Problema Proposto. Solução
|
|
|
- Alessandra Eger Bardini
- 9 Há anos
- Visualizações:
Transcrição
1 Problema Proposto Um exame de laboratório tem eciência de 95% para detectar uma doença, quando ela de fato existe. Entretanto, o teste aponta um resultado falso-positivo para 1% das pessoas sadias testadas. Se 0, 5% da população tem a doença, qual é a probabilidade de uma pessoa ter a doença, dado que o seu exame foi positivo? Vamos denir P (p) como a probabilidade do exame dar positivo, e P (d) como a probabilidade da pessoa ter a doença. Queremos calcular a probabilidade da doença sabendo que o exame foi positivo, ou seja, queremos o valor de P (d p). Sabemos que existem 0, 5% de pessoas com a doença, logo, existem 99, 5% de pessoas sem a doença. Dos 0, 5%, existe 95% de chance do exame dar positivo, enquanto existe apenas 1% de chance dele dar positivo nos outros 99, 5% da população. A probabilidade de uma pessoa estar doente, sabendo que o exame foi positivo, é calculada da seguinte forma: P (d p) = P (d) P (p) = 0, 005 0, 95 0, 005 0, 95 0, 995 0, 01 Ou seja, P (d) é a probabilidade da pessoa ter a doença (0, 5%) vezes a probabilidade do exame dar positivo (95%). P (p) é a probabilidade da pessoa ter a doença e o exame dar positivo mais a probabilidade da pessoa não ter a doença (99, 5%) vezes a probabilidade do exame dar positivo (1%). Assim, P (d p) = 0, , = 0, , , 0147 = 32% 1
2 Problema 2 Em uma certa cidade da Região Norte do país, durante a estação chuvosa, a probabilidade de que chova em um dia qualquer é igual a 50%. Assim, a probabilidade de que chova em um m de semana (sábado, domingo ou ambos) vale quanto? 1 Usaremos a seguinte notação: P(S) - probabilidade de chover no sábado. P(D) - probabilidade de chover no domingo; A probabilidade de chover apenas no sábado é igual a: P 1 = P (S) (1 P (D)) = = 0.25 Do mesmo modo, a probabilidade de chuva apenas no domingo é P 2 = A probabilidade de chuva nos dois dias é igual a P 3 = P (S) P (D) = = 0.25 Como queremos a probabilidade de chuva durante o nal de semana, temos então P = P 1 P 2 P 3 = = 0.75 Portanto, existe uma chance de 75% de chuva no nal de semana. 2
3 Problema 3 (UNESP) numa cidade com domicílios, domicílios recebem regularmente o jornal da loja de eletrodomésticos X, 8000 recebem regularmente o jornal do supermercado Y e metade do número de domicílios não recebe nenhum dos dois jornais. Determine: a) O número de domicílios que recebem os dois jornais. b) A probabilidade de um domicílio da cidade, escolhido ao acaso, receber o jornal da loja de eletrodomésticos X e não receber o jornal do supermercado Y. a) Metade dos domicílios não recebem jornais, logo, apenas domicílios recebem jornais. No total, jornais são entregues nesta cidade, de X e 8000 de Y. Comparando os dois valores, pessoas recebem jornais e jornais são entregues, é fácil constatar que 3000 jornais acabam "sobrando". Portanto temos que 3000 domicílios recebem os dois jornais. De maneira mais analítica: Seja P os domicílios que recebem apenas os jornais de X. Seja Q os domicílios que recebem apenas os jornais de Y e seja R os domicílios que recebem ambos os jornais. Pelo enunciado, temos que P Q R = 15000, P R = e Q R = Basta então resolver o sistema P Q R = P R = Q R = 8000 obtendo os valores P = 7000, Q = 5000 e R = Logo, 3000 domicílios recebem ambos os jornais. b) Ao todo, domicílios recebem os jornais. Dentre eles, 7000 recebem apenas os jornais da loja de eletrodomésticos X. A probabilidade de escolher um domicílio, ao acaso, que receba apenas jornais de X é igual ao total de domicílios que recebem os jornais de X sobre todos os domicílios da cidade, ou seja, { 7000 em X domicilios 7000 = = 0, Portanto, a probabilidade de escolher um domicílio que recebe apenas os jornais da loja X é de 23%. 3
4 Problema 4 (FUVEST - modicada) Um recenseamento revelou as seguintes características sobre a idade e a escolaridade da população de uma cidade. Se for sorteada, ao acaso, uma pessoa da cidade, a probabilidade de esta pessoa ter curso superior (completo ou incompleto) é? Segundo a tabela, temos que 4% 2% = 6% dos jovens tem curso superior; 4% 3% = 7% das mulheres adultas tem ensino superior e 5% 5% = 10% dos homens adultos tem ensino superior também. Portanto, segundo o gráco, a probabilidade pedida é de: 0, 06 0, 48 0, 07 0, 27 0, 1 0, 25 = 0, 0727 = 7, 27% 4
5 Problema 5 Um casal decidiu que vai ter 5 lhos. Qual seria a probabilidade de que tivesse pelo menos 2 meninos? O casal terá 5 lhos, para cada lho, existem 2 possibilidades (menino ou menina), logo teremos 2 5 = 32 possibilidades no total. Não estamos nos importando com a ordem dos lhos, queremos apenas ter, no minimo, 2 meninos. Assim, estamos interessados nos casos onde nasçam 2 meninos e 3 meninas, 3 meninos e 2 meninas, 4 meninos e 1 menina e 5 meninos. Deste modo, o total de casos favoráveis é a soma de cada combinação dentre os nascimentos, ou seja, = = 26 5 Logo, a probabilidade de nascerem pelo menos 2 meninos é igual a P = = 81, 25% 5
1. Uma pesquisa de mercado sobre o consumo de três marcas A, B e C de um determinado produto apresentou os seguintes resultados:
1. Uma pesquisa de mercado sobre o consumo de três marcas A, B e C de um determinado produto apresentou os seguintes resultados: A - 48% A e B - 18% B - 45% B e C - 25% C - 50% A e C - 15% nenhuma das
PERMUTAÇÃO, ARRANJO E COMBINAÇÃO Monitora Juliana
PERMUTAÇÃO, ARRANJO E COMBINAÇÃO Monitora Juliana PERMUTAÇÕES SIMPLES Uma permutação de se denominarmos objetos distintos é qualquer agrupamento ordenado desses objetos, de modo que, o número das permutações
Modelo Uniforme. como eu e meu colega temos 5 bilhetes, temos a mesma probabilidade de ganhar a rifa:
Modelo Uniforme Exemplo: Uma rifa tem 100 bilhetes numerados de 1 a 100. Tenho 5 bilhetes consecutivos numerados de 21 a 25, e meu colega tem outros 5 bilhetes, com os números 1, 11, 29, 68 e 93. Quem
Resolução da Prova de Raciocínio Lógico do STJ de 2015, aplicada em 27/09/2015.
de Raciocínio Lógico do STJ de 20, aplicada em 27/09/20. Raciocínio Lógico p/ STJ Mariana é uma estudante que tem grande apreço pela matemática, apesar de achar essa uma área muito difícil. Sempre que
Probabilidade. Distribuição Binomial
Probabilidade Distribuição Binomial Distribuição Binomial (Eperimentos de Bernoulli) Considere as seguintes eperimentos/situações práticas: Conformidade de itens saindo da linha de produção Tiros na mosca
Teste de Hipótese e Intervalo de Confiança. Parte 2
Teste de Hipótese e Intervalo de Confiança Parte 2 Questões para discutirmos em sala: O que é uma hipótese estatística? O que é um teste de hipótese? Quem são as hipóteses nula e alternativa? Quando devemos
EXAME DE MACS 2º FASE 2014/2015 = 193
EXAME DE MACS 2º FASE 2014/2015 1. Divisor Padrão: 00+560+80+240 200 = 190 = 19 200 20 Filiais A B C D Quota Padrão 1,088 58,01 86,010 24,870 L 1 58 86 24 L(L + 1) 1,496 58,498 86,499 24,495 Quota Padrão
Resolução da Prova de Raciocínio Lógico da ANS (Técnico Administrativo) de 2016, aplicada em 21/02/2016.
Raciocínio Lógico p/ NS Resolução da Prova de Raciocínio Lógico da NS (Técnico dministrativo) de 2016, aplicada em 21/02/2016. 11 - De acordo com o raciocínio lógico-matemático, a negação da frase: o obstetra
Probabilidade é o quociente entre o número de casos favoráveis e o número de casos possíveis em um dado experimento.
Probabilidade é o quociente entre o número de casos favoráveis e o número de casos possíveis em um dado experimento. número de casos favoráveis probabilidade número de casos possíveis Nessa definição convém
Probabilidade Condicional
18 Probabilidade Condicional Sumário 18.1 Introdução....................... 2 18.2 Probabilidade Condicional............... 2 1 Unidade 18 Introdução 18.1 Introdução Nessa unidade, é apresentada mais uma
Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase
Prova Escrita de MATEMÁTICA A - 1o Ano 011 - a Fase Proposta de resolução GRUPO I 1. Como no lote existem em total de 30 caixas, ao selecionar 4, podemos obter um conjunto de 30 C 4 amostras diferentes,
Prof.: Joni Fusinato
Probabilidade Condicional Prof.: Joni Fusinato [email protected] [email protected] Probabilidade Condicional É a probabilidade de ocorrer um evento A sabendo-se que já ocorreu um evento B. Assim,
PROBABILIDADE: DIAGRAMAS DE ÁRVORES
PROBABILIDADE: DIAGRAMAS DE ÁRVORES Enunciados dos problemas Ana Maria Lima de Farias Departamento de Estatística (GET/UFF) 1. Na gincana anual do Colégio Universitário, 60% dos alunos presentes são do
AULÃO DO CARECÃO NÃO TENHO MEDO DE CARA FEIA! E NEM DE PROVA TAMBÉM.
AULÃO DO CARECÃO NÃO TENHO MEDO DE CARA FEIA! E NEM DE PROVA TAMBÉM. QUESTÕES Faço a fácil ou a difícil? Como controlar meu tempo? Como controlar a ansiedade? ESTOU COM MEDO!!!!! Fórmula da APROVAÇÃO Ser
Lista de Exercícios 2º Ensino médio manhã
1. (Ufrrj) Em uma PA não constante de 7 termos, com termo médio igual a 6, os termos 2Ž, 4Ž e 7Ž, nesta ordem, formam uma PG. Determine esta PA. 2. (Ufba) Numa progressão geométrica, o primeiro termo é
Probabilidade Condicional (grupo 2)
page 39 Capítulo 5 Probabilidade Condicional (grupo 2) Veremos a seguir exemplos de situações onde a probabilidade de um evento émodificadapelainformação de que um outro evento ocorreu, levando-nos a definir
Para iniciar o conceito do que é probabilidade condicional, vamos considerar o seguinte problema.
PROBABILIDADE CONDICIONAL E DISTRIBUIÇÃO BINOMINAL 1. PROBABILIDADE CONDICIONAL Para iniciar o conceito do que é probabilidade condicional, vamos considerar o seguinte problema. Suponha que um redator
Matemática Régis Cortes MÚLTIPLOS E DIVISORES
MÚLTIPLOS E DIVISORES Múltiplos e divisores de um número Um número é múltiplo de outro quando, ao dividirmos o primeiro pelo segundo, o resto é zero. Observe as seguintes divisões entre números Naturais:
Conceitos Básicos de Probabilidade
Conceitos Básicos de Probabilidade Como identificar o espaço amostral de um experimento. Como distinguir as probabilidades Como identificar e usar as propriedades da probabilidade Motivação Uma empresa
AULA DO CPOG. Progressão Aritmética
AULA DO CPOG Progressão Aritmética Observe as seqüências numéricas: 2 4 6 8... 12 9 6 3... 5 5 5 5... Essas seqüências foram construídas de forma que cada termo (número), a partir do segundo, é a soma
Prova da FCC / Simulado
Prova da FCC / Simulado -- Sugiro que pense nas questões ANTES de estudar as resoluções! -- É assim que se aprende!! -- Vamos lá! Tenha fé! -- Qualquer dúvida...estou aqui! Técnico_Ministerial_FCC_2012
Exercícios resolvidos sobre Teoremas de Probabilidade
Exercícios resolvidos sobre Teoremas de Probabilidade Aqui você tem mais uma oportunidade de estudar os teoremas da probabilidade, por meio de um conjunto de exercícios resolvidos. Observe como as propriedades
Matemática E Extensivo V. 5
Extensivo V Exercícios 0) a) / b) / c) / a) N(E) N(A), logo P(A) b) N(E) N(A), logo P(A) c) N(E) N(A), logo P(A) 0) a) 0 b) / % c) 9/0 90% d) /0 % 0) E a) N(E) 0 + + + 0 b) N(E) 0 N(A), logo P(A) 0, %
ESTATÍSTICA PARTE 1 OBJETIVO DA DISCIPLINA
ESTATÍSTICA PARTE 1 OBJETIVO DA DISCIPLINA Apresentar a Estatística no contexto do dia-a-dia e fazendo uso da planilha Excel. Espera-se que o estudante ao término do curso esteja apto a usar a planilha
AV2 - MA 12-2011 UMA SOLUÇÃO
Questão 1. Considere os caminhos no plano iniciados no ponto (0, 0) com deslocamentos paralelos aos eixos coordenados, sempre de uma unidade e no sentido positivo dos eixos x e y (não se descarta a possibilidade
Introdução aos Processos Estocásticos - Independência
Introdução aos Processos Estocásticos - Independência Eduardo M. A. M. Mendes DELT - UFMG Programa de Pós-Graduação em Engenharia Elétrica Universidade Federal de Minas Gerais [email protected] Eduardo
Usando potências de 10
Usando potências de 10 A UUL AL A Nesta aula, vamos ver que todo número positivo pode ser escrito como uma potência de base 10. Por exemplo, vamos aprender que o número 15 pode ser escrito como 10 1,176.
Mat1- Lista Probabilidade-2 série- 2013
Mat1- Lista Probabilidade-2 série- 2013 1. (Unicamp simulado 2011) Uma empresa tem 5000 funcionários. Desses, 48% têm mais de 30 anos e 36% são especializados. Entre os especializados, 1400 têm mais de
números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo
A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos
Para diminuir os custos, a proposta escolhida deveria ser também aquela que vacinasse a menor quantidade possível de pessoas.
Quinta questão mais difícil (Questão 158 Enem 2015 Prova Azul) O HPV é uma doença sexualmente transmissível. Uma vacina com eficácia de 98% foi criada com o objetivo de prevenir a infecção por HPV e, dessa
1 Introdução. 1.1 Importância da Utilização da Amostragem
1 Introdução Um dos principais objetivos da maioria dos estudos, análises ou pesquisas estatísticas é fazer generalizações seguras com base em amostras, sobre as populações das quais as amostras foram
números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo
A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos
PROVA COMENTADA PELOS PROFESSORES DO CURSO POSITIVO Vestibular ITA 2016 QUÍMICA
01. Alternativa: A 02. Alternativa: E 03. Alternativa: SEM RESPOSTA 04. Alternativa: E PROVA COMENTADA PELOS 05. Alternativa: C 06. A soma do n ọ de prótons com o n ọ de nêutrons é definido como número
Proposta de resolução da Prova de Matemática A (código 635) 2ª fase. 19 de Julho de 2010
Proposta de resolução da Prova de Matemática A (código 65) ª fase 9 de Julho de 00 Grupo I. Como só existem bolas de dois tipos na caixa e a probabilidade de sair bola azul é, existem tantas bolas roxas
Resumo: Estudo do Comportamento das Funções. 1º - Explicitar o domínio da função estudada
Resumo: Estudo do Comportamento das Funções O que fazer? 1º - Explicitar o domínio da função estudada 2º - Calcular a primeira derivada e estudar os sinais da primeira derivada 3º - Calcular a segunda
Probabilidade - aula II
2012/02 1 Interpretações de Probabilidade 2 3 Amostras Aleatórias e Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades de eventos conjuntos. Interpretar e calcular probabilidades
Resposta: Resposta: 4 ou seja, 1.
1. (Unicamp 2016) Uma moeda balanceada é lançada quatro vezes, obtendo-se cara exatamente três vezes. A probabilidade de que as caras tenham saído consecutivamente é igual a a) 1. 4 b). 8 c) 1. 2 d). 4
Estatística AMOSTRAGEM
Estatística AMOSTRAGEM Estatística: É a ciência que se preocupa com a coleta, a organização, descrição (apresentação), análise e interpretação de dados experimentais e tem como objetivo fundamental o estudo
Lista de Exercícios Campo Elétrico
Considere k o = 9,0. 10 9 N. m 2 /C 2 Lista de Exercícios Campo Elétrico 1. Uma partícula de carga q = 2,5. 10-8 C e massa m = 5,0. 10-4 kg, colocada num determinado ponto P de uma região onde existe um
PROBABILIDADE GENÉTICA
Disciplina: Biologia Série: 2ª série EM - 1º TRIM Professora: Ivone Azevedo da Fonseca Assunto: Probabilidade Genética PROBABILIDADE GENÉTICA A CIÊNCIA E AS LEIS DAS PROBABILIDADES - Podemos prevenir ou
BANCO DE QUESTÕES TURMA PM-PE PROBABILIDADE
01. (UNICAMP 016) Uma moeda balanceada é lançada quatro vezes, obtendo-se cara exatamente três vezes. A probabilidade de que as caras tenham saído consecutivamente é igual a A) 1. B). 8 C) 1. D). 0. (UNESP
1 - RECORDANDO 2 - CENTRO NA ORIGEM 3 - EQUAÇÃO GERAL DA CIRCUNFERÊNCIA. Exercício Resolvido 2: Exercício Resolvido 1: Frente I
Matemática Frente I CAPÍTULO 22 EQUAÇÕES DA CIRCUNFERÊNCIA 1 - RECORDANDO Até agora, o nosso foco principal foi as retas: calculamos as equações geral e reduzida de uma reta, a interseção entre duas retas,
Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas.
Definição Uma matriz do tipo m n (lê-se m por n), com m e n, sendo m e n números inteiros, é uma tabela formada por m n elementos dispostos em m linhas e n colunas. Estes elementos podem estar entre parênteses
Probabilidade - aula II
25 de Março de 2014 Interpretações de Probabilidade Amostras Aleatórias e Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades de eventos conjuntos. Interpretar e calcular
1.2. Recorrendo a um diagrama em árvore, por exemplo, temos: 1.ª tenda 2.ª tenda P E E
Prova de Matemática do 3º ciclo do Ensino Básico Prova 927 1ª Chamada 1. 1.1. De acordo com enunciado, 50% são portugueses (P) e 50% são espanhóis (E) e italianos (I). Como os Espanhóis existem em maior
Aula 8 Intervalos de confiança para proporções amostras grandes
Aula 8 Intervalos de confiança para proporções amostras grandes Objetivos Na aula anterior, foram apresentadas as idéias básicas da estimação por intervalos de confiança. Para ilustrar o princípio utilizado
USO DO CRÉDITO NAS COMPRAS DE AUTOMÓVEIS E ELETRODOMÉSTICOS
USO DO CRÉDITO NAS COMPRAS DE AUTOMÓVEIS E ELETRODOMÉSTICOS Pesquisa realizada pelo SPC Brasil e a CNDL, divulgada recentemente, mostrou que há uma relação direta entre inadimplência e fatores característicos
Análise e Resolução da prova do ICMS-PE Disciplinas: Matemática Financeira e Raciocínio Lógico Professor: Custódio Nascimento
Disciplinas: Matemática Financeira e Raciocínio Lógico Professor: Custódio Nascimento 1- Análise da prova Análise e Resolução da prova do ICMS-PE Neste artigo, farei a análise das questões de Matemática
Quinto roteiro de exercícios no Scilab Cálculo Numérico
Quinto roteiro de exercícios no Scilab Cálculo Numérico Rodrigo Fresneda 4 de maio de 2012 1 Equações Diferenciais Ordinárias Equação diferencial é uma equação que contém derivadas de uma função desconhecida.
Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho
Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho 1 - Para cada função abaixo, calcule os valores pedidos, quando for possível: (a) f(x) = x 3 3x + 3x 1, calcule f(0), f( 1)
Determinantes. Matemática Prof. Mauricio José
Determinantes Matemática Prof. Mauricio José Determinantes Definição e Conceito Matriz de ordem 1 Dizemos que um determinante é um resultado (numérico) de operações que são realizadas em uma matriz quadrada.
HPV Vírus Papiloma Humano. Nome: Edilene Lopes Marlene Rezende
HPV Vírus Papiloma Humano Nome: Edilene Lopes Marlene Rezende O HPV (papiloma vírus humano) é o agente causador de uma doença sexualmente transmissível (DST). Condiloma Acuminado vulgarmente conhecida
, 10 4. pertence ao conjunto dado? Justifica a resposta e apresenta todos os cálculos que efetuares.
Teste de Avaliação Escrita Duração: 90 minutos 9 de maio de 0 Escola E.B., Eng. Nuno Mergulhão Portimão Ano Letivo 0/0 Matemática 9.º B Nome: N.º Classificação: Fraco (0% 9%) Insuficiente (0% 9%) Suficiente
Equações Trigonométricas
Equações Trigonométricas. (Insper 04) A figura mostra o gráfico da função f, dada pela lei 4 4 f(x) (sen x cos x) (sen x cos x) O valor de a, indicado no eixo das abscissas, é igual a a) 5. b) 4. c). d)
SME0320 Estatistica ICMC-USP Ricardo Ehlers Lista 4
SME0320 Estatistica ICMC-USP Ricardo Ehlers Lista 4 1. Dois dados honestos são lançados. Calcule a probabilidade condicional de que pelo menos um deles caia no 6 se os dados cairam em números diferentes.
Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M.
Módulo de Introdução à Probabilidade Ferramentas Básicas. a série E.M. Probabilidade Ferramentas Básicas Exercícios Introdutórios Exercício. Uma prova é composta por 5 questões de múltipla escolha com
SOLUÇÕES N2 2015. item a) O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2.
Solução da prova da 1 a fase OBMEP 2015 Nível 1 1 SOLUÇÕES N2 2015 N2Q1 Solução O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2. Com um
Álgebra Linear Computacional
Álgebra Linear Computacional Geovan Tavares, Hélio Lopes e Sinésio Pesco. PUC-Rio Departamento de Matemática Laboratório Matmidia http://www.matmidia.mat.puc-rio.br Sistemas de Equações Lineares Espaços
Questões Gerais de Geometria Plana
Aula n ọ 0 Questões Gerais de Geometria Plana 01. Uma empresa produz tampas circulares de alumínio para tanques cilíndricos a partir de chapas quadradas de metros de lado, conforme a figura. Para 1 tampa
OPERAÇÕES FUNDAMENTAIS
OPERAÇÕES FUNDAMENTAIS CÁLCULO DA ADIÇÃO E SUBTRAÇÃO: Operação aritmética, que consiste em adicionar ou retirar um número. a) 2254 + 1258 = 3512 1 1 2 2 5 4 3 5 1 2 Para o cálculo da adição, ordenamos
Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:
Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Qual é a menor das raízes da equação Questão 2 (OBMEP RJ adaptada) Mariana entrou na sala e viu
Em cada uma dessas frases, há uma quantidade indicada em forma de fração. Veja:
MATEMÁTICA BÁSICA 4 Frações Leitura Três quartos da população do estado X recebe até um salário mínimo A herança será dividida, cabendo um sétimo do total a cada um dos herdeiros A parede será azulejada
Actividade de enriquecimento. Algoritmo da raiz quadrada
Actividade de enriquecimento Algoritmo da raiz quadrada Nota: Apresenta-se uma actividade de enriquecimento e de um possível trabalho conjunto com as disciplinas da área de informática: os alunos poderão
Caique Tavares. Probabilidade Parte 1
Caique Tavares Probabilidade Parte 1 Probabilidade: A teoria das probabilidades é um ramo da Matemática que cria, elabora e pesquisa modelos para estudar experimentos ou fenômenos aleatórios. Principais
Jogos Bayesianos Estratégias e Equilíbrio Aplicações. Jogos Bayesianos. Prof. Leandro Chaves Rêgo
Jogos Bayesianos Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Estatística - UFPE Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 14 de Outubro de 2014 Jogos Bayesianos Jogos
Matemática Aplicada. A Quais são a velocidade máxima e a velocidade mínima registradas entre 12:00 horas e 18:00 horas?
Matemática Aplicada 1 Em certo mês, o Departamento de Estradas registrou a velocidade do trânsito em uma rodovia. A partir dos dados, é possível estimar que, por exemplo, entre 12:00 horas e 18:00 horas
Questão 1. Qual é a probabilidade de esse morador se atrasar para o serviço no dia para o qual foi dada a estimativa de chuva?
SE18 - Matemática LMAT 6A3 - Probabilidades condicionais Questão 1 (Enem 2017) Um morador de uma região metropolitana tem 50% de probabilidade de atrasar-se para o trabalho quando chove na região; caso
Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 2º - Ensino Médio Professor: Elias
Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 2º - Ensino Médio Professor: Elias Matemática Atividades para Estudos Autônomos Data: 5 / 6 / 2017 Aluno(a): N o : Turma: 1) (Ufes)
Exercícios de Aprofundamento Mat Polinômios e Matrizes
. (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto
AMEI Escolar Matemática 9º Ano Probabilidades e Estatística
AMEI Escolar Matemática 9º Ano Probabilidades e Estatística A linguagem das probabilidades As experiências podem ser consideradas: - aleatórias ou casuais: quando é impossível calcular o resultado à partida;
NDMAT Núcleo de Desenvolvimentos Matemáticos
01) Em um edifício residencial com 54 apartamentos, 36 condôminos pagam taxa de condomínio de R$ 180,00; para os demais, essa taxa é de R$ 240,00. Qual é o valor da taxa média de condomínio nesse edifício?
Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado.
PROBABILIDADE Espaço amostral Espaço amostral é o conjunto universo U de todos os resultados possíveis de um experimento aleatório. O número de elementos desse conjunto é indicado por n(u). Exemplos: No
5) Qual a probabilidade de sair um ás de ouros quando retiramos uma carta de um baralho de 52 cartas?
TERCEIRA LISTA DE EXERCÍCIOS DE PROBABILIDADE CURSO: MATEMÁTICA PROF. LUIZ CELONI 1) Dê um espaço amostral para cada experimento abaixo. a) Uma urna contém bolas vermelhas (V), bolas brancas (B) e bolas
Uma equação trigonométrica envolve como incógnitas arcos de circunferência e relacionados por meio de funções trigonométricas.
Equações Trigonométricas Uma equação trigonométrica envolve como incógnitas arcos de circunferência e relacionados por meio de funções trigonométricas. Por exemplo: A maioria das equações trigonométricas
Teorema do Limite Central e Intervalo de Confiança
Probabilidade e Estatística Teorema do Limite Central e Intervalo de Confiança Teorema do Limite Central Teorema do Limite Central Um variável aleatória pode ter uma distribuição qualquer (normal, uniforme,...),
b) Uma mercadoria que custa R$ 37,00 foi paga com uma nota de R$ 50,00. De quanto foi o troco?
MATEMÁTICA BÁSICA - 01 Recordando operações: Adição, Subtração, Multiplicação, Divisão Vamos lembrar como essas operações são feitas e principalmente, quando devemos utilizá-las na solução de um problema
MATEMÁTICA - 2 o ANO MÓDULO 44 PROBABILIDADE: APLICAÇÕES COM COMBINATÓRIA
MATEMÁTICA - 2 o ANO MÓDULO 44 PROBABILIDADE: APLICAÇÕES COM COMBINATÓRIA Como pode cair no enem Um piloto de corridas estima que suas chances de ganhar em uma dada prova são de 80% se chover no dia da
Resolução da Prova de Raciocínio Lógico do TRE/MT, aplicada em 13/12/2015.
de Raciocínio Lógico do TRE/MT, aplicada em 13/12/2015. Raciocínio Lógico p/ TRE-MT Analista Judiciário QUESTÃO 19 Um grupo de 300 soldados deve ser vacinado contra febre amarela e malária. Sabendo-se
(a 2, b) = p 2 q 2. AV2 - MA 14-2011. Questão 1.
Questão 1. (1,5) Sejam a e b dois números naturais tais que (a, b) = pq, em que p e q são dois números primos distintos. Quais são os possíveis valores de (a) (a 2, b)? (b) (a 3, b)? (c) (a 2, b 3 )? Suponhamos
DISTRIBUIÇÃO DE FREQUÊNCIA DE VARIÁVEIS QUALITATIVAS E QUANTITATIVAS DISCRETAS (TABELAS E GRÁFICOS)
DISTRIBUIÇÃO DE FREQUÊNCIA DE VARIÁVEIS QUALITATIVAS E QUANTITATIVAS DISCRETAS (TABELAS E GRÁFICOS) O QUE É ESTATÍSTICA Estatística é a ciência de obter conclusões a partir de dados. Envolve métodos para
Técnicas de Contagem I II III IV V VI
Técnicas de Contagem Exemplo Para a Copa do Mundo 24 países são divididos em seis grupos, com 4 países cada um. Supondo que a escolha do grupo de cada país é feita ao acaso, calcular a probabilidade de
Capítulo 7. 1. Bissetrizes de duas retas concorrentes. Proposição 1
Capítulo 7 Na aula anterior definimos o produto interno entre dois vetores e vimos como determinar a equação de uma reta no plano de diversas formas. Nesta aula, vamos determinar as bissetrizes de duas
PROBABILIDADE DE EVENTOS INDEPENDENTES: Uma Revisão Prática. Prof. Lafayette Jota
ROBABILIDADE DE EVENTOS INDEENDENTES: Uma Revisão rática rof. Lafayette Jota O tema probabilidades é sempre presente no ENEM, em grande parte devido a sua grande aplicação a nossa vida diária. Frequentemente
3 a Lista de PE Solução
Universidade de Brasília Departamento de Estatística 3 a Lista de PE Solução. Se X representa o ganho do jogador, então os possíveis valores para X são,, 0, e 4. Esses valores são, respectivamente, correspondentes
Matemática. Divisão Proporcional. Professor: Dudan. www.acasadoconcurseiro.com.br
Matemática Divisão Proporcional Professor: Dudan www.acasadoconcurseiro.com.br Matemática DIVISÃO PROPORCIONAL Existem problemas que solicitam a divisão de um número em partes diretamente proporcionais
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 2ª FASE 21 DE JULHO 2015 GRUPO I
Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 1500-36 Lisboa Tel.: +351 1 716 36 90 / 1 711 03 77 Fax: +351 1 716 64 4 http://www.apm.pt email: [email protected] PROPOSTA DE
O QUE É AMOSTRAGEM? PARTE I
O QUE É AMOSTRAGEM? PARTE I! Teoria da amostragem! População x Amostra! O problema do censo! Amostragem probabilística e não probabilística Francisco Cavalcante([email protected]) Administrador de Empresas
Matemática Fascículo 05 Manoel Benedito Rodrigues
Matemática Fascículo 05 Manoel Benedito Rodrigues Índice Revisão de Tópicos do Ensino Fundamental Exercícios...1 Dicas...2 Resoluções... Revisão de Tópicos do Ensino Fundamental Exercícios 01. Sobre o
1 Exercícios de Aplicações da Integral
Cálculo I (5/) IM UFRJ Lista 6: Aplicações de Integral Prof. Milton Lopes e Prof. Marco Cabral Versão 9.5.5 Eercícios de Aplicações da Integral. Eercícios de Fiação Fi.: Esboce o gráco e calcule a área
- o cachorro de Davi e o gato de Charles têm o nome do dono do gato chamado Charles.
Alberto,, Charles e Davi são amigos, e cada um deles é dono de um gato e de um cachorro. O gato e o cachorro de cada um dos quatro amigos têm nomes distintos e escolhidos dentre os nomes dos três amigos
PESQUISA DE DIA DAS MÃES 2016
PESQUISA DE DIA DAS MÃES 2016 ASSESSORIA ECONÔMICA Sumário Executivo Resumo dos principais resultados da Pesquisa de Dia das Mães 2016 O número médio de presentes no Dia das Mães 2016 será de 1,24 unidades.
Frações significa a:b, sendo a e b números naturais e b diferente de zero. Chamamos: de fração; a de numerador; b de denominador.
O símbolo Frações significa a:b, sendo a e b números naturais e b diferente de zero. Chamamos: de fração; a de numerador; b de denominador. Se a é múltiplo de b, então é um número natural. Veja um exemplo:
Princípios básicos de probabilidade e aplicação à genética
Princípios básicos de probabilidade e aplicação à genética 1ª Parte: Princípios básicos de probabilidade Probabilidade é a chance que um evento tem de ocorrer, entre dois ou mais eventos possíveis. Por
Prova Resolvida Raciocínio Lógico Quantitativo e Estatística (ANAC/2016) Prof. Guilherme Neves
Prova Resolvida Raciocínio Lógico Quantitativo e Estatística (ANAC/2016) 31- (ANAC 2016/ESAF) A negação da proposição se choveu, então o voo vai atrasar pode ser logicamente descrita por a) não choveu
UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática
UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática 1 a Lista - MAT 17 - Introdução à Álgebra Linear II/2004 1 Considere as matrizes A, B, C, D e E com respectivas ordens,
