional Como primeira e indispensável parte da Lógica Matemática temos o Cálculo
Fundamentos da Computação 1. Aula 03
Fundamentos da Computação 1 Aula 03 Conteúdo Introdução à Lógica. Definição da Sintaxe. Traduzindo Sentenças. Introdução à Lógica O que é lógica? Introdução à Lógica O que é lógica? Lógica é a análise
NHI Lógica Básica (Lógica Clássica de Primeira Ordem)
NHI2049-13 (Lógica Clássica de Primeira Ordem) página da disciplina na web: http://professor.ufabc.edu.br/~jair.donadelli/logica O assunto O que é lógica? Disciplina que se ocupa do estudo sistemático
Afirmações Matemáticas
Afirmações Matemáticas Na aula passada, vimos que o objetivo desta disciplina é estudar estruturas matemáticas, afirmações sobre elas e como provar essas afirmações. Já falamos das estruturas principais,
Fundamentos de Lógica e Algoritmos. Aula 1.2 Introdução a Lógica Booleana. Prof. Dr. Bruno Moreno
Fundamentos de Lógica e Algoritmos Aula 1.2 Introdução a Lógica Booleana Prof. Dr. Bruno Moreno [email protected] Você está viajando e o pneu do seu carro fura! 2 Quais são os passos para se trocar
Lógica Matemática. Prof. Gerson Pastre de Oliveira
Lógica Matemática Prof. Gerson Pastre de Oliveira Programa da Disciplina Proposições e conectivos lógicos; Tabelas-verdade; Tautologias, contradições e contingências; Implicação lógica e equivalência lógica;
Lógica Proposicional e Dedução Natural 1/48. Douglas O. Cardoso docardoso.github.io
Lógica Proposicional e Dedução Natural [email protected] docardoso.github.io Lógica Proposicional e Dedução Natural 1/48 Roteiro 1 Uma Introdução Intuitiva 2 Proposições 3 DN: regras básicas
Introdução à Lógica Matemática
Introdução à Lógica Matemática Disciplina fundamental sobre a qual se fundamenta a Matemática Uma linguagem matemática Paradoxos 1) Paradoxo do mentiroso (A) Esta frase é falsa. A sentença (A) é verdadeira
Matemática Régis Cortes. Lógica matemática
Lógica matemática 1 INTRODUÇÃO Neste roteiro, o principal objetivo será a investigação da validade de ARGUMENTOS: conjunto de enunciados dos quais um é a CONCLUSÃO e os demais PREMISSAS. Os argumentos
Resumo aula. Conceituação; Origem; Lógica de programação; Argumentos; Lógica simbólica; Dedutivos; Indutivos;
Aula 02 - Lógica Disciplina: Algoritmos Prof. Allbert Velleniche de Aquino Almeida E-mail: [email protected] Site: http://www.allbert.com.br /allbert.almeida Resumo aula Conceituação; Origem;
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/53 1 - LÓGICA E MÉTODOS DE PROVA 1.1) Lógica Proposicional
Expandindo o Vocabulário. Tópicos Adicionais. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antônio Caminha Muniz Neto. 12 de junho de 2019
Material Teórico - Módulo de INTRODUÇÃO À LÓGICA MATEMÁTICA Expandindo o Vocabulário Tópicos Adicionais Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antônio Caminha Muniz Neto 12 de junho de 2019
Lógica Formal. Matemática Discreta. Prof Marcelo Maraschin de Souza
Lógica Formal Matemática Discreta Prof Marcelo Maraschin de Souza Implicação As proposições podem ser combinadas na forma se proposição 1, então proposição 2 Essa proposição composta é denotada por Seja
Introdução à Logica Computacional. Aula: Lógica Proposicional -Sintaxe e Representação
Introdução à Logica Computacional Aula: Lógica Proposicional -Sintaxe e Representação Agenda Resolução de exercício da aula 1 Definições Proposição simples Conectivos Proposição composta Sintaxe Exercício
Ao utilizarmos os dados do problema para chegarmos a uma conclusão, estamos usando o raciocínio lógico.
CENTRO UNVERSITÁRIO UNA NOÇÕES DE RACIOCÍNIO LÓGICO Professor: Rodrigo Eustáquio Borges A disciplina Lógica Matemática tem como objetivo capacitar o aluno a reconhecer e aplicar os conceitos fundamentais
MATEMÁTICA Questões comentadas Daniela Arboite
MATEMÁTICA Questões comentadas Daniela Arboite TODOS OS DIREITOS RESERVADOS. É vedada a reprodução total ou parcial deste material, por qualquer meio ou processo. A violação de direitos autorais é punível
Lógica Computacional
Aula Teórica 2: Sintaxe da Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática,
01/09/2014. Capítulo 1. A linguagem da Lógica Proposicional
Capítulo 1 A linguagem da Lógica Proposicional 1 Introdução O estudo da Lógica é fundamentado em: Especificação de uma linguagem Estudo de métodos que produzam ou verifiquem as fórmulas ou argumentos válidos.
Matemática Computacional. Introdução
Matemática Computacional Introdução 1 Definição A Lógica tem, por objeto de estudo, as leis gerais do pensamento, e as formas de aplicar essas leis corretamente na investigação da verdade. 2 Origem Aristóteles
Cálculo proposicional
O estudo da lógica é a análise de métodos de raciocínio. No estudo desses métodos, a lógica esta interessada principalmente na forma e não no conteúdo dos argumentos. Lógica: conhecimento das formas gerais
Matemática Discreta - 01
Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 01 Prof. Jorge Cavalcanti [email protected] www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav
Professor conteudista: Ricardo Holderegger
Lógica Professor conteudista: Ricardo Holderegger Sumário Lógica Unidade I 1 SISTEMAS DICOTÔMICOS...3 1.1 Proposições...3 1.1.1 Proposições lógicas...3 1.1.2 Símbolos da lógica matemática...4 1.1.3 A negação...4
Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65
Lógica Fernando Fontes Universidade do Minho Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Outline 1 Introdução 2 Implicações e Equivalências Lógicas 3 Mapas de Karnaugh 4 Lógica de Predicados
Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam.
Matemática Discreta ESTiG\IPB 2012/13 Cap1 Lógica pg 10 Lógica formal (continuação) Vamos a partir de agora falar de lógica formal, em particular da Lógica Proposicional e da Lógica de Predicados. Todos
Dedução Natural e Sistema Axiomático Pa(Capítulo 6)
Dedução Natural e Sistema Axiomático Pa(Capítulo 6) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Definições 2. Dedução Natural 3. Sistemas axiomático Pa 4. Lista
LÓGICA COMPUTACIONAL. Prof. André Aparecido da Silva Disponível em:
LÓGICA COMPUTACIONAL Prof. André Aparecido da Silva Disponível em: http://www.oxnar.com.br/aulas/logica 1 CODIFICAÇÃO DA CONJECURA DE COLLATZ QUE FALEI NA AULA PASSADA. 2 3 4 A lógica é usada para guiar
Introdução. História. História 18/03/2012. Lógica para Ciência da Computação. O que é Lógica?
IFMG-Formiga Introdução Lógica para Ciência da Computação O que é Lógica? É a formalização de linguagem e raciocínio, além de meios para expressar (dar significado) a essas formalizações. Profª. Danielle
Aula 04 Operações Lógicas sobre Proposições. Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes
Aula 04 Operações Lógicas sobre Proposições Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes Agenda da Aula Tabela da Verdade; Operações Lógicas sobre Proposições; Revisando As proposições
2 AULA. Conectivos e Quantificadores. lógicas. LIVRO. META: Introduzir os conectivos e quantificadores
1 LIVRO Conectivos e Quantificadores Lógicos META: Introduzir os conectivos e quantificadores lógicos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Compreender a semântica dos conectivos
O que é lógica? Lógica é a análise de métodos de raciocínio. Lívia Lopes Azevedo
Apresentação Plano de ensino Curso Conceitos básicos de lógica lógica proposicional Comportamento analógico e digital Álgebra booleana e circuitos lógicos Circuitos combinacionais Circuitos sequenciais
Inteligência Artificial. Sistemas Baseados em Conhecimento. Representação de Conhecimento (continuação)
Universidade Estadual do Oeste do Paraná Curso de Bacharelado em Ciência da Computação http://www.inf.unioeste.br/~claudia/ia2018.html Inteligência Artificial Sistemas Baseados em Conhecimento Representação
Prof. Jorge Cavalcanti
Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 01 Prof. Jorge Cavalcanti [email protected] www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav
Introdução à Logica Computacional. Aula: Lógica Proposicional - Sintaxe e Representação
Introdução à Logica Computacional Aula: Lógica Proposicional - Sintaxe e Representação Agenda Resolução de exercício da aula 1 Definições Proposição simples Conectivos Proposição composta Sintaxe Exercício
Para provar uma implicação se p, então q, é suficiente fazer o seguinte:
Prova de Implicações Uma implicação é verdadeira quando a verdade do seu antecedente acarreta a verdade do seu consequente. Ex.: Considere a implicação: Se chove, então a rua está molhada. Observe que
Não sou o melhor, sei disso, mas faço o melhor que posso!! RANILDO LOPES
Lógica Matemática e Computacional Não sou o melhor, sei disso, mas faço o melhor que posso!! RANILDO LOPES 2. Conceitos Preliminares 2.1. Sentença, Verdade e Proposição Cálculo Proposicional Como primeira
Lógica Formal. Matemática Discreta. Prof. Vilson Heck Junior
Lógica Formal Matemática Discreta Prof. Vilson Heck Junior [email protected] Objetivos Utilizar símbolos da lógica proposicional; Encontrar o valor lógico de uma expressão em lógica proposicional;
Lógica. Professor Mauro Cesar Scheer
Lógica Professor Mauro Cesar Scheer Objetivos Reconhecer e manipular com os símbolos formais que são usados no Cálculo Proposicional (CPC) e Cálculo de Predicados (CP). Determinar o valor de verdade de
Bases Matemáticas. Aula 1 Elementos de Lógica e Linguagem Matemática. Prof. Rodrigo Hausen. 24 de junho de 2014
Aula 1 Elementos de Lógica e Linguagem Matemática Prof. Rodrigo Hausen 24 de junho de 2014 Definição Uma proposição é uma sentença declarativa que é verdadeira ou falsa, mas não simultaneamente ambas.
Introdução a computação
Introdução a computação 0 Curso Superior de Tecnologia em Gestão da Tecnologia da Informação Coordenador: Emerson dos Santos Paduan Autor(a): Daniel Gomes Ferrari São Paulo - 2016 1 Sumário 1. Lógica Matemática...
Proposições. Belo Horizonte é uma cidade do sul do Brasil = 4. A Terra gira em torno de si mesma. 5 < 3
Proposições Lógicas Proposições O principal conceito usado nos estudos da lógica matemática é o de uma proposição. Uma proposição é essencialmente uma afirmação, transmite pensamentos completos, afirmando
Programa. Raciocínio Lógico Matemático. Livros. Provas
Programa Raciocínio Lógico Matemático Prof. RANILDO Introdução à lógica. Lógica proposicional Argumento Tabela-verdade Tautologias, Contradições e Contingências Operações lógicas Livros Introdução à Lógica
Introdução à Lógica Proposicional Sintaxe
Bacharelado em Ciência e Tecnologia BC&T Introdução à Lógica Proposicional Sintaxe PASSOS PARA O ESTUDO DE LÓGICA Prof a Maria das Graças Marietto [email protected] 2 ESTUDO DE LÓGICA O estudo
Matemática discreta e Lógica Matemática
AULA 2 - Proposicionais Prof. Dr. Hércules A. Oliveira UTFPR - Universidade Tecnológica Federal do Paraná, Ponta Grossa Departamento Acadêmico de Matemática Lógicas Proposições compostas - Definição 1
Aula 02 Introdução à Lógica. Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes
Aula 02 Introdução à Lógica Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes Agenda da Aula Conceitos Iniciais sobre Lógica; Argumento; Inferência; Princípios. Contextualização: Situação
Lógica dos Conectivos: demonstrações indiretas
Lógica dos Conectivos: demonstrações indiretas Renata de Freitas e Petrucio Viana IME, UFF 5 de novembro de 2014 Sumário Acrescentando premissas. Estratégias indiretas. Principais exemplos. Um problema
Lógica para Computação
Aula 07 - Lógica Proposicional 1 Faculdade de Informática - PUCRS August 27, 2015 1 Este material não pode ser reproduzido ou utilizado de forma parcial sem a permissão dos autores. Sinopse Nesta aula,
3.4 Fundamentos de lógica paraconsistente
86 3.4 Fundamentos de lógica paraconsistente A base desta tese é um tipo de lógica denominada lógica paraconsistente anotada, da qual serão apresentadas algumas noções gerais. Como já foi dito neste trabalho,
Lógica Proposicional Parte 2
Lógica Proposicional Parte 2 Como vimos na aula passada, podemos usar os operadores lógicos para combinar afirmações criando, assim, novas afirmações. Com o que vimos, já podemos combinar afirmações conhecidas
Introdução ao Curso. Área de Teoria DCC/UFMG 2019/01. Introdução à Lógica Computacional Introdução ao Curso Área de Teoria DCC/UFMG /01 1 / 22
Introdução ao Curso Área de Teoria DCC/UFMG Introdução à Lógica Computacional 2019/01 Introdução à Lógica Computacional Introdução ao Curso Área de Teoria DCC/UFMG - 2019/01 1 / 22 Introdução: O que é
LÓGICA I. André Pontes
LÓGICA I André Pontes 1. Conceitos fundamentais O que é a Lógica? A LÓGICA ENQUANTO DISCIPLINA Estudo das leis de preservação da verdade. [Frege; O Pensamento] Estudo das formas válidas de argumentos.
Anotações LÓGICA PROPOSICIONAL DEFEITOS DO RACIOCÍNIO HUMANO PROPOSIÇÕES RICARDO ALEXANDRE - CURSOS ON-LINE RACIOCÍNIO LÓGICO AULA 01 DEFINIÇÃO
RACIOCÍNIO LÓGICO AULA 01 LÓGICA PROPOSICIONAL DEFINIÇÃO A Lógica estuda o pensamento como ele deveria ser, sem a influência de erros ou falácias. As falácias em torno do raciocínio humano se devem a atalhos
Lógica Matemática. Definição. Origem. Introdução
Lógica Matemática Introdução 1 Definição A Lógica tem, por objeto de estudo, as leis gerais do pensamento, e as formas de aplicar essas leis corretamente na investigação da verdade. 2 Origem Aristóteles
Lóg L ica M ca at M em e ática PROF.. J EAN 1
Lógica Matemática PRO. JEAN 1 LÓGICA MATEMÁTICA - CONTEÚDO Definição de Termo e Proposição alor Lógico Proposição Simples e Proposição Composta Conectivos Tabela-erdade 2 LÓGICA MATEMÁTICA INTRODUÇÃO ao
Lógica Proposicional Parte I. Raquel de Souza Francisco Bravo 11 de outubro de 2016
Lógica Proposicional Parte I e-mail: [email protected] 11 de outubro de 2016 Lógica Matemática Cáculo Proposicional Uma aventura de Alice Alice, ao entrar na floresta, perdeu a noção dos dias da semana.
AULA 1 Frases, proposições e sentenças 3. AULA 2 Conectivos lógicos e tabelas-verdade 5. AULA 3 Negação de proposições 8
Índice AULA 1 Frases, proposições e sentenças 3 AULA 2 Conectivos lógicos e tabelas-verdade 5 AULA 3 Negação de proposições 8 AULA 4 Tautologia, contradição, contingência e equivalência 11 AULA 5 Argumentação
VERDADE E VALIDADE, PROPOSIÇÃO E ARGUMENTO
ENADE 2005 e 2008 1 O que B. Russell afirma da matemática, em Misticismo e Lógica: "uma disciplina na qual não sabemos do que falamos, nem se o que dizemos é verdade", seria particularmente aplicável à
Dedução Natural LÓGICA APLICADA A COMPUTAÇÃO. Professor: Rosalvo Ferreira de Oliveira Neto
Dedução Natural LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Definições 2. Dedução Natural 3. Lista Um dos objetivos principais da lógica é o estudo de estruturas
RLM Material de Apoio Professor Jhoni Zini
PRINCÍPIOS LÓGICOS 1. Segundo a lógica aristotélica, as proposições têm como uma de suas propriedades básicas poderem ser verdadeiras ou falsas, isto é, terem um valor de verdade. Assim sendo, a oração
MD Lógica de Proposições Quantificadas Cálculo de Predicados 1
Lógica de Proposições Quantificadas Cálculo de Predicados Antonio Alfredo Ferreira Loureiro [email protected] http://www.dcc.ufmg.br/~loureiro MD Lógica de Proposições Quantificadas Cálculo de Predicados
ALGORITMOS E TÉCNICAS DE PROGRAMAÇÃO
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE ALGORITMOS E TÉCNICAS DE PROGRAMAÇÃO Docente: Éberton da Silva Marinho e-mail: [email protected] [email protected]
Lógica Proposicional
Lógica Proposicional Lógica Proposicional Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho - 2018 1 / 55 Este material é preparado
Introdu c ao ` a L ogica Matem atica Ricardo Bianconi
Introdução à Lógica Matemática Ricardo Bianconi Capítulo 4 Dedução Informal Antes de embarcarmos em um estudo da lógica formal, ou seja, daquela para a qual introduziremos uma nova linguagem artificial
Introdução à Logica Computacional. Aula 1 Ana Cristina Bicharra Garcia Segundas & Quartas 16:00-18:00
Introdução à Logica Computacional Aula 1 Ana Cristina Bicharra Garcia Segundas & Quartas 16:00-18:00 Agenda Apresentação do Curso Ementa Bibliografia Apresentação à Lógica Conceitos Básicos Quem somos
Sumário. Os Enigmas de Sherazade I Ele fala a verdade ou mente? I I Um truque com os números... 14
Sumário Os Enigmas de Sherazade... 13 I Ele fala a verdade ou mente?... 13 I I Um truque com os números... 14 Capítulo 1 Lógica de Primeira Ordem-Proposicional... 15 Estruturas Lógicas... 15 I Sentenças...
Resumo de Filosofia. Preposição frase declarativa com um certo valor de verdade
Resumo de Filosofia Capítulo I Argumentação e Lógica Formal Validade e Verdade O que é um argumento? Um argumento é um conjunto de proposições em que se pretende justificar ou defender uma delas, a conclusão,
LÓGICA MATEMÁTICA. Quando a precedência não estiver explicitada através de parênteses, a ordem é a seguinte: RELEMBRANDO 23/02/2016
LÓGICA MATEMÁTICA Prof. Esp. Fabiano Taguchi [email protected] http://fabianotaguchi.wordpress.com RELEMBRANDO Quando a precedência não estiver explicitada através de parênteses, a ordem é a seguinte:
INF 1771 Inteligência Artificial
INF 1771 Inteligência Artificial Aula 07 Agentes Lógicos Edirlei Soares de Lima Introdução Humanos possuem conhecimento e raciocinam sobre este conhecimento. Exemplo: João jogou
Fundamentos de Lógica e Algoritmos. Aula 1.3 Proposições e Conectivos. Prof. Dr. Bruno Moreno
Fundamentos de Lógica e Algoritmos Aula 1.3 Proposições e Conectivos Prof. Dr. Bruno Moreno [email protected] Argumentos Lógicos As premissas do argumento são chamadas de proposições; A conclusão
18/01/2016 LÓGICA MATEMÁTICA. Lógica é usada para guiar nossos pensamentos ou ações na busca da solução. LÓGICA
LÓGICA MATEMÁTICA Prof. Esp. Fabiano Taguchi [email protected] http://fabianotaguchi.wordpress.com Lógica é usada para guiar nossos pensamentos ou ações na busca da solução. LÓGICA A lógica está
Lógica Proposicional e Álgebra de Boole
Lógica Proposicional e Álgebra de Boole A lógica proposicional remonta a Aristóteles, e teve como objectivo modelizar o raciocínio humano. Partindo de frases declarativas ( proposições), que podem ser
Lógica Proposicional. Prof. Dr. Silvio do Lago Pereira. Departamento de Tecnologia da Informação Faculdade de Tecnologia de São Paulo
Lógica Proposicional Prof. Dr. Silvio do Lago Pereira Departamento de Tecnologia da Informação aculdade de Tecnologia de São Paulo Motivação IA IA estuda estuda como como simular simular comportamento
Lógica Computacional
Lógica Computacional Conectores Booleanos Negação, Conjunção e Disjunção Tradução de Linguagem Natural Fórmulas de 1ª ordem Definição indutiva 22 Setembro 2014 Lógica Computacional 1 Conectores Booleanos
Fundamentos da Computação 1. Carmen Cecilia Centeno
Fundamentos da Computação 1 Carmen Cecilia Centeno Aula 05 Sobre o curso de Ciência da Computação - lembretes. Plano de Ensino. Introdução à Lógica. Definição da Sintaxe. Traduzindo Sentenças Definição
Lógica. História da Lógica
1 Lógica História da Lógica A história da lógica começa com os trabalhos do filósofo grego Aristóteles (384-322 a.c.) de Estagira (hoje Estavro), na Macedônia, não se conhecendo precursores de sua obra,
Lógica Proposicional (Consequência lógica / Dedução formal)
Faculdade de Tecnologia Senac Pelotas Curso Superior de Tecnologia em Análise e Desenvolvimento de Sistemas Matemática Aplicada Prof. Edécio Fernando Iepsen Lógica Proposicional (Consequência lógica /
Lógica Matemática e Elementos de Lógica Digital
Lógica Matemática e Elementos de Lógica Digital Curso: Ciência da Computação Lívia Lopes Azevedo [email protected] Apresentação Plano de ensino Curso Conceitos básicos de lógica lógica proposicional Comportamento
Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues
Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues As respostas encontram-se em itálico. 1. Quais das frases a seguir são sentenças? a. A lua é feita de queijo verde. erdadeira, pois é uma
CAPÍTULO I. Lógica Proposicional
Lógica Proposicional CAPÍTULO I Lógica Proposicional Sumário: 1. Lógica proposicional 2. Proposição 2.1. Negação da proposição 2.2. Dupla negação 2.3. Proposição simples e composta 3. Princípios 4. Classificação
Cálculo proposicional
Notas de aula de MAC0329 (2003) 9 2 Cálculo proposicional Referências para esta parte do curso: capítulo 1 de [Mendelson, 1977], capítulo 3 de [Whitesitt, 1961]. Proposição Proposições são sentenças afirmativas
Linguagem com sintaxe e semântica precisas: lógica. Mecanismo de inferência: derivado da sintaxe e da
istemas de Apoio à Decisão Clínica, 09-1 1 Linguagem com sintaxe e semântica precisas: lógica. Mecanismo de inferência: derivado da sintaxe e da semântica. Importante: distinguir entre os fatos e sua representação
Regras de Inferência. Matemática Discreta. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. março
Matemática Discreta Regras de Inferência Profa. Sheila Morais de Almeida DAINF-UTFPR-PG março - 2017 Argumentos Válidos em Lógica Proposicional Considere o argumento: Se João pensa, então João existe.
Campos Sales (CE),
UNIERSIDADE REGIONAL DO CARIRI URCA PRÓ-REITORIA DE ENSINO E GRADUAÇÃO PROGRAD UNIDADE DESCENTRALIZADA DE CAMPOS SALES CAMPI CARIRI OESTE DEPARTAMENTO DE MATEMÁTICA DISCIPLINA: Tópicos de Matemática SEMESTRE:
RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL
RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL Atualizado em 12/11/2015 LÓGICA PROPOSICIONAL Lógica é a ciência que estuda as leis do pensamento e a arte de aplicá-las corretamente na investigação e demonstração
Introdução à Computação: Álgebra Booleana
Introdução à Computação: Álgebra Booleana Beatriz F. M. Souza ([email protected]) http://inf.ufes.br/~bfmartins/ Computer Science Department Federal University of Espírito Santo (Ufes), Vitória, ES
Fundamentos de Lógica Lógica Proposicional
Fundamentos de Lógica Lógica Proposicional Antonio Alfredo Ferreira Loureiro [email protected] http://www.dcc.ufmg.br/~loureiro Alguns fatos históricos Primeiros grandes trabalhos de lógica escritos
CCAE. Lógica Aplicada a Computação - Cálculo Proposicional - Parte I. UFPB - Campus IV - Litoral Norte. Centro de Ciências Aplicadas e Educação
CCAE Centro de Ciências Aplicadas e Educação UFPB - Campus IV - Litoral Norte Lógica Aplicada a Computação - Cálculo Proposicional - Parte I Estes slides foram criados pelo Professor Alexandre Duarte Para
Lógica e Computação. Uma Perspectiva Histórica
Lógica e Computação Uma Perspectiva Histórica Alfio Martini Facin - PUCRS A Lógica na Cultura Helênica A Lógica foi considerada na cultura clássica e medieval como um instrumento indispensável ao pensamento
CASA TRIBUNAIS RACIOCÍNIO LÓGICO
CASA TRIBUNAIS RACIOCÍNIO LÓGICO Proposição Prof. Bruno Villar www.acasadoconcurseiro.com.br Raciocínio Lógico PROPOSIÇÃO TEMA: PROPOSIÇÃO A proposição lógica é o alicerce na construção do conhecimento
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/26 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)
