EXERCÍCIOS EXAMES E TESTES INTERMÉDIOS ESTATÍSTICA E PROBABILIDADES
|
|
|
- Luiz Cortês de Miranda
- 10 Há anos
- Visualizações:
Transcrição
1 EXERCÍCIOS EXAMES E TESTES INTERMÉDIOS ESTATÍSTICA E PROBABILIDADES. Num acampamento de verão, estão jovens de três nacionalidades: jovens portugueses, espanhóis e italianos. Nenhum dos jovens tem dupla nacionalidade. Metade dos jovens do acampamento são portugueses, e há mais espanhóis do que italianos. Escolhe-se, ao acaso, um dos jovens do acampamento. Qual dos valores seguintes pode ser o valor exato da probabilidade de o jovem escolhido ser espanhol? Assinala a opção correta..2 Admite que, no acampamento, os jovens ficam alojados em tendas. Numa das tendas dormem um português, um espanhol e um italiano. Numa outra tenda dormem um português e um espanhol. Vão ser escolhidos, ao acaso, dois jovens, um de cada uma dessas tendas. Qual é a probabilidade de os dois jovens escolhidos terem a mesma nacionalidade? Apresenta a resposta na forma de fração. Mostra como chegaste à tua resposta. Ex. 202.ª ch. 2. Um saco contém várias bolas com o número, várias bolas com o número 2 e várias bolas com o número 3. As bolas são indistinguíveis ao tato. A Maria realizou dez vezes o seguinte procedimento: retirou, ao acaso, uma bola do saco, registou o número inscrito na bola e colocou novamente a bola no saco. Em seguida, a Maria calculou a frequência relativa de cada um dos números, 2 e 3 e elaborou uma tabela. Nessa tabela, substituiu-se a frequência relativa do número 2 por a, obtendo-se a seguinte tabela. 2. Qual é o valor de a? Assinala a opção correta. 2.2 Admite que, no saco, metade das bolas têm o número. Admite ainda que se vai retirar uma bola do saco um milhão de vezes, seguindo o procedimento da Maria. Será de esperar que a frequência relativa do número se mantenha igual a 0,3? Justifica a tua resposta. Ex ª ch. 3. Um certo conjunto de cartas de jogar é constituído por doze cartas vermelhas e por algumas cartas pretas. Escolhe-se, ao acaso, uma carta deste conjunto. Sabe-se que a probabilidade de essa carta ser vermelha é 75%. Quantas cartas pretas há neste conjunto? Assinala a opção correta. (A) 3 (B) 4 (C) 6 (D) 9 Ex ª ch. 4. Um saco contém bolas indistinguíveis ao tato. Em cada uma das bolas está inscrito um número. A tabela seguinte apresenta a distribuição dos números nas bolas que se encontram no saco. A Ana tira, ao acaso, uma bola do saco. Qual é a probabilidade de nessa bola estar inscrito um número par superior a 3? Ex..ª ch Uma certa turma do 9.º ano é constituída por rapazes e por raparigas. Nessa turma há seis raparigas. Sabe-se que, escolhendo ao acaso um dos alunos da turma, a probabilidade de esse aluno ser rapaz é 3 2. Quantos rapazes há nessa turma? (A) 6 (B) 9 (C) 2 (D) 5 Ex..ª ch A Beatriz tem quatro irmãos. A média das alturas dos quatro irmãos da Beatriz é,25 metros. A altura da Beatriz é,23 metros. Qual é, em metros, a média das alturas dos cinco irmãos? Mostra como chegaste à tua resposta. Ex..ª ch. 20
2 7. Considera todos os números naturais de a 50. Escolhe-se, ao acaso, um desses números. Qual é a probabilidade de o número ser simultaneamente divisível por 2, por 3 e por 5? Ex. 2.ª ch A Teresa tem três irmãs: a Maria, a Inês e a Joana. A Teresa vai escolher, ao acaso, uma das irmãs para ir com ela a um arraial no próximo fim de semana. A Teresa vai escolher, também ao acaso, se vai ao arraial no próximo sábado ou no próximo domingo. Qual é a probabilidade de a Teresa escolher ir ao arraial no sábado com a Maria? Assinala a opção correta. (A) 2 (B) 3 (C) 5 (D) 6 9. A comissão organizadora de um arraial fez 250 rifas para um sorteio. Apenas uma dessas rifas é premiada. As rifas foram todas vendidas. A Alice comprou algumas rifas. Sabe-se que a probabilidade de a Alice ganhar o prémio é. Quantas rifas comprou a Alice? Assinala a opção correta. 25 (A) 25 (B) 0 (C) 5 (D) 0. Foi realizado um questionário acerca do número de livros que cada um dos alunos de uma turma tinha lido nas férias. Todos os alunos da turma responderam ao questionário. O professor de matemática pediu ao António que construísse um gráfico de barras relativo aos resultados do questionário. Na figura 3, está o gráfico de barras construído pelo António. 0. Quantos livros leu, em média, cada aluno dessa turma, de acordo com os dados apresentados no gráfico? Mostra como chegaste à tua resposta. 0.2 O gráfico que o António construiu não está de acordo com os dados recolhidos, pois alguns dos alunos que ele considerou como tendo lido dois livros tinham, na realidade, lido três livros. Qual dos seguintes gráficos pode traduzir corretamente os resultados do questionário, sabendo que a mediana do número de livros lidos nas férias pelos alunos da turma é igual a 3? Assinala a opção correta. Ex. 2.ª ch. 20. A Figura é uma fotografia de vasos com manjericos. O gráfico da Figura 2 mostra o número de vasos com manjericos vendidos, num arraial, nos dias, 2 e 3 de Junho. O número médio de vasos com manjericos vendidos por dia, nesse arraial, nos primeiros dez dias do mês de Junho, foi igual a 3. Qual foi o número médio de vasos com manjericos vendidos por dia, nesse arraial, nos primeiros treze dias de Junho? Assinala a opção correta. Ex..ª ch. 200
3 2. Num arraial, a Beatriz comprou um saco com mais de 60 rebuçados. Quando os contou dois a dois, não sobrou nenhum. O mesmo aconteceu quando os contou cinco a cinco, mas, quando os contou três a três, sobraram dois. Qual é o menor número de rebuçados que o saco pode ter? Mostra como chegaste à tua resposta. Ex..ª ch Pediu-se a 20 pessoas, cada uma delas dona de um cão e de um gato, que respondessem à seguinte questão: «Como classifica a relação entre o seu cão e o seu gato?» Havia três opções de resposta: «Boa», «Indiferente» e «Agressiva». A Tabela apresenta os totais de cada uma das opções de resposta. Escolhida ao acaso uma das pessoas entrevistadas, qual é a probabilidade de essa pessoa ter respondido que a relação entre o seu cão e o seu gato é boa? Escreve a tua resposta na forma de fração irredutível. 4. Um tratador de animais de um jardim zoológico é responsável pela limpeza de três jaulas: a de um tigre, a de uma pantera e a de um leopardo. O tratador tem de lavar a jaula de cada um destes animais, uma vez por dia. De quantas maneiras diferentes pode o tratador realizar a sequência da lavagem das três jaulas? (A) 2 (B) 3 (C) 4 (D) 6 5. Registou-se o número de macacos de um jardim zoológico, com 5, 6, 7 e 8 anos de idade. A Tabela 2, onde não está indicado o número de macacos com 7 anos de idade, foi construída com base nesse registo. A mediana das idades destes animais é 6,5. Determina o número de macacos com 7 anos de idade. Mostra como chegaste à tua resposta. 6. Uma loja de um jardim zoológico oferece, diariamente, à Liga dos Animais do Zoo, 6% do seu lucro. No final de um certo dia, a Liga dos Animais do Zoo recebeu 5 euros dessa loja. Qual foi o lucro da loja nesse dia? Assinala a opção correta. Ex. 2.ª ch Na tabela ao lado, estão as classificações dos alunos de uma turma do 0.º ano na disciplina de Matemática. O número de alunos que tiveram classificação de 0 valores e o número de alunos que tiveram classificação de 2 valores estão representados pela letra a. 7. Determina a média das classificações dos alunos que tiveram classificação superior a 2 valores. Apresenta os cálculos que efetuaste. 7.2 Admite que a mediana das classificações dos alunos da turma é 3 valores. Qual é o valor de a? Transcreve a letra da opção correta. TI 8.º ano 202
4 8. Uma escola básica tem duas turmas de 9.º ano: a turma A e a turma B. Os alunos da turma A distribuem-se, por idades, de acordo com o seguinte diagrama circular. Os alunos da turma B distribuem-se, por idade e por sexo, de acordo com a tabela seguinte. 8. Escolhe-se, ao acaso, um aluno da turma A. Seja p a probabilidade de o aluno escolhido ter 5 anos. Qual das afirmações seguintes é verdadeira? Transcreve a letra da opção correta. 8.2 Para um certo número natural n, a expressão representa a média das idades das raparigas da turma B. Qual é o valor de n? 8.3 Vão ser escolhidos, ao acaso, dois alunos da turma B com 5 anos. Determina a probabilidade de os dois alunos escolhidos serem do mesmo sexo. Mostra como chegaste à tua resposta. TI 9.º ano O Manuel tem, num saco, três bolas indistinguíveis ao tato, numeradas de a O Manuel retira uma bola do saco, regista o número da bola e repõe a bola no saco. O Manuel repete este procedimento doze vezes. A sequência,,2,3,2,2,,,3,,2, é a sequência dos números registados pelo Manuel. Indica a mediana deste conjunto de números Admite agora que o Manuel retira uma bola do saco, regista o número da bola e não repõe a bola no saco. Em seguida, retira outra bola do saco e regista também o número desta bola. Qual é a probabilidade de o produto dos números que o Manuel registou ser um número par? Apresenta a resposta na forma de fração. Mostra como chegaste à tua resposta. 20. Um dos trabalhos realizados pelo João para a disciplina de Matemática consistiu em fazer o registo das idades dos alunos do 9.º ano da sua escola e em elaborar um gráfico da distribuição dos alunos por idades. O gráfico que o João elaborou está correto. Na Figura, está representado esse gráfico 20. Qual é a média das idades dos alunos do 9.º ano da escola do João? Mostra como chegaste à tua resposta Escolheu-se, ao acaso, um aluno do 9.º ano da escola do João. Esse aluno tem menos de 5 anos. Qual é a probabilidade de esse aluno ter 3 anos? Transcreve a letra da opção correta. TI 9.º Uma turma de uma certa escola tem raparigas e rapazes com 4, 5 e 6 anos, que se distribuem, por idade e por sexo, como se apresenta na Tabela. 2. Vai ser sorteado um bilhete para uma peça de teatro entre os alunos da turma. Qual é a probabilidade de o aluno contemplado com o bilhete ser um rapaz com mais de 4 anos?
5 2.2 No final do.º período, a Rita veio transferida de outra escola e foi colocada nesta turma. Sabe-se que a média das idades dos alunos não se alterou com a entrada da Rita. Qual é a idade da Rita? Mostra como chegaste à tua resposta. TI 9.º ano A Rita, o Pedro e o Jorge vão fazer um jogo, para decidirem qual dos três será o porta-voz de um grupo de trabalho. O jogo consiste em lançar, uma só vez, um dado, como o da Figura, e adicionar os três números da face que fica voltada para cima. A Figura 2 representa uma planificação do dado. Os amigos combinaram que: se a soma dos três números fosse um número par, o porta-voz seria o Pedro; se a soma dos três números fosse um número ímpar maior do que, o porta-voz seria a Rita; se a soma dos três números fosse, o porta-voz seria o Jorge. 22. Os três amigos têm a mesma probabilidade de ser porta-voz do grupo? Mostra como chegaste à tua resposta Supõe que, num outro dado cúbico, só existem faces de dois tipos: A probabilidade de, ao lançar o dado, uma face do tipo ficar voltada para cima é 3. Quantas faces do tipo tem o dado? Escreve a letra que apresenta a resposta correta. (A) 2 (B) 3 (C) 4 (D) Cinco amigos vão ao teatro. Na bilheteira, compram os últimos bilhetes disponíveis. Os bilhetes correspondem a três lugares seguidos, na mesma fila, e a dois lugares separados, noutras filas. Como nenhum quer ficar sozinho, decidem distribuir os bilhetes ao acaso. O Pedro é o primeiro a tirar o seu bilhete. Qual é a probabilidade de o Pedro ficar separado dos amigos? Escreve a tua resposta na forma de uma fração. 24. Numa aula de Matemática, foi medida a altura de cada aluno de uma turma. De todos os alunos da turma, a Rita é a mais alta e mede 80 cm, e o Jorge é o mais baixo e mede 20 cm. A altura média das raparigas é 50 cm. Mostra que o número de raparigas da turma não pode ser igual a 2. TI 9.º ano A Rita e o Paulo têm à sua frente, sobre uma mesa, 30 autocolantes, todos com a mesma forma e com o mesmo tamanho: 6 autocolantes têm imagens de mamíferos, autocolantes têm imagens de peixes e os restantes autocolantes têm imagens de aves. O Paulo baralha os 30 autocolantes e espalhaos sobre a mesa, com as imagens voltadas para baixo. A Rita vai tirar, ao acaso, um autocolante de cima da mesa. Qual é a probabilidade de a Rita tirar um autocolante com imagens de aves? Transcreve a letra da opção correta. (A) 5% (B) 0% (C) 30% (D) 50% 26. A Figura ilustra um painel que a Rita vai pintar, para afixar na sala de aula. O painel tem três tiras verticais. A Rita dispõe de tintas de três cores diferentes, para pintar as tiras verticais: amarelo, verde e rosa. De quantas maneiras diferentes pode a Rita pintar o painel, sabendo que pinta cada tira com uma só cor e que não repete cores? Mostra como chegaste à tua resposta. TI 9.º ano No clube desportivo Os Medalhados vai ser sorteada uma viagem aos próximos Jogos Olímpicos. As 90 rifas para o sorteio foram numeradas de a 90 e foram todas vendidas.
6 27.. O João tem 4 anos. Qual é a probabilidade de a rifa premiada ter um número múltiplo da sua idade? (A) (B) 5 (D) 90 2 (C) O pai da Ana e da Sara comprou uma rifa e ofereceu-a às filhas. A Ana e a Sara decidiram que iriam fazer um jogo para escolherem qual das duas iria fazer a viagem, no caso de a rifa ser a premiada. O jogo consistiria em lançar dois dados, como os representados nas figuras, com a forma de uma pirâmide com 4 faces geometricamente iguais, todas elas triângulos equiláteros e numeradas de a 4. Combinaram que, em cada lançamento, o número que sai é o que está na face voltada para baixo e que: se o produto dos números saídos for menor do que 6 ou igual a 6, vai a Ana fazer a viagem; se o produto dos números saídos for maior do que 6, vai a Sara fazer a viagem. Se a rifa for a premiada, as duas irmãs terão a mesma probabilidade de fazer a viagem? Mostra como chegaste à tua resposta. 28. O número de rifas vendidas a cada sócio do clube desportivo variou de a O gráfico seguinte mostra, de entre 50 sócios, a percentagem dos que compraram, 2, 3 ou 4 rifas. Determina o número de sócios, de entre os 50, que compraram 2 rifas Fez-se uma lista onde se registou o número de rifas compradas por cada um de 0 sócios. A mediana dessa lista de números é 2,5. Destes 0 sócios houve quatro que compraram rifa, três que compraram 3 rifas e um que comprou 4 rifas. Quantas rifas poderá ter comprado cada um dos outros dois sócios? TI 9.º Ano A Maria gravou nove CD, sete com música rock e dois com música popular, mas esqueceu-se de identificar cada um deles. Qual é a probabilidade de, ao escolher dois CD ao acaso, um ser de música rock e o outro ser de música popular? 30. A agência de viagens ViajEuropa tem como destinos turísticos as capitais europeias. A tabela mostra o número de viagens vendidas pela agência nos primeiros três meses do ano. 30. Qual foi a média do número de viagens vendidas por mês, para Madrid, nos primeiros três meses do ano? A ViajEuropa vai sortear um prémio entre os clientes que compraram viagens no mês de Março. Qual é a probabilidade de o prémio sair a um cliente que comprou uma viagem para Paris? Mostra como chegaste à tua resposta. Apresenta o resultado na forma de dízima Ex..ª ch.
7 3. A mãe, o pai e o filho mais velho da família Coelho ganharam três automóveis num concurso televisivo: um cinzento, um branco e um preto. Todos queriam o automóvel preto, por isso decidiram distribuir aleatoriamente os três automóveis. 3. Qual é a probabilidade de o automóvel preto não ser atribuído à mãe? Assinala a alternativa correta. 3.2 De quantas maneiras diferentes podem ser distribuídos os automóveis, um por cada um dos três elementos da família? Mostra como chegaste à tua resposta. 32. A tabela seguinte representa os consumos de gasolina, em litros, de um automóvel da família Coelho, no primeiro trimestre do ano. Supõe que o consumo médio, por mês, nos 4 primeiros meses do ano foi igual ao dos 3 primeiros meses. Qual foi, em litros, o consumo de gasolina do automóvel, no mês de Abril? Mostra como chegaste à tua resposta. 33. Uma empresa de automóveis decidiu oferecer 364 bilhetes de entrada para uma feira de veículos todo-oterreno. No primeiro dia da feira, ofereceu onze bilhetes, no segundo dia ofereceu onze bilhetes e assim sucessivamente, até ter apenas um bilhete. Quantos dias a empresa precisou para ficar só com um bilhete? Mostra como chegaste à tua resposta. Ex. 2.ª ch O João foi ao cinema com os amigos. Comprou os bilhetes com os números 5, 6, 7, 8,, 7, da fila S, isto é, todos os números entre 5 e 7, inclusive. O João tirou, aleatoriamente, um bilhete para ele, antes de distribuir os restantes pelos amigos. Qual é a probabilidade de o João ter tirado para ele um bilhete com um número par? 35. Numa sala de cinema, a primeira fila tem 23 cadeiras. A segunda fila tem menos 3 cadeiras do que a primeira fila. A terceira fila tem menos 3 cadeiras do que a segunda e assim, sucessivamente, até à última fila, que tem 8 cadeiras. Quantas filas de cadeiras tem a sala de cinema? Explica como chegaste à tua resposta. 36. Numa escola com 000 alunos, fez-se um estudo sobre o número de vezes que, em média, as raparigas e os rapazes da escola iam ao cinema por mês. Com os dados recolhidos construiu-se a tabela que se segue. 36. Qual dos gráficos que se seguem representa os dados da tabela?
8 36.2 Vai sortear-se um bilhete de cinema entre todos os alunos da escola. Qual é a probabilidade de o bilhete sair a uma rapariga que, em média, vai ao cinema mais do que uma vez por mês? Apresenta o resultado na forma de fração irredutível. BOM TRABALHO! Alda Alves
Tema: Probabilidades e Estatística
9.º Ano Ficha de Trabalho Setembro 2013 Nome: N.º: Turma: 2013/2014 Compilação de Exercícios de Exames Nacionais / Provas Finais (EN/PF) e de Testes Intermédios (TI) Tema: Probabilidades e Estatística
MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Propostas de resolução
MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Propostas de resolução Exercícios de exames e testes intermédios 1. Como o zero é o elemento neutro da multiplicação, o produto dos números saídos
Coordenadoria de Educação CADERNO DE REVISÃO-2011. Matemática Aluno (a) 5º ANO
CADERNO DE REVISÃO-2011 Matemática Aluno (a) 5º ANO Caderno de revisão FICHA 1 COORDENADORIA DE EDUCAÇÃO examesqueiros Os Números gloriabrindes.com.br noticias.terra.com.br cidadesaopaulo.olx... displaypaineis.com.br
Caderno 2: 60 minutos. Tolerância: 20 minutos. (não é permitido o uso de calculadora)
Prova Final de Matemática 2.º Ciclo do Ensino Básico Prova 62/1.ª Fase/2014 Decreto-Lei n.º 139/2012, de 5 de julho A PREENCHER PELO ALUNO Nome completo Documento de identificação Assinatura do Aluno CC
1. Encontra o local onde se deve construir uma clínica médica de modo a ficar à mesma distância das três localidades.
1. Encontra o local onde se deve construir uma clínica médica de modo a ficar à mesma distância das três localidades. Braga Porto 2. Onde está a casa do Joaquim se esta dista exatamente 3 km da casa da
ORGANIZAÇÃO E TRATAMENTO DE DADOS Nome: N.º Turma / /201
MINISTÉRIO DA EDUCAÇÃO E CIÊNCIA AGRUPAMENTO DE ESCOLAS DA BOA ÁGUA 172388 Escola Básica Integrada da Boa Água EB1 n.º2 da Quinta do Conde EB1/JI do Pinhal do General JI do Pinhal do General Departamento
(Testes intermédios e exames 2007/2008)
(Testes intermédios e exames 2007/2008) 14. Uma caixa 1 tem uma bola verde e três bolas amarelas. Uma caixa 2 tem apenas uma bola verde. Considere a experiência que consiste em tirar, simultaneamente e
Nome: N.º Turma: Suficiente (50% 69%) Bom (70% 89%)
Escola E.B. 2,3 Eng. Nuno Mergulhão Portimão Ano Letivo 2012/2013 Teste de Avaliação Escrita de Matemática 9.º ano de escolaridade Duração do Teste: 90 minutos 17 de outubro de 2012 Nome: N.º Turma: Classificação:
C 1. 45 minutos. Prova de Aferição de Matemática. 1.º Ciclo do Ensino Básico 8 Páginas. Matemática/2012. PA Matemática/Cad.
PROVA DE AFERIÇÃO DO 1.º CICLO DO ENSINO BÁSICO Matemática/2012 Decreto-Lei n.º 6/2001, de 18 de janeiro A PREENCHER PELO ALUNO Rubrica do Professor Aplicador Nome completo A PREENCHER PELO AGRUPAMENTO
C O L É G I O F R A N C O - B R A S I L E I R O
C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: Ano: 6º Data: / 07 / 2014 EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA 1) Numa divisão, qual é o dividendo, se o divisor for 12,
Eventos independentes
Eventos independentes Adaptado do artigo de Flávio Wagner Rodrigues Neste artigo são discutidos alguns aspectos ligados à noção de independência de dois eventos na Teoria das Probabilidades. Os objetivos
COLÉGIO NOSSA SENHORA DA ASSUNÇÃO
COLÉGIO NOSSA SENHORA DA ASSUNÇÃO FAMALICÃO ANADIA FICHA DE AVALIAÇÃO MATEMÁTICA Duração: 90 minutos Data: 3 maio de 0 8º C Apresenta o teu raciocínio de forma clara, indicando todos os cálculos que tiveres
Módulo de Probabilidade Miscelânea de Exercícios. Cálculo de Probabilidades. Professores Tiago Miranda e Cleber Assis
Módulo de Probabilidade Miscelânea de Exercícios Cálculo de Probabilidades a série E.M. Professores Tiago Miranda e Cleber Assis Probabilidade Miscelânea de Exercícios Cálculo de Probabilidades 1 Exercícios
RESUMO TEÓRICO. n(a) P(A) = n(u) 0 P(A) 1
RESUMO TEÓRICO Experimentos aleatórios: são aqueles que, mesmo repetidos várias vezes sob condições semelhantes, apresentam resultados imprevisíveis. Exemplo: Lançar um dado e verificar qual é a face voltada
Matemática SSA 2 REVISÃO GERAL 1
1. REVISÃO 01 Matemática SSA REVISÃO GERAL 1. Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede cm, e o raio de sua base
Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano
Organização e tratamento de dados Representação e interpretação de dados Formulação de questões Natureza dos dados Tabelas de frequências absolutas e relativas Gráficos de barras, circulares, de linha
EXERCÍCIOS DE REVISÃO MATEMÁTICA CONTEÚDO: PROBABILIDADE 3 a SÉRIE ENSINO MÉDIO
EXERCÍCIOS DE REVISÃO MATEMÁTICA CONTEÚDO: PROBABILIDADE a SÉRIE ENSINO MÉDIO ======================================================================= ) (UF SC) Em uma caixa há 8 bombons, todos com forma,
OFICINA DE JOGOS APOSTILA DO PROFESSOR
OFICINA DE JOGOS APOSTILA DO PROFESSOR APRESENTAÇÃO Olá professor, Essa apostila apresenta jogos matemáticos que foram doados a uma escola de Blumenau como parte de uma ação do Movimento Nós Podemos Blumenau.
Canguru Matemático sem Fronteiras 2011
http://www.mat.uc.pt/canguru/ Destinatários: alunos dos 5. e 6. anos de escolaridade Nome: Turma: Duração: 1h30min Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. As questões
CAPÍTULO 04 NOÇÕES DE PROBABILIDADE
CAPÍTULO 0 NOÇÕES DE PROBABILIDADE. ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. No lançamento de uma moeda perfeita (não viciada) o espaço amostral é S =
Versão 1. Identifica, claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.
Teste Intermédio de Matemática Versão 1 Teste Intermédio Matemática Versão 1 Duração do Teste: 90 minutos 11.05.2010 3.º iclo do Ensino ásico 9.º ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de Janeiro
Jogo ProvocAção. ProvocAção 5.-
Jogo ProvocAção Aprender brincando! Este foi o objetivo do desenvolvimento desse jogo. É um importante instrumento de aprendizagem, possuiu múltiplos usos e garante muita diversão e conhecimento para crianças,
Resolverei neste artigo a prova de Raciocínio Lógico do concurso para a SEFAZ-SP 2009 organizada pela FCC.
Olá pessoal! Resolverei neste artigo a prova de Raciocínio Lógico do concurso para a SEFAZ-SP 2009 organizada pela FCC. 01. (SEFAZ-SP 2009/FCC) Considere o diagrama a seguir, em que U é o conjunto de todos
COLÉGIO MILITAR DE BELO HORIZONTE
COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2007 / 200 PROVA DE MATEMÁTICA 6º ANO DO ENSINO FUNDAMENTAL CONCURSO DE ADMISSÃO À 6ª SÉRIE DO ENSINO FUNDAMENTAL CMBH 2007 PÁGINA: 2 RESPONDA AS
Os gráficos estão na vida
Os gráficos estão na vida A UUL AL A Nas Aulas 8, 9 e 28 deste curso você já se familiarizou com o estudo de gráficos. A Aula 8 introduziu essa importante ferramenta da Matemática. A Aula 9 foi dedicada
Canguru Matemático sem Fronteiras 2015
http://www.mat.uc.pt/canguru/ Destinatários: alunos do 1. o ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões
Exame Nacional de 2008 2. a chamada
1. Qual é o mínimo múltiplo comum entre dois números primos diferentes, a e b? Cotações a * b a + b a b 3 - œ10, - 1 24 2. Qual é o menor número inteiro pertencente ao intervalo? - 4-3 - 2-1 3. Numa aula
Prova Escrita de Matemática Aplicada às Ciências Sociais
Exame Nacional do Ensino Secundário Decreto-Lei n.º 74/2004, de 26 de Março Prova Escrita de Matemática Aplicada às Ciências Sociais 10.º e 11.º Anos de Escolaridade Prova 835/2.ª Fase 13 Páginas Duração
Canguru Matemático sem Fronteiras 2014
http://www.mat.uc.pt/canguru/ Destinatários: alunos do 9. o ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões
Matemática e Questionário. 4ª Série Ensino Fundamental Manhã MANHÃ. Nome do aluno: Nome da escola: 4ª SÉRIE EF. Número triângulo:
Matemática e Questionário MANHÃ 4ª Série Ensino Fundamental Manhã Nome do aluno: Nome da escola: 4ª SÉRIE EF Turma: Número triângulo: 2007 Prezado aluno, prezada aluna: Para que a Secretaria da Educação
RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA E RACIOCÍNIO LÓGICO
RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA E RACIOCÍNIO LÓGICO Caro aluno, Disponibilizo abaixo a resolução das questões de Matemática e Raciocínio Lógico da prova para o cargo de Oficial de Promotoria do Ministério
Canguru Matemático sem Fronteiras 2015
anguru Matemático sem Fronteiras 2015 http://www.mat.uc.pt/canguru/ ategoria: Benjamim Destinatários: alunos dos 7. o e 8. o anos de escolaridade ome: Turma: Duração: 1h 30min anguru Matemático. Todos
ESTATÍSTICA ORGANIZAÇÃO E REPRESENTAÇÃO DE DADOS. Tabelas. Frequência absoluta. Frequência relativa
Tabelas. Frequência absoluta. Frequência relativa Com a análise de uma turma, elaborou as seguintes Tabelas: Tabelas. Frequência absoluta. Frequência relativa Perguntou-se a cada aluno a altura e obteve-se
Matemática Ficha de Trabalho/Apoio Tratamento de Dados
Matemática Ficha de Trabalho/Apoio Tratamento de Dados Constrói um gráfico de barras que represente a informação sobre os animais domésticos dos alunos da turma A. 7ºano Organização e análise de dados
A) A C) I E) U B) E. segundos? D) O. E) Fizeram. Canguru Matemático. Todos os direitos reservados.
Canguru Matemático sem fronteiras 2008 Destinatários: alunos dos 10º e 11º anos de Escolaridade Duração: 1h30min Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. Inicialmente
Informações e instruções para os candidatos
A preencher pelo candidato: Nome: N.º inscrição: Documento de identificação: N.º: Local de realização da prova: A preencher pelo avaliador: Classificação final: Ass: Informações e instruções para os candidatos
INTRODUÇÃO E OBJETIVO DO JOGO
Instruções O K2 é a segunda maior montanha do mundo (depois do Monte Evereste) com uma altura de 8.611 metros acima do nível do mar. Também é considerada uma das mais difíceis. O K2 nunca foi conquistado
COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2003 / 2004 PROVA DE MATEMÁTICA 5ª SÉRIE DO ENSINO FUNDAMENTAL IDENTIFICAÇÃO
COLÉGIO MILITAR DE BELO HORIZONTE BELO HORIZONTE MG 25 DE OUTUBRO DE 2003 DURAÇÃO: 120 MINUTOS CONCURSO DE ADMISSÃO 2003 / 2004 PROVA DE MATEMÁTICA 5ª SÉRIE DO ENSINO FUNDAMENTAL IDENTIFICAÇÃO NÚMERO DE
PROPOSTAS DE TRABALHO PARA OS ALUNOS A PARTIR DE JOGOS 2º ANO. Adriana da Silva Santi Coordenação Pedagógica de Matemática
PROPOSTAS DE TRABALHO PARA OS ALUNOS A PARTIR DE JOGOS 2º ANO Adriana da Silva Santi Coordenação Pedagógica de Matemática Piraquara Abril/214 1 JOGOS E PROPOSTAS DE TRABALHO PARA OS ALUNOS JOGO DOS 6 PALITOS
CURSO BÁSICO DE CRIAÇÃO DE SITES MÓDULO 2 AULA 3
ADICIONANDO UM PRODUTO CURSO BÁSICO DE CRIAÇÃO DE SITES Para que sua loja funcione você tem de ter algum produto para vender, ou algum serviço para prestar. Como sua loja está na Internet as pessoas não
Simulado OBM Nível 2
Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é
Exame Nacional de 2006 2.a chamada
Exame Nacional de 006.a chamada Cotações 1. Como sabes, a Bandeira Nacional está dividida verticalmente em duas cores fundamentais, verde-escuro e escarlate (vermelho-vivo) e, sobreposta à união das cores,
Prova Escrita de Matemática Aplicada às Ciências Sociais
Exame Final Nacional do Ensino Secundário Prova Escrita de Matemática Aplicada às Ciências Sociais 11.º Ano de Escolaridade Decreto-Lei n.º 139/2012, de 5 de julho Prova 835/2.ª Fase 15 Páginas Duração
Caderno 2: 60 minutos. Tolerância: 20 minutos. (não é permitido o uso de calculadora)
Prova Final de Matemática 2.º Ciclo do Ensino Básico Prova 62/2.ª Fase/2015 Decreto-Lei n.º 139/2012, de 5 de julho A PREENCHER PELO ALUNO Nome completo Documento de identificação Assinatura do Aluno CC
Projeto Mancala. Objetivo. Objetivo linguístico. Etapas e duração. Procedimentos. Aula 1
Projeto Mancala Objetivo Aprender sobre jogos de Mancala. Os Mancalas constituem uma família de jogos africanos em que o tabuleiro consiste de duas, três ou quatro fileiras de buracos, nos quais são distribuídas
Módulo VIII. Probabilidade: Espaço Amostral e Evento
1 Módulo VIII Probabilidade: Espaço Amostral e Evento Suponha que em uma urna existam cinco bolas vermelhas e uma branca. Extraindo-se, ao acaso, uma das bolas, é mais provável que esta seja vermelha.
RACIOCÍNIO LÓGICO PROF PEDRÃO TABELA-VERDADE
TABELA-VERDADE 01) A negação da afirmação se o cachorro late então o gato mia é: A) se o gato não mia então o cachorro não late. B) o cachorro não late e o gato não mia. C) o cachorro late e o gato não
UNIVERSIDADE FEDERAL DO MATO GROSSO CAMPUS
BIOESTATÍSTICA Aula 0 TÓPICOS ABORDADOS: Introdução a estatística; Coleta de dados; Estatística descritiva; Distribuição de frequências; Notação de somatório Medidas de posição. ESTATÍSTICA É um ramo da
Exercícios de Aprofundamento 2015 Mat Permutação e Arranjo
1. (Uerj 015) Uma criança ganhou seis picolés de três sabores diferentes: baunilha, morango e chocolate, representados, respectivamente, pelas letras B, M e C. De segunda a sábado, a criança consome um
Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015
Apostilas OBJETIVA - Ano X - Concurso Público 05 Conteúdo Matemática Financeira e Estatística: Razão; Proporção; Porcentagem; Juros simples e compostos; Descontos simples; Média Aritmética; Mediana; Moda.
Prova de Aferição de Matemática
PROVA DE AFERIÇÃO DO ENSINO BÁSICO A PREENCHER PELO ALUNO Rubrica do Professor Aplicador Nome A PREENCHER PELO AGRUPAMENTO Número convencional do Aluno Número convencional do Aluno A PREENCHER PELA U.A.
UNITAU APOSTILA PROBABILIDADES PROF. CARLINHOS
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ ALI UNITAU APOSTILA PROAILIDADES ibliografia: Curso de Matemática Volume Único Autores: ianchini&paccola Ed. Moderna Matemática Fundamental - Volume Único Autores:
N1Q1 Solução. a) Há várias formas de se cobrir o tabuleiro usando somente peças do tipo A; a figura mostra duas delas.
1 N1Q1 Solução a) Há várias formas de se cobrir o tabuleiro usando somente peças do tipo A; a figura mostra duas delas. b) Há várias formas de se cobrir o tabuleiro com peças dos tipos A e B, com pelo
RodoMat Matemático 2015. Versão 1
RodoMat Matemático 2015 Versão 1 Nome: Ano: Turma: Instruções da Prova A prova tem início às 15H30 e tem a duração de uma hora. Não é permitido sair antes da hora. Não podes usar calculadora. Há apenas
Não é permitido o uso de corrector. Em caso de engano, deve riscar, de forma inequívoca, aquilo que pretende que não seja classificado.
Teste Intermédio de Matemática B 2010 Teste Intermédio Matemática B Duração do Teste: 90 minutos 13.04.2010 10.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Utilize apenas caneta ou esferográfica
Professor Mauricio Lutz PROBABILIDADE
PROBABILIDADE Todas as vezes que se estudam fenômenos de observação, cumpre-se distinguir o próprio fenômeno e o modelo matemático (determinístico ou probabilístico) que melhor o explique. Os fenômenos
CONCURSO DE ADMISSÃO 2013/2014 6º ANO/ENS. FUND. MATEMÁTICA PÁG. 1
CONCURSO DE ADMISSÃO 203/204 6º ANO/ENS FUND MATEMÁTICA PÁG PROVA DE MATEMÁTICA Marque no cartão-resposta anexo a única opção correta correspondente a cada questão A direção de um escritório decidiu promover,
Avanço Autor: Dan Troyka, 2000. Rastros Autor: Bill Taylor, 1992. Material Um tabuleiro quadrado 7 por 7. 14 peças brancas e 14 peças negras.
Avanço Autor: Dan Troyka, 2000 Um tabuleiro quadrado 7 por 7. 14 peças brancas e 14 peças negras. posição inicial Um jogador ganha se chegar com uma das suas peças à primeira linha do adversário, ou seja,
FCHS - FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS PRIAD PROGRAMA DE REVISÃO INTENSIVA EM ADMINISTRAÇÃO
FCHS - FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS PRIAD PROGRAMA DE REVISÃO INTENSIVA EM ADMINISTRAÇÃO TEMA PRIAD PROBABILIDADES E APLICAÇÕES PRÁTICAS DATA / / ALUNO RA TURMA 1) Num levantamento realizado
Prova Final 2012 1.ª chamada
Prova Final 01 1.ª chamada 1. Num acampamento de verão, estão jovens de três nacionalidades: jovens portugueses, espanhóis e italianos. Nenhum dos jovens tem dupla nacionalidade. Metade dos jovens do acampamento
Estatística e probabilidade em situações do cotidiano. Aplicar corretamente em suas pesquisas os conceitos estudados previamente.
As atividades propostas têm como objetivo fazer o aluno compreender de forma prática a aplicação da estatística e da probabilidade. le deverá ser capaz de efetuar pesquisas, organizando-as em tabelas de
Prova Final de Matemática. Caderno 2: 45 minutos. Tolerância: 15 minutos. 1.º Ciclo do Ensino Básico. Prova 42/2.ª Fase
Prova Final de Matemática 1.º Ciclo do Ensino Básico Prova 42/2.ª Fase/2015 Decreto-Lei n.º 139/2012, de 5 de julho A PREENCHER PELO ALUNO Nome completo Documento de identificação Assinatura do Aluno CC
Canguru Matemático sem Fronteiras 2010
Canguru Matemático sem ronteiras 2010 Duração: 1h30min Destinatários: alunos dos 7 e 8 Anos de Escolaridade Nome: Turma: Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. As
Matemática. Prova a de Aferição de. 1.º Ciclo do Ensino Básico. A preencher pelo aluno (não escrevas o teu nome): idade sexo: F M.
A preencher pelo aluno (não escrevas o teu nome): idade sexo: F M A preencher pelo GAVE: n.º convencional da escola 2003 Prova a de Aferição de Matemática 1.º Ciclo do Ensino Básico A B C D E F Observações
Preparação para o teste intermédio de Matemática 8º ano
Preparação para o teste intermédio de Matemática 8º ano Conteúdos do 7º ano Conteúdos do 8º ano Conteúdos do 8º Ano Teorema de Pitágoras Funções Semelhança de triângulos Ainda os números Lugares geométricos
Álgebra. SeM MiSTéRio
Álgebra SeM MiSTéRio Série SeM MiSTéRio Alemão Sem Mistério Álgebra Sem Mistério Cálculo Sem Mistério Conversação em Alemão Sem Mistério Conversação em Espanhol Sem Mistério Conversação em Francês Sem
a) ½ b) 1/3 c) 14 d) 1/5 e) 1/6
PROBABILIDADE 1) (ANEEL) Ana tem o estranho costume de somente usar blusas brancas ou pretas. Por ocasião de seu aniversário, Ana ganhou de sua mãe quatro blusas pretas e cinco brancas. Na mesma ocasião,
Universidade da Beira Interior Departamento de Matemática
Universidade da Beira Interior Departamento de Matemática ESTATÍSTICA Ano lectivo: 2007/2008 Curso: Ciências do Desporto Ficha de exercícios nº1: Análise Exploratória de dados: Redução e Representação
ingressos, sobrará troco? ( ) sim ( ) não Se sobrar troco, de quanto será?
SOCIEDADE MINEIRA DE CULTURA Mantenedora da PUC Minas e do COLÉGIO SANTA MARIA DATA: 26 / 09 / 2014 UNIDADE: II ETAPA AVALIAÇÃO DE RECUPERAÇÃO DE MATEMÁTICA 3.º ANO/EF ALUNO(A): Nº: TURMA: PROFESSOR(A):
REGULAMENTO EXPOSIÇÃO DE AVICULTURA ALCAC 2014
REGULAMENTO EXPOSIÇÃO DE AVICULTURA ALCAC 2014 A Exposição/Concurso de Avicultura ALCAC 2014 decorrerá de acordo com o regulamento elaborado pela Associação Lusa de Criadores de Aves de Capoeira (ALCAC)
Roteiro da Exposição. selecionar recolher descrever estimar interpretar
Roteiro da Exposição selecionar recolher descrever estimar interpretar Conteúdos: Pedro Campos (INE e Universidade do Porto), Eugénia Graça Martins (Universidade de Lisboa), Emília Oliveira, (Escola Secundária
Estatística. versão para investigação. Abril 2010. GUIA 2008 - Universidade do Minho
versão para investigação Abril 2010 GUIA 2008 - Universidade do Minho Concepção e design Ricardo Pinto ǀ Pedro Ferreira ǀ Pedro Rosário Desenhos Ricardo Roque Martins Revisão científica Dina Loff ǀ Ana
Instruções para a Prova de MATEMÁTICA APLICADA:
Instruções para a Prova de : Confira se seu nome e RG estão corretos. Não se esqueça de assinar a capa deste caderno, no local indicado, com caneta azul ou preta. A duração total do Módulo Discursivo é
Canguru Matemático sem Fronteiras 2015
anguru Matemático sem Fronteiras 205 http://www.mat.uc.pt/canguru/ ategoria: adete Destinatários: alunos do 9. o ano de escolaridade Duração: h 30min ome: Turma: anguru Matemático. Todos os direitos reservados.
UNIVERSIDADE DOS AÇORES Cursos de Sociologia e de Serviço Social Estatística I 1º Semestre 2006/2007
UNIVERSIDADE DOS AÇORES Cursos de Sociologia e de Serviço Social Estatística I 1º Semestre 2006/2007 Ficha de Exercícios nº 5 Distribuições Importantes 1. A probabilidade de os doentes de uma determinada
1) A distribuição dos alunos nas 3 turmas de um curso é mostrada na tabela abaixo.
1) A distribuição dos alunos nas 3 turmas de um curso é mostrada na tabela abaixo. A B C Homens 42 36 26 Mulheres 28 24 32 Escolhendo-se uma aluna desse curso, a probabilidade de ela ser da turma A é:
PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO.
PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO. Professor Joselias - http://professorjoselias.blogspot.com/. MATEMÁTICA 16. Segundo a Associação Brasileira de
Descrição. Como Preparar o Jogo ELFENLAND
ELFENLAND Índice Descrição e Conteúdo... 2 Como Preparar o Jogo... 4 Tabuleiro... 5 Cartas de Viagem... 5 Como Jogar... 6 1. Distribua as Cartas de Viagem... 6 2. Compre uma Ficha de Transporte da Pilha
Aula 4 Estatística Conceitos básicos
Aula 4 Estatística Conceitos básicos Plano de Aula Amostra e universo Média Variância / desvio-padrão / erro-padrão Intervalo de confiança Teste de hipótese Amostra e Universo A estatística nos ajuda a
MÉDIA ARITMÉTICA MÉDIA PONDERADA MODA MEDIANA
MÉDIA ARITMÉTICA MÉDIA PONDERADA MODA MEDIANA Em um amostra, quando se têm os valores de uma certa característica, é fácil constatar que os dados normalmente não se distribuem uniformemente, havendo uma
o quantos queres da emoções
Brincadeiras de Brincar o quantos queres da emoções Recuperando um jogo tradicional da infância, o Quantos Queres das Emoções da Chão d andar, foi concebido como um jogo para os pais e os filhos atendendo
UNIVERSIDADE DOS AÇORES CURSO DE SOCIOLOGIA E SERVIÇO SOCIAL ESTATÍSTICA I Ficha de Exercícios nº 2- Probabilidades
UNIVERSIDADE DOS AÇORES CURSO DE SOCIOLOGIA E SERVIÇO SOCIAL ESTATÍSTICA I Ficha de Exercícios nº 2- Probabilidades 1. Numa entrevista, um economista afirmou que considerava a melhoria da situação económica
, podemos afirmar que:
PROOFMATH WWW.PROOFMATH.WORDPRESS.COM MAIS UM BLOG DE MATEMÁTICA FOLHA DE TRABALHO º ANO DE ESCOLARIDADE PREPARAR EXAME NACIONAL. Considere as seguintes sucessões a n, b n Sendo a lim an, b limbn e c lim
Desenhando perspectiva isométrica
Desenhando perspectiva isométrica A UU L AL A Quando olhamos para um objeto, temos a sensação de profundidade e relevo. As partes que estão mais próximas de nós parecem maiores e as partes mais distantes
Versão 1. Identifica claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.
Teste Intermédio de Matemática Versão 1 Teste Intermédio Matemática Versão 1 Duração do Teste: 90 minutos 30.04.2009 3.º Ciclo do Ensino Básico 8.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de
PROGRAMA DE FORMAÇÃO CONTÍNUA EM MATEMÁTICA PARA PROFESSORES DO 1º CICLO - ESE DE CASTELO BRANCO CALCULADOR PAPY
CALCULADOR PAPY Descrição do material: Este calculador é um ábaco particular que combina o sistema decimal com o sistema binário. Com base em determinadas regras, permite várias representações de números
2º ano do Ensino Médio
2º ano do Ensino Médio Instruções: 1. Você deve estar recebendo um caderno com dez questões na 1ª parte da prova, duas questões na 2ª parte e duas questões na 3ª parte. Verifique, portanto, se está completo
Prova Final de Matemática
PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 8 Páginas Duração da Prova: 90 minutos. Tolerância:
Resolvendo problemas com logaritmos
A UA UL LA Resolvendo problemas com logaritmos Introdução Na aula anterior descobrimos as propriedades dos logaritmos e tivemos um primeiro contato com a tábua de logarítmos. Agora você deverá aplicar
Matemática. Aula: 02/10. Prof. Pedro. www.conquistadeconcurso.com.br. Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.
Matemática Aula: 02/10 Prof. Pedro UMA PARCERIA Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.BR Visite a loja virtual www.conquistadeconcurso.com.br MATERIAL DIDÁTICO EXCLUSIVO PARA ALUNOS
Um carro do modelo B foi comprado nessa concessionária. Dado que esse carro é de cor prata, qual a probabilidade que seu motor seja 1.0?
PROVA DE MATEMÁTICA - TURMAS DO o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - ABRIL DE 0. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÃO 0) - (UEMS) Uma
MATEMÁTICA IV PROBABILIDADE DISCURSIVAS SÉRIE AULA AULA 03
MATEMÁTICA IV PROBABILIDADE DISCURSIVAS SÉRIE AULA AULA 03 1 1) (FGV-SP 2008) Há apenas dois modos de Cláudia ir para o trabalho: de ônibus ou de moto. A probabilidade de ela ir de ônibus é 30% e, de moto,
13. Assinala com X o número que deves adicionar ao número 797,95 para obteres o número inteiro mais próximo.
Prova Final de Matemática 1.º Ciclo do Ensino Básico Prova 42/Época Especial/2015 Decreto-Lei n.º 139/2012, de 5 de julho A PREENCHER PELO ALUNO Nome completo Documento de identificação Assinatura do Aluno
(A) é Alberto. (B) é Bruno. (C) é Carlos. (D) é Diego. (E) não pode ser determinado apenas com essa informação.
1. Alberto, Bruno, Carlos e Diego beberam muita limonada e agora estão apertados fazendo fila no banheiro. Eles são os únicos na fila, e sabe se que quem está imediatamente antes de Carlos bebeu menos
CENTRO EDUCACIONAL NOVO MUNDO www.cenm.com.br. Matemática
Desafio de Matemática 4 ano EF 2D 2014 1/ 6 1. Foram inauguradas no Shopping novas salas de cinema. Cada sala tem 10 filas, com 15 poltronas em cada fila. O número de pessoas que pode assistir a um filme
