(Fonte: Jornal do Brasil - 02/07/95)
|
|
|
- Edite Freire Terra
- 7 Há anos
- Visualizações:
Transcrição
1 AUUL AL A As médias Na aula 29, você estudou um pouco de Estatística e aprendeu que esse ramo da Matemática trabalha com dados comparativos, pesquisas de opinião, pesquisas de mercado e projeções futuras. Os dados numéricos obtidos por intermédio das pesquisas são mais facilmente observados quando organizados numa tabela ou por representações gráficas. No entanto, se uma tabela contém um número muito grande de dados, essa observação pode se tornar confusa. Nesses casos, torna-se mais interessante observar os dados da tabela, determinando-se a média desses valores. Costumamos calcular várias médias na vida diária: a média de horas trabalhadas diariamente, a velocidade média, o salário médio de uma empresa, a produção mensal média de uma indústria, a despesa média mensal, a estatura média das pessoas, o consumo médio de gasolina etc. Ignorando as variações, a média representa situações regulares, ou seja, ignorando as variações, supõe que todos os valores de uma tabela são iguais. Introdução PRODUÇÃO DE VEÍCULOS Mês/Ano Nº de veículos Jan/ Fev/ Mar/ Abr/ (Fonte: Jornal do Brasil - 02/07/95) Na tabela ao lado, estão indicados o número de veículos produzidos no Brasil, no período de janeiro de 1995 a abril de No período entre janeiro de 1995 e abril de 1995, qual foi a produção média mensal de veículos? Nossa aula Para responder à pergunta, devemos calcular a média aritmética dos números apresentados na tabela. Essa média é calculada somando-se os valores dados e dividindo-se o resultado pelo número de valores. Temos, então: M a = O que significa dizer que a produção média mensal de veículos, no período entre janeiro e abril de 1995, foi de veículos? Pense um pouco. Significa que, se numa situação imaginária, a produção mensal de veículos fosse sempre a mesma, o número de veículos produzidos seria de por mês.
2 A U L A Velocidade média Quando dizemos que, numa viagem, um carro desenvolve uma velocidade média de 80 km/h, isso não significa que o carro andou com essa velocidade o tempo todo da viagem, o que é quase impossível acontecer. Caso, numa situação imaginária, o carro fizesse a viagem com uma mesma velocidade, gastando o mesmo tempo, essa velocidade seria de 80 km/h. Média de horas diárias de trabalho O número de horas diárias trabalhadas por um professor, durante uma semana, estão assinaladas na tabela. Vamos calcular a média diária de horas trabalhadas M a 5 = 8 horas 40 5 As horas que o professor trabalhou abaixo da média (2ª feira, 3ª feira e 6ª feira), no total, foram 5 horas; e as horas trabalhadas acima da média (4ª feira e 5ª feira), no total, também foram 5 horas. Verifique: DIAS DA SEMANA 2ª feira 3ª feira 4ª feira 5ª feira 6ª feira 2ª feira: 8-7 = 1 4ª feira:10-8 = 2 3ª feira: 8-6 = 2 5ª feira:11-8 = 3 6ª feira: 8-6 = 2. Total: 5 h Total: 5 h Nº DE HORAS DE TRABALHO Portanto, o número de horas trabalhadas a menos é igual ao número de horas trabalhadas a mais. Costumamos dizer que, em relação à média, os excessos compensam as faltas. Podemos visualizar bem essa situação, usando um gráfico de barras: 7h 6h 10 h 11 h 6h
3 Vejamos outro exemplo, ilustrando a idéia da média: O peso máximo permitido dentro de um elevador de prédio residencial é, em geral, de 420 kg ou 6 pessoas, o que dá uma média de 70 kg por pessoa (420 6 = 70). Supondo que 5 pessoas, cujos pesos estão na tabela abaixo, entraram num elevador, qual pode ser, no máximo, o peso de uma 6ª pessoa que deseja entrar no mesmo elevador? (Os pesos, na tabela, foram arredondados para facilitar os cálculos). A U L A PESSOAS 1ª 2ª 3ª 4ª 5ª 6ª PESOS 54 kg 68 kg 75 kg 58 kg 72 kg? Somando os pesos das cinco pessoas que estão no elevador, encontramos 372 kg. Como o máximo permitido é 420 kg, o peso da 6ª pessoa pode ser até: = 93 kg = = 5 excessos = = 2 faltas = Diferença: 30-7 = 23 Logo, a 6ª pessoa pode ter = 93 kg. Usamos nesse problema a idéia, vista anteriormente, de que em relação à média os excessos compensam as faltas. Tente resolver o problema de outra forma, calculando os excessos e as faltas em relação à média dos pesos. A média aritmética que já estudamos é chamada média aritmética simples. Vamos apresentar, agora, a média aritmética ponderada (ponderar = pesar), muito usada quando se torna necessário valorizar, dar um peso a um ou mais valores que entrarão no cálculo da média. Cálculo da média ponderada Numa escola, o critério para o cálculo da média de cada aluno, em cada disciplina, é o seguinte: 1º bimestre: peso 1 2º bimestre: peso 2 3º bimestre: peso 3 4º bimestre: peso 4
4 A U L A Para determinar a média aritmética ponderada de um aluno que obteve, em Matemática, notas 10,0, 8,5, 7,0 e 5,5 em cada bimestre, faz-se assim: multiplica-se cada nota pelo seu peso correspondente, somando-se depois todos os resultados obtidos nas multiplicações. Em seguida, divide-se essa soma pelo total dos pesos. M P 10,0 1 8,5 2 7, = 7,0 A média desse aluno, em Matemática, é 7,0. A média ponderada pode facilitar o cálculo de médias, quando aparecem uma ou mais parcelas repetidas várias vezes. Nesse caso, multiplicamos as parcelas pelo número de vezes em que elas aparecem. Veja o exemplo: Em uma empresa, 25 empregados ganham R$ 150,00, 10 ganham R$ 220,00 e 5 ganham R$ 280,00. Qual é o salário médio que essa empresa paga? M P = 183,75 O salário médio dos empregados dessa empresa é de R$ 183,75. Média geométrica Chamamos de média geométrica de dois números positivos a raiz quadrada do produto desses dois números. EXEMPLO A média geométrica dos números 2 e 8 é: M g = 4 Comparando esse resultado com a média aritmética dos mesmos números, e assinalando os dois resultados na reta numérica, temos: M a = 5 A média aritmética é o ponto médio entre 2 e 8 e a média geométrica é menor que a média aritmética.
5 Aplicação da média geométrica Na fase de perfuração de um túnel, os operários precisam colocar estacas para sustentação. Vamos calcular o comprimento de uma estaca, em determinado ponto. Assim: A U L A Vamos lembrar que todo ângulo inscrito numa semi-circunferência mede 90º. Logo, o triângulo formado na figura é um triângulo retângulo e a estaca é a altura desse triângulo. Sabemos, do estudo de relações métricas no triângulo retângulo, que: h 2 = a b ou h a b Podemos dizer, então, que o comprimento da estaca é a média geométrica das distâncias entre o ponto de apoio da estaca e as laterais do túnel. Exercício 1 Num concurso, constavam provas de Português, Matemática e Ciências. Português e Matemática tinham peso 2 e Ciências, peso 1. Calcule a média ponderada de um candidato que tirou as seguintes notas: Português: 6,0 Matemática: 7,0 Ciências: 5,0 Exercícios Exercício 2 Calcule a média das alturas de uma equipe de basquete, que estão indicadas na tabela abaixo: JOGADOR 1º 2º 3º 4º 5º ALTURA (m) 1,80 1,84 1,90 1,88 1,86
6 A U L A Exercício 3 Numa reta numérica, assinalamos o número que está localizado no meio da distância entre os números 1 e 6 2. Determine o número: 5 Exercício 4 A média aritmética de cinco números é 12. Quatro desses números são 6, 7, 8 e 11. Qual é o 5º número? Exercício 5 Um carro fez uma viagem de 480 km, em 8 horas. Qual foi sua velocidade média?
Seis pessoas pretendem entrar num elevador, onde há um cartaz dizendo que o peso máximo permitido é de 420 quilos.
Seis pessoas pretendem entrar num elevador, onde há um cartaz dizendo que o peso máximo permitido é de 420 quilos. Quanto deve ser, em média, o peso de cada pessoa que entrar no elevador? Uma pessoa que
NOÇÕES DE ESTATÍSTICA
NOÇÕES DE ESTATÍSTICA CERCADO DE ESTATÍSTICAS POR TODOS OS LADOS Você pode não saber definir Estatística, mas ao ouvir essa palavra logo pensa em números, tabelas e gráficos, não é? A estatística é um
Uma livraria vende a seguinte a quantidade de livros de literatura durante uma certa semana:
Medidas de Tendência Central. Depois de se fazer a coleta e a representação dos dados de uma pesquisa, é comum analisarmos as tendências que essa pesquisa revela. Assim, se a pesquisa envolve muitos dados,
Vamos calcular a média de cada empresa, somando receita de 2009, 2010 e 2011 e dividindo por 3.
MATEMÁTICA MARCÃO Vamos calcular a média de cada empresa, somando receita de 2009, 2010 e 2011 e dividindo por 3. Média de V = (200+220+240)/3 = 220 Média de W = (200+230+200)/3 = 210 Média de X = (250+210+215)/3
ESTATÍSTICA. Prof.º Mário Castro
ESTATÍSTICA Prof.º Mário Castro Estatística O que é: É a ciência que coleta, organiza e interpreta dados colhidos entre um grupo aleatório de pessoas. Divisão da estatística: Estatística geral Visa elaborar
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - o ciclo 006-1 a Chamada Proposta de resolução 1. 1.1. Como a Marta pesa 45 kg, e para evitar lesões na coluna vertebral, o peso de uma mochila e o do material que se transporta
Suponhamos que tenha sido realizado um. estudo que avalia dois novos veículos do mercado: o Copa e o Duna. As pesquisas levantaram os seguintes dados:
A U A UL LA Acelera Brasil! Suponhamos que tenha sido realizado um estudo que avalia dois novos veículos do mercado: o Copa e o Duna. As pesquisas levantaram os seguintes dados: VEÍCULO Velocidade máxima
Matéria: Matemática Concurso: Auditor Tributário ISS São José dos Campos 2018 Professor: Alex Lira
Concurso: Professor: Alex Lira Prova comentada: Auditor Tributário ISS SÃO JOSÉ DOS CAMPOS 2018 Matemática SUMÁRIO CONTEÚDO PROGRAMÁTICO PREVISTO NO EDITAL... 3 QUESTÕES COMENTADAS... 3 LISTA DE QUESTÕES...
Qual o raio de um círculo com 53,38 cm de perímetro? (considera = 3,14) Qual o diâmetro de um círculo com 37,68 cm de perímetro?
Qual o raio de um círculo com 53,38 cm de perímetro? (considera = 3,14) Qual o diâmetro de um círculo com 37,68 cm de perímetro? (considera = 3,14) Qual o perímetro de um círculo com 18 cm de raio? (considera
MATEMÁTICA ENEM 2009
MATEMÁTICA ENEM 2009 29 de agosto PROF. MARCELO CÓSER Essa apresentação pode ser baixada em http://www.marcelocoser.com.br. DESAFIO DO NOVO ENEM: Aliar habilidades/competências a conteúdos específicos
A equação da circunferência
A UA UL LA A equação da circunferência Introdução Nas duas últimas aulas você estudou a equação da reta. Nesta aula, veremos que uma circunferência desenhada no plano cartesiano também pode ser representada
ADA 1º BIMESTRE CICLO I MATEMÁTICA 9º ANO DO ENSINO FUNDAMENTAL 2018
ADA 1º BIMESTRE CICLO I MATEMÁTICA 9º ANO DO ENSINO FUNDAMENTAL 018 ITEM 1 DA ADA Observe potência a seguir: ( ) O resultado dessa potenciação é igual a (A) 8 1. (B) 1 8. (C) 1 81 81 (D) 1 Dada uma potência
Objetivos. Expressar o vértice da parábola em termos do discriminante e dos
MÓDULO 1 - AULA 17 Aula 17 Parábola - aplicações Objetivos Expressar o vértice da parábola em termos do discriminante e dos coeficientes da equação quadrática Expressar as raízes das equações quadráticas
Av. Higienópolis, 769 Sobre Loja Centro Londrina PR. CEP: Fones: / site:
ESTATÍSTICA Ao realizar uma pesquisa é aconselhável realizar um estudo estatístico dos dados apresentados. Através desse estudo podemos tirar as conclusões necessárias sobre o universo pesquisado. A estatística
AULÃO DE MATEMÁTICA
AULÃO DE MATEMÁTICA 2016-2 PREENCHIMENTO DA GRADE PROGRESSÃO ARITMÉTICA P.A Diz-se que Gauss estava na primeira série do primário quando desvendou uma Progressão Aritmética! O professor estava cansado
A origem de i ao quadrado igual a -1
A origem de i ao quadrado igual a -1 No estudo dos números complexos deparamo-nos com a seguinte igualdade: i 2 = 1. A justificativa para essa igualdade está geralmente associada à resolução de equações
Aula 1: Revisando o Conjunto dos Números Reais
Aula 1: Revisando o Conjunto dos Números Reais Caro aluno, nesta aula iremos retomar um importante assunto, já estudado em anos anteriores: o conjunto dos números reais. Frequentemente, encontramo-nos
Aula 5 - Produto Vetorial
Aula 5 - Produto Vetorial Antes de iniciar o conceito de produto vetorial, precisamos recordar como se calculam os determinantes. Mas o que é um Determinante? Determinante é uma função matricial que associa
rapazes presentes. Achar a porcentagem das moças que estudam nessa Universidade, em relação ao efetivo da Universidade.
01 Marcar a frase certa: (A) Todo número terminado em 0 é divisível por e por 5. (B) Todo número cuja soma de seus algarismos é 4 ou múltiplo de 4, é divisível por 4 (C) O produto de dois números é igual
CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 99 / 00 PROVA DE CIÊNCIAS EXATAS DA. 1 a é equivalente a a
13 1 a PARTE - MATEMÁTICA MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES À ESQUERDA Item 01. Se a R e a 0, a expressão: 1 a é equivalente a a a.( ) 1 b.( ) c.( ) a
Número: Dois. Lista de Exercícios Estatística
Professor: Assunto(s): Curso(s): William Costa Rodrigues Inferência ; Tipo de Variáveis, Tipos de Amostras; Tamanho da Amostra; Medidas de tendência central: Medidas de Variação Ciências Contábeis Q1.
Soluções das Questões de Matemática do Processo Seletivo de Admissão à Escola de Aprendizes- Marinheiros PSAEAM
Soluções das Questões de Matemática do Processo Seletivo de Admissão à Escola de Aprendizes- Marinheiros PSAEAM Questão 1 Concurso 010 Sabendo que 1 grosa é equivalente a 1 dúzias, é correto afirmar que
Para se adicionar (ou subtrair) frações com o mesmo denominador devemos somar (ou subtrair) os numeradores e conservar o denominador comum. = - %/!
Pontifícia Universidade Católica de Goiás Professor: Ms. Edson Vaz de Andrade Fundamentos de Matemática No estudo de Física frequentemente nos deparamos com a necessidade de realizar cálculos matemáticos
Teste Intermédio de MATEMÁTICA - 8o ano 29 de fevereiro de 2012
Teste Intermédio de MATEMÁTICA - 8o ano 29 de fevereiro de 2012 Proposta de resolução 1. Localizando os quatro números das opções na reta real, temos: 0,75 0,65 0,065 0,055 0.8 0.7 0.6 0.5 0.4 0.3 0.2
GABARITO DO CADERNO DE QUESTÕES
OLÍMPIADAS DE MATEMÁTICA DO OESTE CATARINENSE GABARITO DO CADERNO DE QUESTÕES NÍVEL 3 Ensino Médio Universidade Federal da Fronteira Sul Campus Chapecó 017 OLIMPÍADA REGIONAL DE MATEMÁTICA GABARITO: 1.
Formação Continuada em Matemática
Formação Continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 1º ano 2º Bimestre 2013 Tarefa 2 Plano de trabalho: Relações Trigonométricas no Triângulo Retângulo Cursista: Vania Cristina
BANCO DE QUESTÕES ÁLGEBRA 9º ANO ENSINO FUNDAMENTAL ===========================================================================================
PROFESSOR: MARCELO SOARES BANCO DE QUESTÕES ÁLGEBRA 9º ANO ENSINO FUNDAMENTAL =========================================================================================== 01- Um azulejista usou 2000 azulejos
2.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente:
EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 2012 1ª. SÉRIE 1.- A média das notas dos 21 alunos do 1º Ano do Ensino Médio, em Matemática é 5,80. Se a nota de Álvaro que é 1,80 for excluída, então qual
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - 3o ciclo 2016-2 a Fase Proposta de resolução Caderno 1 1. Calculando a diferença entre 3 1 e cada uma das opções apresentadas, arredondada às centésimas, temos que: 3 1 2,2
...l.. = 1 x 50 = 50 = 50DA 2 2 x
Numa banca de jornal, observa-se que 30 pessoas compram o jornal A, 48 compram o jornal B, e 72 compram outros jornais. Você sabe dizer: a porcentagem de pessoas que compram o jornal A? a porcentagem de
Processo Seletivo Estendido 2016 LISTA FUNÇÕES - 2
Processo Seletivo Estendido 06 LISTA FUNÇÕES - Professor: Fernando de Ávila Silva Departamento de Matemática - UFPR Esta lista foi inicialmente elaborada pelo professor Alexandre Trovon UFPR) A presente
Dos vários tipos de médias utilizados, o mais simples e o mais comum é a média aritmética simples = = 1300
O ESTUDO DAS MÉDIAS 1 Média Aritmética Em uma família com 4 integrantes, o primeiro consome 1200 ml de leite por dia, o segundo 1400 ml, o terceiro 1000 ml e o quarto integrante consome 1600 ml de leite
Nem início, nem fim!
Reforço escolar M ate mática Nem início, nem fim! Dinâmica 7 3ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática 3ª do Ensino Médio Geométrico. Geometria Analítica. Aluno Primeira Etapa Compartilhar
SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ CONCURSO PARA PROFESSOR EBTT/EA/UFPA EDITAL 24/2018 TEMA: LÍNGUA MATEMÁTICA
SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ CONCURSO PARA PROFESSOR EBTT/EA/UFPA EDITAL 24/2018 TEMA: LÍNGUA MATEMÁTICA 1. Em se falando de futebol paraense, os times Remo e Paysandu deveriam
ROTEIRO DE RECUPERAÇÃO 4 - MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO 4 - MATEMÁTICA Nome: Nº 8º Ano Data: / / Professores: Diego, Marcello e Yuri Nota: (Valor 1,0) 4º Bimestre 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela
Desenho e Projeto de Tubulação Industrial Nível II
Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 02 EQUAÇÕES Pense no seguinte problema: Uma mulher de 25 anos é casada com um homem 5 anos mais velho que ela. Qual é a soma das idades
PROPOSTA DIDÁTICA. A atividade será divididas em etapas. Cada etapa e o tempo previsto estão descritos a seguir.
PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: Tanara da Silva Dicetti 1.2 Público alvo: 6 e 7 anos 1.3 Duração: 2 Horas 1.4 Conteúdo desenvolvido: Áreas de figuras planas 2. Objetivo(s)
CAPÍTULO 4 DESCRIÇÃO E EXPLORAÇÃO DOS DADOS 2ª parte
CAPÍTULO 4 DESCRIÇÃO E EXPLORAÇÃO DOS DADOS 2ª parte 4.3 Medidas de posição 4.4 Medidas de dispersão 4.5 Separatrizes Prof. franke 2 Vimos que a informação contida num conjunto de dados pode ser resumida
MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução
MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem
Conteúdos Ideias-Chave Objectivos específicos. múltiplo de outro número, este é divisor do primeiro.
Capítulo 1 Números Naturais Múltiplos e Divisores Se um número natural é múltiplo de outro número, este é divisor do primeiro. Números primos e números compostos Decomposição de um número em factores primos
COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No.
COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No. Trabalho de Recuperação Data: / 12/2016 Valor: Orientações: -Responder manuscrito; -Cópias de colegas, entrega
...l.. = 1 x 50 = 50 = 50DA 2 2 x
Acesse: http://fuvestibular.com.br/ Numa banca de jornal, observa-se que 30 pessoas compram o jornal A, 48 compram o jornal B, e 72 compram outros jornais. Você sabe dizer: a porcentagem de pessoas que
1. Posição de retas 11 Construindo retas paralelas com régua e compasso 13
Sumário CAPÍTULO 1 Construindo retas e ângulos 1. Posição de retas 11 Construindo retas paralelas com régua e compasso 13 2. Partes da reta 14 Construindo segmentos congruentes com régua e compasso 15
x 1. Em cada uma das figuras, eles são apenas os primeiros elementos dos
0) Nas figuras a seguir, a curva é o gráfico da função x retângulos hachurados para infinitos que possuem as mesmas características. f x. Observe atentamente o que ocorre com os x. Em cada uma das figuras,
A adição de números naturais é associativa, ou seja, resultado da soma de três números naturais independe da ordem da soma dos números.
. Números Naturais Para qualquer cidadão, contar faz parte da rotina da vida. Por exemplo: contamos dinheiro, contamos pessoas, contamos os itens para saber o que precisamos comprar, contamos objetos em
ROTEIRO DE RECUPERAÇÃO 3 - MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO 3 - MATEMÁTICA Nome: Nº 1ª Série Data: / / Professores: Diego, Luciano e Sami Nota: (Valor 1,0) 3º bimestre 3º BIMESTRE 1. Apresentação: Prezado aluno, A estrutura da recuperação
SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA - ENSINO MÉDIO
SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA - ENSINO MÉDIO Título do Podcast Área Segmento Duração Progressão Aritmética Matemática Ensino médio 5min03seg Habilidades: H15. Relacionar padrões e regularidades
Soluções do Nível 3 (Ensino Médio) 1 a Fase
Soluções do Nível (Ensino Médio) a Fase. (alternativa C) Como A, B e C são pontos médios, os quatro triângulos rotulados com I na figura ao lado são congruentes, bem como os dois indicados por II. Logo
Matemática B Semi-Extensivo V. 3
GRITO Matemática Semi-Etensivo V. (, e (, M, Então: M = M = M = M = Eercícios D Substituindo em I, temos: = =. = = Então, = ( = 8 M(, (, (, M = M = 8 M = M = D Sabendo que o eio é o da abcissa e que o
Prova de Aferição de MATEMÁTICA - 3o ciclo 2002
Prova de Aferição de MATEMÁTICA - 3o ciclo 2002 Proposta de resolução 1. Como a Rita obteve a segunda melhor marca, percorreu uma distância inferior ao João (que fez a melhor marca) e superior à Leonor
Exercícios de Aplicação do Teorema de Pitágoras
Exercícios de Aplicação do Teorema de Pitágoras Prof. a : Patrícia Caldana 1. Um terreno triangular tem frentes de 12 m e 16 m em duas ruas que formam um ângulo de 90. Quanto mede o terceiro lado desse
GABARITO - ANO 2018 OBSERVAÇÃO:
GABARITO - ANO 018 OBSERVAÇÃO: Embora as soluções neste gabarito se apresentem sob a forma de um texto explicativo, gostaríamos de salientar que para efeito de contagem dos pontos adquiridos, na avaliação
Resumo: Nestas notas faremos um breve estudo sobre as principais propriedades. mínimos, gráficos e algumas aplicações simples.
Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Equação quadrática Prof. Doherty
Algoritmos e Lógica de Programação. Prof. Marcos Antonio Estremoe. 1 - Faça um programa que imprima a frase: Bem Vindo à Engenharia Firb 2014.
Algoritmos e Lógica de Programação Prof. Marcos Antonio Estremoe 1 - Faça um programa que imprima a frase: Bem Vindo à Engenharia Firb 2014. 2 - Faça um programa que imprima a palavra Bem Vindo à Engenharia
TECNÓLOGO EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS
TECNÓLOGO EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS PROGRAMAÇÃO DE COMPUTADORES I Nivelamento: ª Etapa As descrições dos conteúdos e os exercícios propostos neste documento foram retirados (em alguns casos
ÁREA. Unidades de medida de área. Prof. Patricia Caldana
ÁREA Prof. Patricia Caldana Área ou superfície de uma figura plana tem a ver com o conceito (primitivo) de sua extensão (bidimensional). Usamos a área do quadrado de lado unitário como referência de unidade
REVISÃO DOS CONTEÚDOS
REVISÃO DOS CONTEÚDOS Prof. Patricia Caldana Seno, Cosseno e Tangente de um arco Dado um arco trigonométrico AP de medida α, chamam-se cosseno e seno de α a abscissa e a ordenada do ponto P, respetivamente.
FÍSICA A Aula 12 Os movimentos variáveis.
FÍSICA A Aula 12 Os movimentos variáveis. TIPOS DE MOVIMENTO O único tipo de movimento estudado até agora foi o movimento uniforme, em que temos velocidade constante durante todo percurso ou todo intervalo
Cirlei Xavier Bacharel e Mestre em Física pela Universidade Federal da Bahia
Álvaro Andrini & Maria Vasconcellos SOLUÇÃO PRATICANDO MATEMÁTICA - 9º ANO Bacharel e Mestre em Física pela Universidade Federal da Bahia Maracás Bahia Março de 2017 Sumário 1 Potenciação e radiciação
Resumo: Nestas notas faremos um breve estudo sobre as principais propriedades. mínimos, gráficos e algumas aplicações simples.
Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Equação quadrática Prof. Doherty
3ª série EM - Lista de Questões para a EXAME FINAL - MATEMÁTICA
3ª série EM - Lista de Questões para a EXAME FINAL - MATEMÁTICA 01. Um topógrafo pretende calcular o comprimento da ponte OD que passa sobre o rio mostrado na figura abaio. Para isto, toma como referência
OPEMAT. Olimpíada Pernambucana de Matemática
OPEMAT Olimpíada Pernambucana de Matemática - 206 Nível. O ano de 206 está acabando, vamos ver se você conhece bem esse número. Para isso, julgue os itens a seguir: (V) (F) A maior potência de 2 que divide
Datas de Avaliações 2016
ROTEIRO DE ESTUDOS MATEMÁTICA (6ºB, 7ºA, 8ºA e 9ºA) SÉRIE 6º ANO B Conteúdo - Sucessor e Antecessor; - Representação de Conjuntos e as relações entre eles: pertinência e inclusão ( ). - Estudo da Geometria:
araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Potências Unidade 2 Radiciação
Unidade 1 Potências 1. Recordando potências Calcular potências com expoente natural. Calcular potências com expoente inteiro negativo. Conhecer e aplicar em expressões as propriedades de potências com
3 ano E.M. Professores Cleber Assis e Tiago Miranda
Cônicas Hipérbole ano E.M. Professores Cleber Assis e Tiago Miranda Cônicas Hipérbole b) (y 1)2 (x + )2 1 Exercícios Introdutórios Exercício 1. de equação a) (1, 2). O ponto que representa o centro da
ESCOLA ADVENTISTA SANTA EFIGÊNIA EDUCAÇÃO INFANTIL E ENSINO FUNDAMENTAL
ESCOLA ADVENTISTA SANTA EFIGÊNIA EDUCAÇÃO INFANTIL E ENSINO FUNDAMENTAL Rua Prof Guilherme Butler, 792 - Barreirinha - CEP 82.700-000 - Curitiba/PR Fone: (41) 3053-8636 - e-mail: [email protected]
Teste Intermédio de MATEMÁTICA - 8o ano 11 de maio de 2011
Teste Intermédio de MATEMÁTICA - 8o ano de maio de 20 Proposta de resolução. Analisando exclusivamente os votos, da população de negros, nos três candidatos, podemos verificar que o candidato Q foi mais
Com este material esperamos que você trabalhe, de acordo com a Matriz de Avaliação, o desenvolvimento das seguintes habilidades:
Caro monitor, Preparamos este material para que possamos auxiliá-lo no desenvolvimento das aulas 4, 43, 45, 46 e 47. Objetivamos que o uso deste material possa elucidar os conteúdos trabalhados nas referidas
Número: Dois. Lista de Exercícios Estatística/Introdução a Estatística
/Introdução a Professor: Assunto(s): Curso(s): William Costa Rodrigues Inferência ; Tipo de Variáveis, Tipos de Amostras; Tamanho da Amostra; Medidas de tendência central: Medidas de Variação. Engenharia
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - 3o ciclo 007 - a Chamada Proposta de resolução. Como a planta está desenhada à escala de :0 e o Miguel está sentado a 3 m do televisor, ou seja 300 cm, então a distância, em
Plano de Recuperação Semestral EF2
Série/Ano: 9º ANO MATEMÁTICA Objetivo: Proporcionar ao aluno a oportunidade de rever os conteúdos trabalhados durante o semestre nos quais apresentou dificuldade e que servirão como pré-requisitos para
SEGUNDA PROVA. Segunda prova: 11/maio, sábado, 08:00 ou 10:00 horas. Capítulo 4: Vetores, produto escalar, produto vetorial.
SEGUNDA PROVA Segunda prova: 11/maio, sábado, 08:00 ou 10:00 horas Capítulo 4: Vetores, produto escalar, produto vetorial. Capítulo 5: Retas e Planos no espaço. Ângulos e distâncias. Plano cartesiano e
Depois passamos para a Tabela de Frequências, separar os valores da variável e depois numa outra coluna, colocar sua frequência absoluta, assim:
Aula 2 5Tabelas de frequência Para atingir os objetivos de uma pesquisa, é preciso que os dados estejam organizados de forma a facilitar o entendimento do leitor A primeira etapa após o levantamento dos
CADERNO DE EXERCÍCIOS 2D
CADERNO DE EXERCÍCIOS 2D Ensino Fundamental Ciências da Natureza I Questão Conteúdo Habilidade da Matriz da EJA/FB 1 Teorema de Pitágoras H31 2 Equações do 1º grau H38 H39 3 Triângulos H24 4 Média aritmética
LISTA DE EXERCÍCIOS MATEMÁTICA
LISTA DE EXERCÍCIOS MATEMÁTICA P2 4º BIMESTRE 7º ANO FUNDAMENTAL II Aluno (a): Turno: Turma: Unidade Data: / /2016 HABILIDADES E COMPETÊNCIAS Compreender os cálculos de regra de três simples e composta
DESAFIO FINAL TODOS OS NÍVEIS
DESAFIO FINAL TODOS OS NÍVEIS 01. (Nível 1) No planeta Zilotaskabatu, as unidades de medidas são bem diferentes das que conhecemos na Terra. A medida padrão de comprimento é o Zimetro e um de seus submúltiplos
Exercícios: comandos condicionais
Universidade Federal de Uberlândia - UFU Faculdade de Computação - FACOM Lista de exercícios de programação em linguagem C Exercícios: comandos condicionais 1. Faça um programa que receba dois números
Bem-vindos (as), estudantes! Vamos recordar... e conhecer um novo conjunto numérico... Prof. Mara
Bem-vindos (as), estudantes! Vamos recordar... e conhecer um novo conjunto numérico... Prof. Mara Recordando... Números Naturais Você já ouviu falar dos Números Naturais? Eles são utilizados a todo o momento
P (A) n(a) AB tra. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares.
NOTAÇÕES N = f; ; 3; : : :g i : unidade imaginária: i = R : conjunto dos números reais jzj : módulo do número z C C : conjunto dos números complexos Re z : parte real do número z C [a; b] = fx R; a x bg
A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos Â
A UA UL LA A lei dos senos Introdução Na Aula 4 vimos que a Lei dos co-senos é uma importante ferramenta matemática para o cálculo de medidas de lados e ângulos de triângulos quaisquer, isto é, de triângulos
CONCURSO DE ADMISSÃO 1º ANO/ENS. MÉDIO MATEMÁTICA 2011/12 PAG. 02 PROVA DE MATEMÁTICA
CONCURSO DE ADMISSÃO 1º ANO/ENS. MÉDIO MATEMÁTICA 2011/12 PAG. 02 PROVA DE MATEMÁTICA Marque no cartão-resposta anexo a única opção correta correspondente a cada questão. 1. Estamos no mês de outubro.
COLÉGIO SÃO JOÃO GUALBERTO
RESOLUÇÃO COMENTADA Prof.: Pedro Bittencourt Série: 3ª Turma: A Disciplina: Física Nota: Atividade: Avaliação mensal 1º bimestre Valor da Atividade: 10 Instruções Esta avaliação é individual e sem consulta.
GAAL /1 - Simulado - 3 exercícios variados de retas e planos
GAAL - 201/1 - Simulado - exercícios variados de retas e planos SOLUÇÕES Exercício 1: Considere as retas m e n de equações paramétricas m : (x, y, z) = (1, 1, 0) + t( 2, 1, ) (a) Mostre que m e n são retas
Exercícios sobre Inequações. 7 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Equações e Inequações do Primeiro Grau Eercícios sobre Inequações 7 ano E.F. Professores Cleber Assis e Tiago Miranda Equações e Inequações do Primeiro Grau Eercícios sobre Inequações 1 Eercícios
6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES
47 6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES Na figura abaixo, seja a reta r e o ponto F de um determinado plano, tal que F não pertence a r. Consideremos as seguintes questões: Podemos obter,
Formação Continuada Nova Eja. Plano de Ação II INTRODUÇÃO
Nome: Armando dos Anjos Fernandes Formação Continuada Nova Eja Plano de Ação II Regional: Metro VI Tutor: Deivis de Oliveira Alves Este plano de ação contemplará as unidades 29 e 30. Unidade 29 I - Matrizes
MATEMÁTICA - 3o ciclo Números Reais - Dízimas (8 o ano) Propostas de resolução
MATEMÁTICA - 3o ciclo Números Reais - Dízimas (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios. Como o ponto O é a origem da reta e a abcissa do ponto A é 5, então OA
COLÉGIO ARQUIDIOCESANO S. CORAÇÃO DE JESUS
QUESTÃO 01 Um triângulo ABC está inscrito numa semicircunferência de centro O. Como mostra o desenho abaixo. Sabe-se que a medida do segmento AB é de 12 cm. QUESTÃO 04 Numa cidade a conta de telefone é
2. Conteúdos Para ajudar em sua organização dos estudos, vale lembrar quais foram os conteúdos trabalhados neste bimestre:
ROTEIRO DE RECUPERAÇÃO 2 - MATEMÁTICA Nome: Nº 8ºAno Data: / / Professores: Yuri, Marcello e Décio Nota: (Valor 1,0) 2º Bimestre 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela
CADERNO DE EXERCÍCIOS 1B
CADERNO DE EXERCÍCIOS B Ensino Médio Matemática Questão Conteúdo Habilidade da Matriz da EJA/FB Equação do º grau H7 H8 2 Teorema de Pitágoras H3 3 Área de figuras planas H3 Proporcionalidade H3 Caderno
Numa banca de jornal, observa-se que 30 pessoas compra o jornal A, 48 compram o jornal B, e 72 compram outros jornais.
MATEMÁTICA BÁSICA 6 PORCENTAGEM Numa banca de jornal, observa-se que 30 pessoas compra o jornal A, 48 compram o jornal B, e 72 compram outros jornais. Você sabe dizer: # a porcentagem de pessoas que compram
F1: O QUE É MAIS IMPORTANTE, VELOCIDADE OU ACELERAÇÃO?
F1: O QUE É MAIS IMPORTANTE, VELOCIDADE OU ACELERAÇÃO? UOL Esporte (by Gustau Nacarino) Largada do Grande Prêmio da Espanha (9/maio/2010) Estava vendo o Grande Prêmio de F1 da Espanha na TV e lembrei-me
2) Dados os valores a seguir, , determinar a moda dos mesmos.
1) O gráfico abaixo, apresenta dados referentes a faltas por dia em uma classe, durante um certo período de tempo. 1 De acordo com o gráfico, no período observado, ocorreram: (A) 15 faltas em 8 dias. (B)
Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015
Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-015 1. (Ufsj 013) Um triângulo isósceles inscrito em um círculo de raio igual a 8 cm possui um lado que mede
Capítulo 1. Conjuntos e Relações. 1.1 Noção intuitiva de conjuntos. Notação dos conjuntos
Conjuntos e Relações Capítulo Neste capítulo você deverá: Identificar e escrever os tipos de conjuntos, tais como, conjunto vazio, unitário, finito, infinito, os conjuntos numéricos, a reta numérica e
