= (365 k + 1). (365 k)! = 1.
|
|
|
- Samuel Amorim
- 6 Há anos
- Visualizações:
Transcrição
1 Exemplo 6: (O problema do aniversário) Existem k pessoas numa sala. Supondo que o aniversário de cada pessoa é igualmente provável e que não há gêmeos na sala, qual a probabilidade de que duas ou mais pessoas celebrem o aniversário no mesmo dia? Solução: Se A denota o evento nenhuma das k pessoas fazem aniversário no mesmo dia, então queremos calcular P(A c ). Nesse exemplo, Ω = {1,..., 365} k. Do exemplo 4 temos Ω = 365 k e do exemplo 5 temos Logo, A = 365! = (365 k + 1). (365 k)! P(A c ) = 1 P(A) = 1 A (365 k + 1) = 1. Ω 365 k
2 Figure 1: (Blitzstein, J.K. e Hwang,J. Introduction to probability, p.12.) Probabilidade de que num grupo de k pessoas duas ou mais celebrem aniversário no mesmo dia. Essa probabilidade excede 1/2 para k = 23.
3 Exemplo 7: (Coeficiente Binomial) Quantas eventos de tamanho k existem em um espaço amostral Ω de n elementos? Solução: Seja A um evento de tamanho k. O evento A pode ser obtido de k! maneiras distintas (Porque?). Como há n!/(n k)! maneiras possíveis de construir sequências de tamanho k com entradas todas distintas, segue que existem ) n! (n k)!k! = eventos de tamanho k em um espaço amostral de n elementos. ( n k
4 Exemplo 8: (Full House em uma mão de Poker) Uma mão de 5 cartas é extraída de um baralho de 52 cartas. Se o baralho foi embaralhado de forma que cada carta tenha a mesma chance de aparecimento, qual é a probabilidade de se obter um Full House? Solução: Uma mão é chamada Full House se há 3 cartas do mesmo valor e 2 outras cartas do mesmo valor. Seja A o evento a mão é um Full House. Do Princípio da Multiplicação segue que ( ) ( ) 4 4 A = Logo, P(A) = 13( ( 4 3) 12 4 ) 2 ) ( 52 5
5 Exemplo 9: Qual é o número de soluções para a equação x 1 + x x n = k, onde x 1,..., x n são inteiros não negativos? Em outras palavras, de quantas maneiras diferentes podemos distribuir k bolas não numeradas em n urnas indistinguíveis? Solução: Cada solução pode ser vista como uma sequência de s e s. Essa sequência deve ter exatamente (n 1) s e k s distribuídas entre as duas s exteriores. Assim existem n 1 + k lacunas entre as paredes exteriores e devemos escolher onde colocar as k s. Logo o número total de sequências com essas propriedades é ( ) n 1 + k. k
6 Identidades úteis Exemplo 10: Para inteiros não negativos n e k com k n, temos ( ) ( ) ( ) ( ) n n n 1 n = e n = k. k n k k 1 k Prova: A primeira identidade é imediata. Para provar a segunda, pense em quantas formas possíveis podemos escolher um time de k pessoas, com 1 capitão, de uma população de n pessoas. Exemplo 11: (Identidade de Vandermonde) Para inteiros não negativos m, n e k, temos ( ) m + n = k k ( m j=0 j )( n k j Prova: Pense em como escolher k pessoas a partir de dois grupos, um com m pessoas e o outro com n pessoas. ).
7 Definição axiomática de probabilidade Seja Ω um espaço amostral. Probabilidade P: função que atribuí a eventos A Ω um número P(A) [0, 1] e satisfaz os seguintes axiomas: 1. P(Ω) = 1 e P( ) = 0 2. Para eventos (A i ) i 1 disjuntos (isto é A i A j = se i j): P( i=1 A i) = P(A n ). n=1 Dos Axiomas 1 e 2 segue que para eventos A 1,..., A n disjuntos: P( n i=1 A i) = n P(A i ) i=1 De fato, considere A n+1 = A n+2 =... =.
8 Teorema 1. (Propriedades da Probabilidade) Para eventos A e B de um espaço amostral Ω, temos: 1. P(A c ) = 1 P(A) 2. P(A B) = P(A) + P(B) P(A B) 3. Se A B, então P(A) P(B). Prova: 1. Basta observar que Ω = A A c e usar Axioma Escreva B = A (A c B) e aplique Axioma Escreva A B = A (B A c ), escreva B como na prova do item 3 e use Axioma 2. Item 2 é um caso particular do princípio de Inclusão-Exclusão: Teorema 2. (Inclusão-Exclusão) Para eventos A 1,..., A n, temos: P( n i=1 A i) = P(A i ) P(A i A j ) + P(A i A j A k ) i i<j i<j<k + ( 1) n+1 P(A 1 A 2... A n )
9 Exemplo 10: (O problema de pareamento) A partir de uma urna com n bolas numeradas de 1, 2,..., n, selecionamos ao acaso e sem reposição todas as bolas, uma de cada vez. Dizemos que ocorre um pareamento na i-ésima seleção, se nessa seleção for selecionada a bola de número i. Qual é a probabilidade de que ocorra pelo menos um pareamento? Solução: Para cada 1 i n, seja A i o evento ocorreu um pareamento na i-ésima seleção. Queremos calcular P( n i=1 A i). Para k bolas i 1,... i k distintas vale que P(A i1... A ik ) = (n k)! n! Logo, pelo princípio de Inclusão-Exclusão, temos P( n i=1 A i) = n 1 ( ) ( ) n (n 2)! n (n 3)! n + + ( 1) n n! 3 n! n! 1 e 1, para n grande o suficiente.
10 Teorema 3. (Continuidade da Probabilidade) 1. Se A 1 A 2... é uma sequência de eventos crescentes de um espaço amostral Ω, então P( i=1 A i) = lim n P(A n ). 2. Se A 1 A 2... é uma sequência de eventos decrescente de um espaço amostral Ω, então P( i=1 A i) = lim n P(A n ). Prova: 1. Defina B 1 = A 1, B 2 = A 2 A c 1, B 3 = A 3 A c 1 A c 2,.... Note que (B i ) i 1 são disjuntos e i=1 A i = i=1 B i.. Do Axioma 2 segue que, P( i=1 A i) = P( i=1 B i) = i=1 P(B i ) = lim n n i=1 P(B i ) = lim n P(A n ). 2. Basta aplicar o item 1. a sequência crescente A c 1 A c 2...
11 Teorema 4. (Cota da União) Para eventos A 1,..., A n de um espaço amostral Ω, P( n i=1 A i) n P(A i ). Prova: Considere B 1 = A 1, B 2 = A 2 A c 1, B 3 = A 3 A c 1 A c 2,... e observe que (B i ) n i=1 são disjuntos tais que B i A i pra todo i. i=1 Teorema 5. (Desigualdade de Bonferroni) Para eventos A 1,..., A n de um espaço amostral Ω, P( n i=1 A i) 1 n i=1 P(A c i ). Prova: Aplique a cota da união para B 1 = A c 1,..., B n = A c n e tome o complementar.
Probabilidade. Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise
Probabilidade Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.2 Você reconhece algum desses experimentos? Alguns
COMBINATÓRIA ELEMENTAR BASEADO EM TOWNSEND (1987), CAP. 2 O QUE É COMBINATÓRIA
Matemática Discreta Capítulo 2 SUMÁRIO COMBINATÓRIA ELEMENTAR BASEADO EM TOWNSEND (1987), CAP. 2 Newton José Vieira 23 de setembro de 2007 Problemas Básicos de Combinatória As Regras da Soma e do Produto
REGRAS DE PROBABILIDADE
REGRAS DE PROBABILIDADE Lucas Santana da Cunha [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 24 de maio de 2017 Propriedades As probabilidades sempre se referem a
Sumário. 2 Índice Remissivo 12
i Sumário 1 Definições Básicas 1 1.1 Fundamentos de Probabilidade............................. 1 1.2 Noções de Probabilidade................................ 3 1.3 Espaços Amostrais Finitos...............................
REGRAS PARA CÁLCULO DE PROBABILIDADES
REGRAS PARA CÁLCULO DE PROBABILIDADES Prof. Dr. Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ 15 de abril de 2019 Londrina 1 / 17 As probabilidades sempre se referem a ocorrência de eventos
Experiências Aleatórias. Espaço de Resultados. Acontecimentos
Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiência Aleatória É uma experiência em que: não se sabe exactamente o resultado que se virá a observar; conhece-se o universo dos resultados
PROBABILIDADE. Há várias definições para probabilidade. As três mais utilizadas são: Clássica, Frequentista e Axiomática
2 PROBABILIDADE Há várias definições para probabilidade. As três mais utilizadas são: Clássica, Frequentista e Axiomática Definição 2.1 (Clássica): Seja A um evento e Ω o espaço amostral finito, então
Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciências Exatas. Probabilidades. Cristian Villegas
Probabilidades Cristian Villegas [email protected] Setembro de 2013 Apostila de Estatística (Cristian Villegas) 1 Introdução Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciências Exatas
Lista 2 - Introdução à Probabilidade e Estatística
Lista 2 - Introdução à Probabilidade e Estatística Modelo Probabilístico G, E F, e E F G. 1 Uma urna contém 3 bolas, uma vermelha, uma verde e uma azul. a) Considere o seguinte experimento. Retire uma
1 Definição Clássica de Probabilidade
Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 4 Professor: Carlos Sérgio UNIDADE 2 - Probabilidade: Definições (Notas de aula) 1 Definição Clássica
Estatística e Modelos Probabilísticos - COE241
Estatística e Modelos Probabilísticos - COE241 Aulas passadas Espaço Amostral Álgebra de Eventos Axiomas de Probabilidade Análise Aula de hoje Probabilidade Condicional Independência de Eventos Teorema
Probabilidade IV. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período
Probabilidade IV Ulisses U. dos Anjos Departamento de Estatística Universidade Federal da Paraíba Período 2014.2 Ulisses Umbelino (DE-UFPB) Probabilidade IV Período 2014.2 1 / 20 Sumário 1 Apresentação
Estatística e Modelos Probabilísticos - COE241
Estatística e Modelos Probabilísticos - COE241 Aulas passadas Espaço Amostral Álgebra de Eventos Axiomas de Probabilidade Análise Combinatória Aula de hoje Probabilidade Condicional Independência de Eventos
Introdução à Estatística
Introdução à Estatística Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Introdução a Probabilidade Existem dois tipos de experimentos:
Regras de probabilidades
Regras de probabilidades Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 16 de maio de 2018 Londrina 1 / 17 Propriedades As probabilidades sempre se referem a
Probabilidade e Estatística Probabilidade Condicional
Introdução Probabilidade e Estatística Probabilidade Condicional Em algumas situações, a probabilidade de ocorrência de um certo evento pode ser afetada se tivermos alguma informação sobre a ocorrência
Teoria da Probabilidade
Teoria da Probabilidade Luis Henrique Assumpção Lolis 14 de fevereiro de 2014 Luis Henrique Assumpção Lolis Teoria da Probabilidade 1 Conteúdo 1 O Experimento Aleatório 2 Espaço de amostras 3 Álgebra dos
3 NOÇÕES DE PROBABILIDADE
3 NOÇÕES DE PROILIDDE 3.1 Conjuntos Um conjunto pode ser considerado como uma coleção de objetos chamados elementos do conjunto. Em geral denota-se conjunto por letras maiúsculas,, C,... e a sua representação
EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais
EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Introdução Considere o experimento: Lançamento de uma moeda. Resultados
Segunda Lista de Exercícios/Solução do professor
Departamento de Ciência da Computação ICEx/UFMG Matemática Discreta 2 o semestre de 2013 Professor: Newton José Vieira www.dcc.ufmg.br/~nvieira Segunda Lista de Exercícios/Solução do professor Combinatória
Processos Estocásticos. Luiz Affonso Guedes
Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Variáveis Aleatórias Funções de Uma Variável Aleatória Funções de Várias Variáveis Aleatórias Momentos e Estatística Condicional Teorema
Probabilidades. Wagner H. Bonat Elias T. Krainski Fernando P. Mayer
Probabilidades Wagner H. Bonat Elias T. Krainski Fernando P. Mayer Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação 06/03/2018 WB, EK, FM ( LEG/DEST/UFPR
Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula 3 04/14 1 / 20
Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula 3 04/14 1 / 20 Alguns Conceitos Básicos de Contagem As ideias de contagem se relacionam com
P(A i ) (n 1) i=1. Sorteia-se um homem desse grupo. Qual é a probabilidade de que seja paulista recém-formado, mas não pediatra?
GET0089 Probabilidade I Aula de exercícios - 4/08/08 Profa. Ana Maria Lima de Farias. Prove, por indução, a desigualdade de Bonferroni. Se A, A,..., A n são eventos de um espaço de probabilidade (Ω, F,
Espaços finitos de probabilidade. Daniel Polacchini Octaviano
Espaços finitos de probabilidade Daniel Polacchini Octaviano SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP Data de Depósito: Assinatura: Daniel Polacchini Octaviano Espaços finitos de probabilidade Dissertação
Teoria das Probabilidades
Teoria das Prof. Eduardo Bezerra (CEFET/RJ) 23 de fevereiro de 2018 Eduardo Bezerra (CEFET/RJ) Teoria das 2018.1 1 / 54 Roteiro Experimento aleatório, espaço amostral, evento 1 Experimento aleatório, espaço
PROBABILIDADES PROBABILIDADE DE UM EVENTO EM UM ESPAÇO AMOSTRAL FINITO
PROBABILIDADES Probabilidade é um conceito filosófico e matemático que permite a quantificação da incerteza, permitindo que ela seja aferida, analisada e usada para a realização de previsões ou para a
Estatítica Descritiva e Exploratória
Gledson Luiz Picharski e Wanderson Rodrigo Rocha 3 de Abril de 2008 Estatística Descritiva e exploratória 1 Introdução à análise exploratória de dados 2 Análise exploratória de dados: Medidas-resumo 3
Probabilidades. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Probabilidades Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo 1 / 41 Noções Básicas Os métodos estatísticos para análise de dados estão associados
Tipos de Modelo. Exemplos. Modelo determinístico. Causas. Efeito. Exemplos. Modelo probabilístico. Causas. Efeito. Determinístico.
Tipos de Modelo Sistema Real Determinístico Prof. Lorí Viali, Dr. [email protected] http://www.mat.ufrgs.br/~viali/ Probabilístico Modelo determinístico Exemplos Gravitação F GM 1 M 2 /r 2 Causas Efeito
Séries Alternadas. São as séries cujos termos se alternam entre positivos e negativos. Por exemplo, ( 1) k+1 1 k =
Séries Alternadas São as séries cujos termos se alternam entre positivos e negativos. Por exemplo, ( 1) k+1 1 k = 1 1 2 + 1 3 1 4 + 1 5 Em geral escrevemos, para uma série alternada, ou ( 1) k+1 a k =
= 3 modos de escolher duas pessoas 2
01. x/(x+0) /3 ó x 40 Resposta: E 0. [E] RESOLUÇÃO REVENEM 3 De acordo com o gráfico, temos que o número total de filhos é dado por 71 + 6 + 3. Portanto, como sete mães tiveram um único filho, segue que
NOTAS DA AULA REVISÃO SOBRE FUNDAMENTOS DE PROBABILIDADE. Prof.: Idemauro Antonio Rodrigues de Lara
1 NOTAS DA AULA REVISÃO SOBRE FUNDAMENTOS DE PROBABILIDADE Prof.: Idemauro Antonio Rodrigues de Lara 2 Experimentos aleatórios Definição 1. Experimentos aleatórios são experimentos que quando executados
Técnicas de Contagem I II III IV V VI
Técnicas de Contagem Exemplo Para a Copa do Mundo 24 países são divididos em seis grupos, com 4 países cada um. Supondo que a escolha do grupo de cada país é feita ao acaso, calcular a probabilidade de
EST029 Cálculo de Probabilidade I Cap. 3: Probabilidade Condicional e Independência
EST029 Cálculo de Probabilidade I Cap. 3: Probabilidade Condicional e Independência Prof. Clécio da Silva Ferreira Depto Estatística - UFJF 1 Perguntas 1. Um novo aparelho para detectar um certo tipo de
GET00189 PROBABILIDADE I Probabilidade e Variáveis Aleatórias Unidimensionais
Universidade Federal Fluminense Instituto de Matemática e Estatística GET89 PROBABILIDADE I Probabilidade e Variáveis Aleatórias Unidimensionais Ana Maria Lima de Farias Jessica Quintanilha Kubrusly Mariana
AULA 5 - Independência, Combinatória e
AULA 5 - Independência, Combinatória e permutações Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Independência Um importante caso particular da probabilidade condicional surge quando a ocorrˆncia
Fernando de Pol Mayer. Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR)
Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative
PROBABILIDADE CONDICIONAL E TEOREMA DE BAYES
PROBABILIDADE CONDICIONAL E TEOREMA DE BAYES Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 08 de junho de 2016 Probabilidade Condicional
Se Ω é o espaço amostral de algum experimento aleatório, qualquer subconjunto A Ω será chamado de evento.
Capítulo 1 Probabilidade No nosso cotidiano, lidamos sempre com situações em que está presente a incerteza do resultado, embora, muitas vezes, os resultados possíveis sejam conhecidos. Por exemplo, se
Probabilidade Básica. Capítulo 1 EXPERIMENTOS ALEATÓRIOS ESPAÇOS AMOSTRAIS
Capítulo 1 Probabilidade Básica EXPERIMENTOS ALEATÓRIOS Todos estão familiarizados com a importância dos experimentos na ciência e na engenharia. A experimentação é útil porque podemos presumir que, se
2 a Lista de PE Solução
Universidade de Brasília Departamento de Estatística 2 a Lista de PE Solução 1. a Ω {(d 1, d 2, m : d 1, d 2 {1,..., 6}, m {C, K}}, onde C coroa e K cara. b Ω {0, 1, 2,...} c Ω {(c 1, c 2, c 3, c 4 : c
Estatística. Disciplina de Estatística 2011/2 Curso de Administração em Gestão Pública Profª. Ms. Valéria Espíndola Lessa
Estatística Disciplina de Estatística 20/2 Curso de Administração em Gestão Pública Profª. Ms. Valéria Espíndola Lessa Estatística Inferencial Estudos das Probabilidades (noção básica) Amostragens e Distribuição
Processos Estocásticos. Introdução. Probabilidade. Introdução. Espaço Amostral. Luiz Affonso Guedes. Fenômenos Determinísticos
Processos Estocásticos Luiz ffonso Guedes Sumário Probabilidade Variáveis leatórias Funções de Uma Variável leatória Funções de Várias Variáveis leatórias Momentos e Estatística Condicional Teorema do
TE802 Processos Estocásticos em Engenharia. Informação sobre a disciplina Notes. Processos Estocásticos em Engenharia Conteúdo Notes.
TE802 Processos Estocásticos em Engenharia Conceitos Básicos de Teoria de Probabilidade 7 de março de 2016 Informação sobre a disciplina Terças e Quintas feiras das 09:30 às 11:20 horas Professor: Evelio
TE802 Processos Estocásticos em Engenharia. Informação sobre a disciplina. TE802 Conceitos Básicos de Teoria de Probabilidade. Evelio M. G.
TE802 Processos Estocásticos em Engenharia Conceitos Básicos de Teoria de Probabilidade 23 de agosto de 2017 Informação sobre a disciplina Segundas e Quartas feiras das 09:30 às 11:20 horas Professor:
Prof.Letícia Garcia Polac. 26 de setembro de 2017
Bioestatística Prof.Letícia Garcia Polac Universidade Federal de Uberlândia UFU-MG 26 de setembro de 2017 Sumário 1 2 Probabilidade Condicional e Independência Introdução Neste capítulo serão abordados
Matemática A RESOLUÇÃO GRUPO I. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos º Ano de Escolaridade. 1.
Teste Intermédio Matemática A Versão Duração do Teste: 90 minutos 9..0.º Ano de Escolaridade Decreto-Lei n.º 7/00, de de março????????????? RESOLUÇÃO GRUPO I. Resposta (B) Tem-se, a 0+ b + 0,, pelo que
Matemática & Raciocínio Lógico
Matemática & Raciocínio Lógico para concursos Prof. Me. Jamur Silveira www.professorjamur.com.br facebook: Professor Jamur PROBABILIDADE No estudo das probabilidades estamos interessados em estudar o experimento
Probabilidade. Definição de Probabilidade Principais Teoremas Probabilidades dos Espaços Amostrais Espaços Amostrais Equiprováveis.
Probabilidade Definição de Probabilidade Principais Teoremas Probabilidades dos Espaços Amostrais Espaços Amostrais Equiprováveis Renata Souza Probabilidade É um conceito matemático que permite a quantificação
Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba
Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Probabilidade Condicional 08/16 1 / 56 Introdução É provável que você ganhe um aumento....
Material Teórico - Módulo Probabilidade Condicional. Probabilidade Condicional - Parte 1. Segundo Ano do Ensino Médio
Material Teórico - Módulo Probabilidade Condicional Probabilidade Condicional - Parte 1 Segundo Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 1 Probabilidade
PROBABILIDADE. Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti
Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti PROBABILIDADE Dizemos que a probabilidade é uma medida da quantidade de incerteza que existe em um determinado experimento.
Programa Combinatória Aritmética Racional MATEMÁTICA DISCRETA. Patrícia Ribeiro. Departamento de Matemática, ESTSetúbal 2018/ / 52
1 / 52 MATEMÁTICA DISCRETA Patrícia Ribeiro Departamento de Matemática, ESTSetúbal 2018/2019 2 / 52 Programa 1 Combinatória 2 Aritmética Racional 3 Grafos 3 / 52 Capítulo 1 Combinatória 4 / 52 Princípio
MA12 - Unidade 17 Probabilidade
MA12 - Unidade 17 Probabilidade Paulo Cezar Pinto Carvalho PROFMAT - SBM 17 de Maio de 2013 Teoria da Probabilidade Teoria da Probabilidade: modelo matemático para incerteza. Objeto de estudo: experimentos
Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Probabilidade I 07/16 1 / 23
I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Probabilidade I 07/16 1 / 23 Probabilidade As definições de probabilidade apresentadas anteriormente podem
Contagem e Combinatória Elementar
Contagem e Combinatória Elementar Matemática Discreta I Rodrigo Ribeiro Departamento de Ciências Exatas e Aplicadas Universidade de Federal de Ouro Preto 11 de janeiro de 2013 Motivação (I) Combinatória
Aula 6 Revisão de análise combinatória
Aula 6 Revisão de análise combinatória Conforme você verá na próxima aula, a definição clássica de probabilidade exige que saibamos contar o número de elementos de um conjunto. Em algumas situações, é
INTRODUÇÃO À PROBABILIDADE
INTRODUÇÃO À PROBABILIDADE Foto extraída em http://www.alea.pt Profª Maria Eliane Universidade Estadual de Santa Cruz USO DE PROBABILIDADES EM SITUAÇÕES DO COTIDIANO Escolhas pessoais Previsão do tempo
ELEMENTOS DE PROBABILIDADE. Prof. Paulo Rafael Bösing 25/11/2015
ELEMENTOS DE PROBABILIDADE Prof. Paulo Rafael Bösing 25/11/2015 ELEMENTOS DE PROBABILIDADE Def.: Um experimento é dito aleatório quando o seu resultado não for previsível antes de sua realização, ou seja,
Probabilidade em espaços discretos. Prof.: Joni Fusinato
Probabilidade em espaços discretos Prof.: Joni Fusinato [email protected] [email protected] Probabilidade em espaços discretos Definições de Probabilidade Experimento Espaço Amostral Evento Probabilidade
ESTATÍSTICA I LISTA DE EXERCÍCIOS 2 GABARITO
ESTATÍSTICA I LISTA DE EXERCÍCIOS 2 GABARITO 1. (Magalhães e Lima, pg 40) Para cada um dos casos abaixo, escreva o espaço amostral correspondente e conte seus elementos: (a) Uma moeda é lançada duas vezes
GET00189 PROBABILIDADE I Probabilidade e Variáveis Aleatórias Unidmensionais
Universidade Federal Fluminense Instituto de Matemática e Estatística GET89 PROBABILIDADE I Probabilidade e Variáveis Aleatórias Unidmensionais Ana Maria Lima de Farias Jessica Quintanilha Kubrusly Mariana
Probabilidade Condicional e Independência
Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-13 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise [email protected] 17/08/2011 Probabilidade
Seja A um evento de um espaço amostral Ω finito, cujos elementos são igualmente prováveis. Define-se a probabilidade do evento A como
Aula 7 Probabilidade Nesta aula você aprenderá a definição de probabilidade, estudará os axiomas e propriedades de uma lei de probabilidade e fará revisão dos seguintes conceitos de análise combinatória:
Probabilidade Aula 03
0303200 Probabilidade Aula 03 Magno T. M. Silva Escola Politécnica da USP Março de 2017 Sumário Teorema de Bayes 2.5 Independência Teorema de Bayes Sejam A 1,,A k uma partição de S (eventos disjuntos)
PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 2 07 e 08 março MOQ-12 Probabilidades e Int. a Processos Estocásticos
PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS Aula 2 07 e 08 março 2007 1 1. Probabilidade Condicional 2. Propriedades 3. Partições 4. Teorema de Probabilidade Total 5. Teorema de Bayes 6. Independencia
MA12 - Unidade 18 Probabilidade Condicional
MA12 - Unidade 18 Probabilidade Condicional Paulo Cezar Pinto Carvalho PROFMAT - SBM 4 de Abril de 2014 Um dado honesto é lançado duas vezes. a) Qual é a probabilidade de sair 1 no 1 o lançamento? b) Qual
Estatística Aplicada. Árvore de Decisão. Prof. Carlos Alberto Stechhahn PARTE II. Administração. p(a/b) = n(a B)/ n(b)
Estatística Aplicada Administração p(a/b) = n(a B)/ n(b) PARTE II Árvore de Decisão Prof. Carlos Alberto Stechhahn 2014 1. Probabilidade Condicional - Aplicações Considere que desejamos calcular a probabilidade
Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal.
Estatística Probabilidade Profa. Ivonete Melo de Carvalho Conteúdo Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Objetivos Utilizar a probabilidade como estimador
ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO
Área Científica Matemática Probabilidades e Estatística Curso Engenharia do Ambiente º Semestre º Ficha n.º: Probabilidades e Variáveis Aleatórias. Lançam-se ao acaso moedas. a) Escreva o espaço de resultados
Disciplina: Prof. a Dr. a Simone Daniela Sartorio de Medeiros. DTAiSeR-Ar
Disciplina: 221171 Probabilidade Condicional Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1 Probabilidade condicional Em muitas situações práticas, o fenômeno aleatório com o qual trabalhamos
Probabilidades- Teoria Elementar
Probabilidades- Teoria Elementar Experiência Aleatória Experiência aleatória é uma experiência em que: não se sabe exactamente o resultado que se virá a observar, mas conhece-se o universo dos resultados
Aula 10 Variáveis aleatórias discretas
AULA 0 Aula 0 Variáveis aleatórias discretas Nesta aula você aprenderá um conceito muito importante da teoria de probabilidade: o conceito de variável aleatória. Você verá que as variáveis aleatórias e
2 Conceitos Básicos de Probabilidade
CE003 1 1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento de técnicas estatísticas
Probabilidade. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Probabilidade Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Experimento aleatório Definição. Qualquer experimento cujo resultado não pode
Conceitos básicos de teoria da probabilidade
Conceitos básicos de teoria da probabilidade Experimento Aleatório: procedimento que, ao ser repetido sob as mesmas condições, pode fornecer resultados diferentes Exemplos:. Resultado no lançamento de
probabilidade PE-MEEC 1S 09/10 16 Capítulo 2 - de probabilidade 2.1 Experiências aleatórias. resultados. Acontecimentos probabilidade.
Capítulo 2 - Noções básicas de probabilidade 2.1 Experiências aleatórias. Espaço de resultados. Acontecimentos 2.2 Noção de probabilidade. Interpretações de Laplace, frequencista e subjectivista. Axiomas
3. Probabilidade P(A) =
7 3. Probabilidade Probabilidade é uma medida numérica da plausibilidade de que um evento ocorrerá. Assim, as probabilidades podem ser usadas como medidas do grau de incerteza e podem ser expressas de
AULA 08 Probabilidade
Cursinho Pré-Vestibular da UFSCar São Carlos Matemática Professora Elvira e Monitores Ana Carolina e Bruno AULA 08 Conceitos e assuntos envolvidos: Espaço amostral Evento Combinação de eventos Espaço Amostral
GET00189 PROBABILIDADE I Probabilidade e Variáveis Aleatórias Unidimensionais
Universidade Federal Fluminense Instituto de Matemática e Estatística GET89 PROBABILIDADE I Probabilidade e Variáveis Aleatórias Unidimensionais Ana Maria Lima de Farias Jessica Quintanilha Kubrusly Mariana
1 Probabilidade: Axiomas e Propriedades
1 Probabilidade: Axiomas e Propriedades 1.1 Definição Frequentista Considere um experimento aleatório que consiste no lançamento de um dado honesto. O espaço amostral desse experimento é Ω = {1, 2, 3,
Probabilidade e Estatística
Probabilidade e Estatística Aula 4 Probabilidade: Conceitos Básicos Leituras: Obrigatória: Devore, Capítulo 2 Complementar: Bertsekas e Tsitsiklis, Capítulo 1 Cap 4-1 Objetivos Nesta aula, aprenderemos:
