Sistemas termodinâmicos

Tamanho: px
Começar a partir da página:

Download "Sistemas termodinâmicos"

Transcrição

1 Sistemas termodinâmicos Transferências de energia sob a forma de calor Prof. Luís C. Perna MECANISMOS DE TRANSFERÊNCIA DE CALOR Entre sistemas a temperaturas diferentes a energia transfere-se do sistema com temperatura mais elevada para o sistema a temperatura mais baixa. A transferência de energia pode ser feita por radiação, condução e convecção. 1

2 RADIAÇÃO A radiação é um dos modos de transferência de energia sob a forma de calor. Neste mecanismo a energia encontra-se sob a forma de ondas electromagnéticas e não necessita de um meio material (suporte) para se propagar. A energia solar é transferida do Sol até ao nosso planeta por radiação. CONDUÇÃO A transferência de calor por condução verifica-se, principalmente nos sólidos. Neste mecanismo não há transporte de matéria, mas apenas interacção entre partículas. Esta interacção dá-se por colisões, partícula a partícula, em que as de maior energia cinética cedem parte dessa energia às partículas de menor energia. Esta transmissão é comunicada às partículas vizinhas e propaga-se ao longo de todo o sólido ou entre sólidos que estejam em contacto directo. 2

3 CONDUÇÃO CONVECÇÃO A convecção é um processo pelo qual o calor é transferido de um local para outro de um fluido. Pode ocorrer como resultado de diferenças de temperatura que originam um movimento de partículas no seio dos fluidos (líquidos e gases) ou por aplicação de uma força motriz externa. O aquecimento dos fluidos provoca um aumento da energia cinética das suas partículas, o que origina uma expansão do fluido e uma consequente diminuição da densidade. Assim, o fluido menos denso (quente) irá subir, obrigando o fluido mais denso (frio) a descer, dando origem a correntes de convecção. 3

4 CONVECÇÃO FONTE, RECEPTOR E TRANSFERÊNCIA DE ENERGIA O sistema em estudo é a água a ser aquecida: - Fonte de energia álcool em combustão - Receptor de energia água As fontes de energia fornecem energia aos receptores de energia. 4

5 FONTE, RECEPTOR E TRANSFERÊNCIA DE ENERGIA Sempre que a energia passa de um sistema para outro diz-se que ocorre uma transferência de energia: Fonte Receptor Aqui a energia passou do álcool em combustão para a água. FONTE, RECEPTOR E TRANSFERÊNCIA DE ENERGIA - Fonte de energia pilha - Receptor de energia lâmpada 5

6 SERÁ QUE ALGUMA ENERGIA SE PERDE AO SER TRANSFERIDA DE UM SISTEMA PARA OUTRO? Num diagrama de energia devemos representar a: Energia útil que é a energia que durante a transferência é realmente utilizada. Energia dissipada que é a energia que durante a transferência é perdida. Energia útil Energia fornecida Sistema Energia dissipada BALANÇO ENERGÉTICO NUMA LÂMPADA INCANDESCENTE Apenas 5% da energia é transformada em energia luminosa a maior parte é dissipada por, Efeito de Joule, no filamento que pode atingir temperaturas superiores a 2000ºC. 6

7 BALANÇO ENERGÉTICO NUMA LÂMPADA FLUORESCENTE Numa lâmpada fluorescente compacta, que tenha um rendimento de 20%, por cada 1000 J de energia eléctrica que entra na lâmpada, 200 J saem na forma de energia luminosa e 800 J são dissipados para o ambiente na forma de calor. BALANÇO ENERGÉTICO NUMA CENTRAL TÉRMICA 7

8 LEI DA CONSERVAÇÃO DA ENERGIA Podemos concluir que numa transferência de energia: Esta expressão traduz a Lei da Conservação da Energia: a quantidade de energia que temos no final de um processo é sempre igual à quantidade de energia que temos no início desse mesmo processo. Ou seja, a energia não se cria nem se destrói; apenas se transfere. A energia total do Universo é sempre constante. LEI DA CONSERVAÇÃO DA ENERGIA 8

9 EXERCÍCIO 1 Completa o diagrama de energia para uma lâmpada de incandescência em funcionamento: Energia eléctrica Energia dissipada sob a forma de calor Energia radiante Se fornecermos ao sistema 50 J de energia e se a lâmpada tiver uma perda de 47,5 J, qual será o valor da energia útil? EXERCÍCIO 2 9

10 A CALORIA A caloria não é uma unidade SI de energia. Define-se como sendo a energia necessária para elevar a temperatura de 1 g de água de 14,5 ºC para 15,5 ºC 1 cal Temperatura aumenta 1 C De 14,5 ºC para 15,5 ºC 1 cal = 4,186 J TEMPERATURA E CALOR Temperatura e calor são duas grandezas iguais ou diferentes? Temperatura Grandeza física escalar que mede o grau de agitação molecular de um corpo. No SI é medida em graus Kelvin, K. T E C Calor Forma de transferência de energia entre os corpos de maior para os de menor temperatura. No SI é medido em Joule, J. 10

11 MATERIAIS CONDUTORES E ISOLADORES DO CALOR Existem materiais que recebem ou cedem energia, como calor, mais rapidamente do que outros. Vejamos o exemplo de um tacho cujas asas não são metálicas... Assim, os materiais podem distinguir-se em: bons condutores e maus condutores ou isoladores de calor. MATERIAIS CONDUTORES E ISOLADORES DO CALOR Os condutores recebem e cedem energia com maior rapidez e os maus condutores ou isoladores fazem-no de um modo mais lento. Os metais e ligas metálicas são os melhores condutores de calor e os sólidos não metálicos (por exemplo, a madeira e o plástico), os líquidos e os gases são maus condutores de calor. 11

12 CONDUTIVIDADE TÉRMICA DE UM METAL Para quantificar a capacidade que os materiais têm de conduzir energia sob a forma de calor surgiu uma grandeza física a condutividade térmica ou condutibilidade térmica, K. A condutividade térmica traduz a rapidez com que um determinado material conduz o calor, por unidade de tempo. CONDUTIVIDADE TÉRMICA DO COBRE 12

13 CONDUTIVIDADE TÉRMICA DE OUTROS MATERIAIS CONDUTIVIDADE TÉRMICA DE CONDUTORES E ISOLADORES 13

14 OS MATERIAIS E A CONDUTIVIDADE TÉRMICA Nos países quentes é importante reduzir o fluxo de calor do exterior para o interior da habitação, enquanto nos países frios é necessário evitar as perdas de calor do interior para o exterior. É aqui que, mais uma vez, os conhecimentos científicos da Física podem ser usados em nosso benefício e na melhoria das nossas condições de vida e conforto. OS MATERIAIS E A CONDUTIVIDADE TÉRMICA Com o recurso aos valores da condutividade térmica de diversos materiais, é possível escolher os que melhor isolam as habitações. Esses materiais são os que possuem uma condutividade térmica baixa, de modo a minimizar as perdas de energia numa habitação. Assim, por exemplo, deve usar-se madeira e cortiça para o revestimento interior das paredes e lã de vidro para o revestimento do telhado. A presença de paredes duplas, vidros duplos e janelas calafetadas é, também, uma boa forma de isolamento das habitações. 14

15 PROBLEMA A temperatura do tapete da figura é maior ou menor do que a temperatura do azulejo onde se encontra o tapete? Justifique a resposta. Resposta: É igual. O material de que é feito o tapete tem uma condutividade térmica menor do que o material que é feito o azulejo. Passa energia dos pés mais rapidamente para o azulejo do que para o tapete dando a sensação de mais frio. QUANTIDADE DE ENERGIA TRANSFERIDA COMO CALOR A quantidade de energia térmica, Q, recebida ou cedida por um corpo para exclusivamente variar sua temperatura, q, é dada por. c Q = m c q = Capacidade térmica mássica A capacidade térmica mássica duma substância, traduz o facto de substâncias diferentes terem diferentes capacidades para receber ou ceder energia na forma de calor. Unidade (S.I) J/kg K (prática) cal/g C 15

16 CAPACIDADE TÉRMICA Capacidade térmica de um corpo é a quantidade de energia que é necessário fornecer ao corpo como calor para que a sua temperatura se eleve de 1 K. C = m c C Capacidade térmica m massa do corpo c capacidade térmica mássica Q = C q Q = m c q Unidade (S.I) J/K (prática) cal/ C DIFERENÇA ENTRE CAPACIDADE TÉRMICA MÁSSICA, C, E CAPACIDADE TÉRMICA, C A diferença é que a capacidade térmica mássica, c, refere-se sempre a uma substância; a capacidade térmica, C, refere-se a um corpo. Q = C q Quanto maior for a capacidade térmica de um corpo menor é a sua variação de temperatura para a mesma energia transferida. 16

17 CAPACIDADE TÉRMICA MÁSSICA DE ALGUNS MATERIAIS EXERCÍCIO 3 A capacidade térmica mássica do ferro é de 443 J.kg -1.K -1. a) O que significa dizer que a capacidade térmica mássica do ferro é de 443 J.kg -1.K -1. b) Determine a quantidade de energia sob a forma de calor que é necessária transferir para 0,5 kg de ferro para que este eleve a sua temperatura 10,0 C. Resposta: a) É necessário fornecer 443 J de energia à massa de 1 kg de ferro para que a sua temperatura de eleve de 1º K. b) A diferença de temperatura em graus Celsius é igual à diferença em kelvin. Sendo c = Q/m. q <=> Q = c.m. q <=> Q = 443 x 0,5 x 10 <=> Q = 2215 J. É necessário fornecer 2215 J de energia para que 0,5 kg de ferro aumente a sua temperatura 10,0 C. 17

18 EXERCÍCIO 4 Na figura está representado o aquecimento de 100 g água contida num gobelé, à temperatura inicial de 20 C. A referida água foi aquecida com uma resistência eléctrica de imersão, tal como se pode ver na figura ao lado. C água = 4186 J.kg -1.K -1 a) Qual a energia que foi recebida pela água? Apresente o resultado nas unidades SI. b) Como procederia para tornar este processo de aquecimento mais eficiente? Resposta: a) Q = 6,3 x 10 3 J b) Podíamos isolar o gobelé do meio exterior com, por exemplo, esferovite. EXERCÍCIO 5 Um corpo recebe, por minuto, 4,18 x 10 3 J de energia como calor. A temperatura do corpo varia no decorrer do tempo de acordo com o gráfico. a) Calcule a capacidade térmica do corpo. b) Calcule a capacidade térmica mássica da substância que constitui o corpo, sabendo que tem de massa 500 g. c) Consulte a tabela (PowerPoint) e diga que substância poderia ser? Resposta: a) C = 1,045 x 10 3 J/K b) c = 2090 J kg -1 K -1. c) Parafina 18

19 EXERCÍCIO 6 Dois corpos de massas diferentes, à mesma temperatura, recebem a mesma quantidade de energia como calor. Admitindo que a temperatura final de ambos os corpos é a mesma, indique qual das afirmações está correcta: A. Os dois corpos têm capacidades mássicas iguais. B. Os corpos têm capacidades térmicas diferentes. C. As massas dos corpos estão entre si na razão inversa das respectivas capacidades térmicas mássicas. D. As afirmações são todas falsas. Resposta: a) C 1.ª LEI DA TERMODINÂMICA Pela Lei da Conservação da Energia, que já foi estudada, a energia não pode ser criada nem destruída mas apenas transformada de umas formas para outras. Num sistema isolado a energia transfere-se e transforma-se, havendo sempre a sua conservação. As transferências de energia entre sistemas sob a forma de calor (Q ), trabalho (W ) e radiação (R ) podem corresponder a variações da energia interna ( E i ou U ) desses sistemas. 1ª Lei da Termodinâmica 19

20 CONVENÇÃO DE SINAIS EM TERMODINÂMICA A energia interna de um sistema pode aumentar ou diminuir, dependendo das transferências de energia que ocorrem. Assim, convencionou-se que: a energia recebida pelo sistema sob a forma de trabalho, calor e/ou radiação considera-se positiva; a energia cedida pelo sistema à sua vizinhança sob a forma de trabalho, calor e/ou radiação considera-se negativa. CONVENÇÃO DE SINAIS EM TERMODINÂMICA 20

21 CONVENÇÃO DE SINAIS EM TERMODINÂMICA CONVENÇÃO DE SINAIS EM TERMODINÂMICA Na expressão matemática que traduz a 1ª Lei da Termodinâmica está implícita uma convenção de sinais: 21

22 1.ª LEI DA TERMODINÂMICA Num sistema isolado, se: não houver realização de trabalho (W = 0); não existir fluxo de calor (Q = 0); não existir emissão e/ou absorção de radiação (R = 0), a variação da energia interna do sistema, ΔE i é igual a: ΔE i = W + Q + R = = 0 ΔE i = 0 A energia interna de um sistema isolado permanece constante. 1.ª LEI DA TERMODINÂMICA - RADIAÇÃO Suponha que a tampa do cilindro está fixa e que o recipiente é feito de um material isolador térmico. A parede lateral é transparente e faz-se incidir luz, proveniente de uma fonte laser. Toda a luz é absorvida pelas moléculas do gás que ficam com maior energia cinética, o que se traduz por um aumento da energia interna do sistema (fácil de verificar pelo aumento da temperatura). Não houve realização de trabalho nem ocorreram fluxos de calor, pelo que o aumento da energia interna se ficou a dever totalmente à radiação absorvida. Q = 0 J W = 0 J Então: E i = R 22

23 1.ª LEI DA TERMODINÂMICA - TRABALHO Suponha agora que um gás contido no recipiente cilíndrico está isolado termicamente e que o êmbolo se pode deslocar para cima e para baixo. O que acontecerá quando pressionamos o êmbolo? O volume que o gás ocupa diminui. Por acção da força exercida sobre a tampa é transferida energia para o sistema através de trabalho, W. * Se o volume do sistema diminuir, a energia interna do sistema aumentará. * Se o volume do sistema aumentar, a energia interna do sistema diminuirá. Q = 0 J R = 0 J Então: E i = W 1.ª LEI DA TERMODINÂMICA - CALOR Outra forma de variar a energia interna é permitir um fluxo de calor da vizinhança para o sistema e vice-versa. Coloque-se o gás contido no recipiente cilíndrico em contacto com uma fonte térmica, a uma temperatura maior. A base do recipiente é condutora térmica, então o calor flui facilmente por ela. A tampa do recipiente está fixa e, portanto, a variação de energia interna do gás é exclusivamente devida ao calor. Se a «fonte» estivesse mais fria do que o sistema, o calor fluiria deste para a fonte e a energia interna do sistema diminuiria. W = 0 J R = 0 J Então: E i = Q 23

24 EXERCÍCIO 7 EXERCÍCIO 8 Fornece-se a um sistema a quantidade de calor de 200 J. O sistema realiza o trabalho de 150 J. Determina a variação da energia interna do sistema. Resposta: Dados: Por convenção: - A quantidade de calor que se fornece ao sistema é positiva: Q = 200 J. - O trabalho realizado pelo sistema é negativo: W = J. Substituindo na expressão matemática da 1ª Lei da Termodinâmica, vem: E i = Q + W = = 50 J Ou seja, a energia interna do sistema aumenta, o que se traduz num aumento da sua temperatura. 24

25 2ª LEI DA TERMODINÂMICA Dois corpos estão a temperaturas diferentes. Já vimos antes - e toda a gente sabe - que, quando eles são postos em contacto um com o outro, o mais quente arrefece e o mais frio aquece. O primeiro cede energia (na forma de calor) e o segundo recebe energia. E se fosse ao contrário, isto é, se fosse o corpo mais frio a ceder ao mais quente uma certa energia? Nesse caso, o corpo mais frio arrefeceria ainda mais e o corpo mais quente aqueceria ainda mais. Este processo não contraria a Primeira Lei, mas, apesar disso, não ocorre espontaneamente. Nunca ninguém viu um fenómeno desses! 2ª LEI DA TERMODINÂMICA 2ª Lei da Termodinâmica Enunciado de Clausius Enunciado de Kelvin Planck Outra maneira de enunciar a 2ª Lei da termodinâmica Num sistema fechado, um aumento da entropia é acompanhado por uma diminuição na energia utilizável A entropia é uma medida da desordem de um determinado sistema. 25

26 ENTROPIA Para explicar a 2ª Lei da Termodinâmica, surgiu o conceito de entropia, S. Num sistema fechado, um aumento da entropia é acompanhado por uma diminuição na energia utilizável Ou seja, a entropia pode ser interpretada como uma medida da desordem dos sistemas. Uma entropia elevada implica maior desordem. Em qualquer variação real, um sistema fechado tende para uma entropia mais elevada e, por isso, para uma maior desordem. ( ), Alemão Assim, pode concluir-se que a entropia do Universo está a aumentar e a sua energia utilizável a diminuir. 2ª LEI DA TERMODINÂMICA 26

27 MÁQUINA TÉRMICA As máquinas térmicas são máquinas que convertem calor, Q, em trabalho, W. A máquina térmica recebe de uma fonte quente (exemplo: gasolina em combustão) a energia Q q na forma de calor, e converte-a parcialmente em trabalho, W (no movimento de um êmbolo, na rotação de um eixo, etc), cedendo o restante calor, Q f, a uma fonte fria (exemplos: atmosfera, água dos rios, etc). RENDIMENTO DUMA MÁQUINA TÉRMICA Um dos principais objectivos de quem constrói uma máquina térmica, é que esta tenha o maior rendimento possível. O rendimento, η, define-se como a razão entre o trabalho que a máquina fornece, W, e a energia sob a forma de calor que sai da fonte quente, Q q, e sem o qual ela não poderia funcionar. T f e T q em Kelvin 27

28 MÁQUINA FRIGORIFICA Segundo o postulado de Clausius, é impossível transferir energia sob a forma de calor espontaneamente, de uma fonte fria para uma fonte quente. Para que tal aconteça, é necessário fornecer trabalho ao sistema, e, nesse caso, temos uma máquina frigorífica. As máquinas frigoríficas, como um frigorífico ou uma arca congeladora, recebem trabalho (através da energia eléctrica proveniente da rede eléctrica), e usam-no de modo a retirarem energia sob a forma de calor do seu interior, transferindoa por condução para o exterior. MÁQUINA FRIGORIFICA O interior de um frigorífico encontra-se a uma temperatura baixa, próxima de 0 ºC, enquanto que a parte de trás está normalmente a uma temperatura superior à do meio ambiente onde se encontra. A energia sob a forma de calor que é transferida para a fonte quente é igual à soma da energia sob a forma de calor retirada à fonte fria, com o trabalho necessário para que ocorra esse fluxo de energia: Q q = W + Q f 28

29 EFICIÊNCIA DUMA MÁQUINA FRIGORIFICA A eficiência de uma máquina frigorífica é tanto maior, quanto maior for a quantidade de energia sob a forma de calor que retirar da fonte fria, ou seja, do interior do frigorífico, para a mesma quantidade de trabalho fornecido pelo motor do frigorífico. A eficiência de uma máquina frigorífica, é o quociente entre a energia sob a forma de calor que sai da fonte fria, Q f, e o trabalho necessário para realizar essa transferência de energia: Ao contrário do rendimento de uma máquina térmica, a eficiência pode ser maior que 1. A eficiência típica de uma máquina frigorífica varia entre 4 e 6. EXERCÍCIO 9 Uma central térmica que opera entre as temperaturas 30 C e 530 C consome 1x10 6 kg de combustível por hora. Considere que 1 kg de combustível fornece a energia de 5,0 x 10 7 J. a) Calcule o rendimento máximo da central térmica. b) Determine o módulo do trabalho realizado pela central, em cada hora, sabendo que ela transfere para a atmosfera, durante esse intervalo de tempo, uma quantidade de energia como calor igual 2 x J. Resposta: a) h = 62,3% b) W = 3 x J 29

30 EXERCÍCIO 10 Para manter o interior de um frigorífico a uma temperatura constante de 7 C é necessário fornecer-lhe a energia de 100 J em cada segundo. Admita que a transformação é reversível e que a eficiência é 9,0. 1.1, Determine: a) a temperatura do ar exterior; b) a quantidade de energia como calor retirada do interior do frigorífico em 10 minutos. Resposta: a) T q = 311,1 K b) Q f = 5,4 x 10 5 J 30

Entre sistemas a temperaturas diferentes a energia transfere-se do sistema com temperatura mais elevada para o sistema a temperatura mais baixa.

Entre sistemas a temperaturas diferentes a energia transfere-se do sistema com temperatura mais elevada para o sistema a temperatura mais baixa. Sumário Do Sol ao Aquecimento Unidade temática 1. Mecanismos de transferência de calor: a radiação, a condução e a convecção. O coletor solar e o seu funcionamento. Materiais condutores e isoladores do

Leia mais

3.1 Mecanismos de transferência de energia sob a forma de calor

3.1 Mecanismos de transferência de energia sob a forma de calor 3.1 Mecanismos de transferência de energia sob a forma de calor Condução Processo de transferência de energia sob a forma de calor que ocorre devido ao choque das partículas e sem transporte de matéria

Leia mais

TERMODINÂMICA. Radiação Solar. Anjo Albuquerque

TERMODINÂMICA. Radiação Solar. Anjo Albuquerque TERMODINÂMICA Radiação Solar 1 Anjo Albuquerque TERMODINÂMICA A Termodinâmica é a área da Física que nos permite compreender o mundo que nos rodeia, desde a escala dos átomos até à escala do universo;

Leia mais

TERMODINÂMICA. Radiação Solar. Anjo Albuquerque

TERMODINÂMICA. Radiação Solar. Anjo Albuquerque TERMODINÂMICA Radiação Solar 1 Anjo Albuquerque TERMODINÂMICA Termodinâmica - é a área da Física que nos permite compreender o mundo que nos rodeia, desde a escala dos átomos até à escala do universo.

Leia mais

Física e Química A 10.º ano

Física e Química A 10.º ano Energia, fenómenos térmicos e radiação II Física e Química A 10.º ano 1. Responde às seguintes questões. Num dia de inverno, a temperatura no exterior é de - 3ºC e a temperatura no interior de um apartamento

Leia mais

Mecanismos de transferência de calor. Anjo Albuquerque

Mecanismos de transferência de calor. Anjo Albuquerque Mecanismos de transferência de calor 1 Mecanismos de transferência de calor Quando aquecemos uma cafeteira de alumínio com água ao lume toda a cafeteira e toda a água ficam quentes passado algum tempo.

Leia mais

Sumário. Do Sol ao aquecimento. A energia no aquecimento/arrefecimento de sistemas. A 1ª Lei da termodinâmica pode traduzir-se por:

Sumário. Do Sol ao aquecimento. A energia no aquecimento/arrefecimento de sistemas. A 1ª Lei da termodinâmica pode traduzir-se por: Sumário Do Sol ao Aquecimento Unidade temática 1 1ª Lei da Termodinâmica. Análise de situações em que a variação de energia interna se faz à custa de trabalho, calor e radiação. Capacidade térmica mássica

Leia mais

Graça Meireles. Física -10º ano. Física -10º ano 2

Graça Meireles. Física -10º ano. Física -10º ano 2 Escola Secundária D. Afonso Sanches Energia do Sol para a Terra Graça Meireles Física -10º ano 1 Variação da Temperatura com a Altitude Física -10º ano 2 1 Sistemas Termodinâmicos Propriedades a ter em

Leia mais

EXERCÍCIOS FÍSICA 10. e problemas Exames Testes intermédios Professor Luís Gonçalves

EXERCÍCIOS FÍSICA 10. e problemas Exames Testes intermédios Professor Luís Gonçalves FÍSICA 10 EXERCÍCIOS e problemas Exames 2006 2007 2008 2009 2010 2011 Testes intermédios 2008 2009 2010 2011 Escola Técnica Liceal Salesiana do Estoril Professor Luís Gonçalves 2 3 Unidade 1 Do Sol ao

Leia mais

Mecanismos de transferência de calor. Anjo Albuquerque

Mecanismos de transferência de calor. Anjo Albuquerque Mecanismos de transferência de calor 1 Mecanismos de transferência de calor Quando aqueces uma cafeteira de alumínio com água ao lume toda a cafeteira e toda a água ficam quentes passado algum tempo. Ocorrem

Leia mais

Termologia: Calorimetria

Termologia: Calorimetria Termologia: Calorimetria Física_9 EF Profa. Kelly Pascoalino Nesta aula: Temperatura x Calor; Processos de propagação de calor; Calor específico; Calor Latente e mudanças de estado. TEMPERATURA X CALOR

Leia mais

3.4. Condutividade térmica

3.4. Condutividade térmica 3.4. Condutividade térmica Condução térmica Mecanismo de transferência de calor que exige o contacto entre os sistemas. Aquecimento de um objeto metálico A extremidade que não está em contacto direto com

Leia mais

DO SOL AO AQUECIMENTO. Degradação da Energia. 2ª Lei da Termodinâmica

DO SOL AO AQUECIMENTO. Degradação da Energia. 2ª Lei da Termodinâmica DO SOL AO AQUECIMENTO Degradação da Energia. 2ª Lei da Termodinâmica 2 A 1º Lei da Termidinâmica é um caso particular da Lei da Conservação da Energia «A energia de um sistema isolado permanece constante»

Leia mais

Energia: Capacidade de realizar trabalho.

Energia: Capacidade de realizar trabalho. Energia: Capacidade de realizar trabalho. Formas de energia: Matéria: - Cinética (movim. macroscópico, térmica, etc) - Potencial (elétrica, gravitacional, elástica, etc) Tudo que tem massa e ocupa lugar

Leia mais

Segunda Lei da Termodinâmica

Segunda Lei da Termodinâmica Segunda Lei da Termodinâmica Para que possamos entender o enunciado da 2ª lei, devemos ter alguns conceitos básicos. 1. Transformações reversíveis e irreversíveis Transformações reversíveis são aquelas

Leia mais

Resumo do Conteúdo. 1ª Lei da Termodinâmica

Resumo do Conteúdo. 1ª Lei da Termodinâmica SECRETARIA DE SEGURANÇA PÚBLICA/SECRETARIA DE EDUCAÇÃO POLÍCIA MILITAR DO ESTADO DE GOIÁS COMANDO DE ENSINO POLICIAL MILITAR COLÉGIO DA POLÍCIA MILITAR SARGENTO NADER ALVES DOS SANTOS SÉRIE/ANO: 2º TURMA(S):

Leia mais

Cap 18 (8 a edição) Temperatura, Calor e Primeira lei da termodinâmica

Cap 18 (8 a edição) Temperatura, Calor e Primeira lei da termodinâmica Termodinâmica: estuda a energia térmica. Cap 18 (8 a edição) Temperatura, Calor e Primeira lei da termodinâmica O que é temperatura: mede o grau de agitação das moléculas. Um pedaço de metal a 10 o C e

Leia mais

TERMOLOGIA. Calorimetria:

TERMOLOGIA. Calorimetria: TERMOLOGIA Calorimetria: Calor: é energia térmica em trânsito. Ela ocorre sempre entre dois corpos com temperaturas diferentes. O corpo com temperatura maior sede espontaneamente calor para o corpo que

Leia mais

DO SOL AO AQUECIMENTO. A energia no aquecimento/ arrefecimento de sistemas

DO SOL AO AQUECIMENTO. A energia no aquecimento/ arrefecimento de sistemas DO SOL AO AQUECIMENTO A energia no aquecimento/ arrefecimento de sistemas 23/04/2015 Dulce Campos 2 A ENERGIA NO AQUECIMENTO/ ARREFECIMENTO DE SISTEMAS Mecanismos de transferência de energia entre sistemas

Leia mais

Propagação do Calor e Calorimetria

Propagação do Calor e Calorimetria Condução Térmica Física 3 - Capítulo 3 Propagação do Calor e Calorimetria Propagação de calor em que a energia térmica passa de partícula para partícula, sem transporte de matéria. Ocorre nos materiais

Leia mais

Sumário. Do Sol ao aquecimento. A energia no aquecimento/arrefecimento de sistemas 13/05/2014

Sumário. Do Sol ao aquecimento. A energia no aquecimento/arrefecimento de sistemas 13/05/2014 Sumário Do Sol ao Aquecimento Unidade temática 1 2ª Lei da Termodinâmica. Degradação de energia. o Processos reversíveis, irreversíveis e espontâneos. o Noção de entropia. Resolução de exercícios: - Correção

Leia mais

Escola de Verão em Física 2006/2007

Escola de Verão em Física 2006/2007 Escola de Verão em Física 2006/2007 Qual o melhor isolador térmico para uma casa? eira d a M Fe Vidro Vidro duplo rro Esferovite Actualmente há uma maior necessidade em descobrir novos métodos para reduzir

Leia mais

Formas fundamentais de energia

Formas fundamentais de energia Energia Formas fundamentais de energia Formas fundamentais de energia As diferentes designações atribuídas à energia correspondem apenas a duas formas fundamentais de energia: Energia cinética que está

Leia mais

5.º Teste de Física e Química A 10.º A Abril minutos /

5.º Teste de Física e Química A 10.º A Abril minutos / 5.º Teste de Física e Química A 10.º A Abril 2013 90 minutos / Nome: n.º Classificação Professor.. GRUPO I As seis questões deste grupo são todas de escolha múltipla. Para cada uma delas são indicadas

Leia mais

Física 20 Questões [Médio]

Física 20 Questões [Médio] Física 20 Questões [Médio] 01 - (UFRRJ ) Uma pessoa retira um botijão de gás de um local refrigerado e o coloca em um outro lugar, sobre o qual os raios solares incidem diretamente. Desprezando qualquer

Leia mais

ACH1014 Fundamentos de Física. Usinas térmicas. Profa Dra Patricia Targon Campana

ACH1014 Fundamentos de Física. Usinas térmicas. Profa Dra Patricia Targon Campana ACH1014 Fundamentos de Física Usinas térmicas Profa Dra Patricia Targon Campana Pcampana@usp.br 2013 A Termodinâmica e o conceito de usina térmica Estudo das transformações e as relações existentes entre

Leia mais

Curso engenharia de Energia

Curso engenharia de Energia UNIVERSIDADE FEDERAL DA GRANDE DOURADOS - UFGD FACULDADE DE ENGENHARIA Curso engenharia de Energia Prof. Dr. Omar Seye omarseye@ufgd.edu.br Disciplina: COMBUSTÃO E COMBUSTÍVEIS Introdução: Leis da Conservação

Leia mais

NOME Nº Turma Informação Professor Enc. de Educação

NOME Nº Turma Informação Professor Enc. de Educação ESCOLA SECUNDÁRIA DE CASQUILHOS 9º Teste sumativo de FQA 10.º Ano Turma A Professor: Maria do Anjo Albuquerque Duração da prova: 90 minutos. Tolerância: 0 minutos 10 páginas 23.abril.2015 NOME Nº Turma

Leia mais

Temperatura, calor e processos de transmissão de calor

Temperatura, calor e processos de transmissão de calor REVISÃO ENEM Temperatura, calor e processos de transmissão de calor TEMPERATURA Temperatura é a grandeza física escalar que nos permite avaliar o grau de agitação das moléculas. Quanto maior for o grau

Leia mais

TERMOLOGIA. Calorimetria:

TERMOLOGIA. Calorimetria: TERMOLOGIA Calorimetria: Calor: é energia térmica em trânsito. Ela ocorre sempre entre dois corpos com temperaturas diferentes. O corpo com temperatura maior sede espontaneamente calor para o corpo que

Leia mais

ESCOLA SECUNDÁRIA 2/3 LIMA DE FREITAS 10.º ANO FÍSICA E QUÍMICA A 2010/2011 NOME: Nº: TURMA:

ESCOLA SECUNDÁRIA 2/3 LIMA DE FREITAS 10.º ANO FÍSICA E QUÍMICA A 2010/2011 NOME: Nº: TURMA: ESCOLA SECUNDÁRIA 2/3 LIMA DE FREITAS 0.º ANO FÍSICA E QUÍMICA A 200/20 NOME: Nº: TURMA: AVALIAÇÃO: Prof.. A energia eléctrica pode ser produzida em centrais termoeléctricas. Nessa produção há perdas de

Leia mais

CIÊNCIA E TECNOLOGIA DE MATERIAIS

CIÊNCIA E TECNOLOGIA DE MATERIAIS Faculdade Sudoeste Paulista Engenharia Civil/Produção Notas de aula: CIÊNCIA E TECNOLOGIA DE MATERIAIS PROPRIEDADES TÉRMICAS Prof. Msc. Patrícia Corrêa Avaré, 2014 Propriedades de materiais: 1. Térmica

Leia mais

Física e Química A 10.º ano

Física e Química A 10.º ano Energia, fenómenos térmicos e radiação I 1. Coloca os sistemas mencionados por ordem, de forma a corresponder à sequência: Sistema isolado, Sistema fechado, sistema aberto A. Piscina. B. Frigorífico fechado.

Leia mais

CADERNO DE EXERCÍCIOS 3D

CADERNO DE EXERCÍCIOS 3D CADERNO DE EXERCÍCIOS 3D Ensino Fundamental Ciências da Natureza Questão Conteúdo Habilidade da Matriz da EJA/FB 1 Materiais Isolantes Térmicos H55, H56 2 Processos de Troca de Calor H55 3 Transformação

Leia mais

A) condensação do vapor de água dissolvido no ar ao encontrar uma superfície à temperatura mais baixa.

A) condensação do vapor de água dissolvido no ar ao encontrar uma superfície à temperatura mais baixa. lista_1-conceitos_iniciais_em_termologia Questão 1 Os cálculos dos pesquisadores sugerem que a temperatura média dessa estrela é de T i = 2.700 C. Considere uma estrela como um corpo homogêneo de massa

Leia mais

2ª Lei da Termodinâmica. Dentre as duas leis da termodinâmica, a segunda é a. que tem maior aplicação na construção de máquinas e

2ª Lei da Termodinâmica. Dentre as duas leis da termodinâmica, a segunda é a. que tem maior aplicação na construção de máquinas e 2ª Lei da Termodinâmica Dentre as duas leis da termodinâmica, a segunda é a que tem maior aplicação na construção de máquinas e utilização na indústria, pois trata diretamente do rendimento das máquinas

Leia mais

Aula Calor e 1ª Lei da Termodinâmica. As leis da Termodinâmica foram inicialmente obtidas empiricamente e somente

Aula Calor e 1ª Lei da Termodinâmica. As leis da Termodinâmica foram inicialmente obtidas empiricamente e somente 1 Aula Calor e 1ª Lei da Termodinâmica Tema: Termodinâmica a serem abordados os assuntos: - Lei zero da Termodinâmica; - 1ª Lei da Termodinâmica calor e energia; - 2ª Lei entropia; - Aplicações da Termodinâmica

Leia mais

Ficha Informativa n.º 5 Energia

Ficha Informativa n.º 5 Energia AGRUPAMENTO VERTICAL DE ESCOLAS DE FRAZÃO ESCOLA E.B. 2,3 DE FRAZÃO CIÊNCIAS FÍSICO-QUÍMICAS 9º ANO DE ESCOLARIDADE ANO LETIVO 2011/2012 Ficha Informativa n.º 5 Energia Nome: Data: / /2012 INTRODUÇÃO TEÓRICA

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidade Estadual do Sudoeste da Bahia Departamento de Estudos Básicos e Instrumentais 3 Termologia Física II Prof. Roberto Claudino Ferreira Prof. Roberto Claudino 1 ÍNDICE 1. Conceitos Fundamentais;

Leia mais

Reservatório a alta temperatura T H. Ciclos reversíveis

Reservatório a alta temperatura T H. Ciclos reversíveis 9/Mar/016 Aula 6 Ciclos termodinâmicos reversíveis Diagrama P e eficiência do Ciclo de Carnot Ciclo de Otto (motores a gasolina): processos e eficiência Ciclo de Diesel: processos, eficiência e trabalho

Leia mais

Recursos Energéticos e Meio Ambiente. Professor Sandro Donnini Mancini. 4 - Mecânica e Termodinâmica da Energia. Sorocaba, Fevereiro de 2016

Recursos Energéticos e Meio Ambiente. Professor Sandro Donnini Mancini. 4 - Mecânica e Termodinâmica da Energia. Sorocaba, Fevereiro de 2016 Instituto de Ciência e Tecnologia de Sorocaba Recursos Energéticos e Meio Ambiente Professor Sandro Donnini Mancini 4 - Mecânica e Termodinâmica da Energia Sorocaba, Fevereiro de 016 Formas de Energia

Leia mais

2.1 Breve história da termodinâmica

2.1 Breve história da termodinâmica 2.1 Breve história da termodinâmica TERMODINÂMICA calor força, movimento No início, estudava os processos que permitiam converter calor em trabalho (força e movimento). 2.1 Breve história da termodinâmica

Leia mais

CALORIMETRIA Calor. CALORIMETRIA Potência ou Fluxo de Calor

CALORIMETRIA Calor. CALORIMETRIA Potência ou Fluxo de Calor CALORIMETRIA Calor É a transferência de energia de um corpo para outro, decorrente da diferença de temperatura entre eles. quente frio Unidades de calor 1 cal = 4,186 J (no SI) 1 kcal = 1000 cal Fluxo

Leia mais

d) condução e convecção b) radiação e condução e) condução e radiação c) convecção e radiação

d) condução e convecção b) radiação e condução e) condução e radiação c) convecção e radiação Lista 7 Propagação de calor 01. Sabe-se que a temperatura do café se mantém razoavelmente constante no interior de uma garrafa térmica perfeitamente vedada. a) Qual o principal fator responsável por esse

Leia mais

Energia e fenómenos elétricos

Energia e fenómenos elétricos Energia e fenómenos elétricos 1. Associa o número do item da coluna I à letra identificativa do elemento da coluna II. Estabelece a correspondência correta entre as grandezas elétricas e os seus significados.

Leia mais

CALORIMETRIA E TERMOLOGIA

CALORIMETRIA E TERMOLOGIA CALORIMETRIA E TERMOLOGIA CALORIMETRIA Calor É a transferência de energia de um corpo para outro, decorrente da diferença de temperatura entre eles. quente Fluxo de calor frio BTU = British Thermal Unit

Leia mais

5º Teste de Física e Química A 10.º A Abr minutos /

5º Teste de Física e Química A 10.º A Abr minutos / 5º Teste de Física e Química A 10.º A Abr. 2013 90 minutos / Nome: n.º Classificação Professor E.E. GRUPO I As seis questões deste grupo são todas de escolha múltipla. Para cada uma delas são indicadas

Leia mais

Transmissão de Calor

Transmissão de Calor Transmissão de Calor Revisão de Conceitos da Termodinâmica 11/08/2006 Referência: capítulos 7, 8 e 10 do livro de H. Moysés Nussenzveig, Curso de Física Básica 2 Fluidos. Oscilações e Ondas. Calor. 4 ed.

Leia mais

Figura 1 Locomotiva a vapor Fonte: Burciaga/Freerangestock.com

Figura 1 Locomotiva a vapor Fonte: Burciaga/Freerangestock.com CALOR, ENERGIA E TRABALHO CONTEÚDO 1 a lei da Termodinâmica AMPLIANDO SEUS CONHECIMENTOS Energia e Trabalho Nos dias atuais é muito normal quando falamos sobre o consumo de energia, trazermos juntos uma

Leia mais

2ª LEI, ENTROPIA E FORMALISMO TERMODINÂMICO. 1) Um gás perfeito de capacidades térmicas constantes. , ocupando inicialmente o volume V 0,

2ª LEI, ENTROPIA E FORMALISMO TERMODINÂMICO. 1) Um gás perfeito de capacidades térmicas constantes. , ocupando inicialmente o volume V 0, ermodinâmica Ano Lectivo 00/0 ª LEI, ENROIA E FORMALISMO ERMODINÂMIO ) Um gás perfeito de capacidades térmicas constantes p =, ocupando inicialmente o volume 0, expande-se adiabaticamente até atingir o

Leia mais

ESTUDO DOS GASES. Energia cinética de um gás. Prof. Patricia Caldana

ESTUDO DOS GASES. Energia cinética de um gás. Prof. Patricia Caldana ESTUDO DOS GASES Prof. Patricia Caldana Gases são fluidos no estado gasoso, a característica que o difere dos fluidos líquidos é que, quando colocado em um recipiente, este tem a capacidade de ocupa-lo

Leia mais

Aulas 17 a 19. Aula 20. Colégio Jesus Adolescente. atm.. atmosfera, a pressão por ele exercida nas paredes do

Aulas 17 a 19. Aula 20. Colégio Jesus Adolescente. atm.. atmosfera, a pressão por ele exercida nas paredes do Colégio Jesus Adolescente Aulas 17 a 19 Ensino Médio 2º Bimestre Disciplina Física Setor B 1) Num recipiente de volume igual a 41 acham-se 5,0 mols de um gás perfeito a temperatura de 300. Determine a

Leia mais

Introdução. Exergia ou Disponibilidade máximo trabalho útil que pode ser obtido de um sistema em um determinado estado e em um ambiente especificado.

Introdução. Exergia ou Disponibilidade máximo trabalho útil que pode ser obtido de um sistema em um determinado estado e em um ambiente especificado. Exergia Introdução 1ª Lei da Termodinâmica conservação da energia (energia não pode ser criada nem destruída). Serve como ferramenta para contabilizar a energia durante um processo 2ª Lei da Termodinâmica

Leia mais

Aula 01. Me. Leandro B. Holanda, 1. Definições e conceitos fundamentais. Calor

Aula 01. Me. Leandro B. Holanda,   1. Definições e conceitos fundamentais. Calor Aula 01 1. Definições e conceitos fundamentais Calor Se um bloco de cobre quente for colocado num béquer de água fria o bloco de cobre se resfria e a água se aquece até que o cobre e a água atinjam a mesma

Leia mais

CALORIMETRIA - EXERCÍCIOS E TESTES DE VESTIBULARES

CALORIMETRIA - EXERCÍCIOS E TESTES DE VESTIBULARES CALORIMETRIA - EXERCÍCIOS E TESTES DE VESTIBULARES 1. (UFV-96) Ao derramarmos éter sobre a pele, sentimos uma sensação de resfriamento em conseqüência de: a. o éter penetrar nos poros, congelando imediatamente

Leia mais

Capitulo-4 Calor e Temperatura

Capitulo-4 Calor e Temperatura Capitulo-4 Calor e Temperatura www.plantaofisica.blogspot.com.br 1 Resumo de aula: Termometria. 1- Temperatura Termometria é a parte da física que se preocupa unicamente em formas de se medir a temperatura

Leia mais

Profa.. Dra. Ana Maria Pereira Neto

Profa.. Dra. Ana Maria Pereira Neto Universidade Federal do ABC BC1309 Termodinâmica Aplicada Profa.. Dra. Ana Maria Pereira Neto ana.neto@ufabc.edu.br Segunda ei da Termodinâmica 1 Segunda ei da Termodinâmica Comparação com a 1ª ei da Termodinâmica;

Leia mais

PROPAGAÇÃO DE CALOR A propagação do calor entre dois sistemas pode ocorrer através de três processos diferentes: a condução, a convecção e a radiação.

PROPAGAÇÃO DE CALOR A propagação do calor entre dois sistemas pode ocorrer através de três processos diferentes: a condução, a convecção e a radiação. PROPAGAÇÃO DE CALOR A propagação do calor entre dois sistemas pode ocorrer através de três processos diferentes: a condução, a convecção e a radiação. CONDUÇÃO TÉRMICA A condução térmica é um processo

Leia mais

ANEXO II CONCEITOS RELATIVOS À ENERGIA NA COMBUSTÃO

ANEXO II CONCEITOS RELATIVOS À ENERGIA NA COMBUSTÃO ANEXO II CONCEITOS RELATIVOS À ENERGIA NA COMBUSTÃO TEMPERATURA Segundo [9], a temperatura mede a energia cinética média das moléculas de um corpo. De um modo geral, os corpos aumentam de volume com o

Leia mais

CPOG. Prof. Felipe Cardoso. Escalas Termométricas Dilatação Calorimetria

CPOG. Prof. Felipe Cardoso. Escalas Termométricas Dilatação Calorimetria AULA DO CPOG Prof. Felipe Cardoso Escalas Termométricas Dilatação Calorimetria Escalas termométricas Em um gráfico Relações de variação Petrobras maio 2010 TO prova 35 Petrobras 2010 TO prova 40 Petrobras

Leia mais

TERMODINÂMICA QUÍMICA

TERMODINÂMICA QUÍMICA TERMODINÂMICA QUÍMICA Prof a. Loraine Jacobs lorainejacobs@utfpr.edu.br http://paginapessoal.utfpr.edu.br/lorainejacobs DAQBI Reações Químicas Fatores que determinam a ocorrência de ligações químicas:

Leia mais

Condutores e Isolantes Térmicos

Condutores e Isolantes Térmicos Condutores e Isolantes Térmicos O calor se transfere dos objetos mais quentes para os mais frios. Se vários objetos a temperaturas diferentes estão em contato, os que estão mais quentes acabarão esfriando

Leia mais

CALORIMETRIA. 1 cal = 4,2 J.

CALORIMETRIA. 1 cal = 4,2 J. CALORIMETRIA Setor 1210 Prof. Calil A CALORIMETRIA estuda energia denominada CALOR que vai, de maneira natural, do corpo quente para o corpo frio. Calor não deve ser Calor sensivel confundido com a energia

Leia mais

Física II FEP º Semestre de Instituto de Física - Universidade de São Paulo. Professor: Valdir Guimarães

Física II FEP º Semestre de Instituto de Física - Universidade de São Paulo. Professor: Valdir Guimarães Física II FEP 112 2º Semestre de 2012 Instituto de Física - Universidade de São Paulo Professor: Valdir Guimarães E-mail: valdir.guimaraes@usp.br Fone: 3091-7104 Aula 3 Irreversibilidade e Segunda Lei

Leia mais

Física e Química A 715 (versão 1)

Física e Química A 715 (versão 1) Exame (Resolução proposta por colaboradores da Divisão de Educação da Sociedade Portuguesa de Física) Física e Química A 715 (versão 1) 0 de Junho de 008 1. 1.1. Átomos de ferro A espécie redutora é o

Leia mais

Curso de Engenharia Civil

Curso de Engenharia Civil Curso de Engenharia Civil Física Geral e Experimental II 2 período A e B Calorimetria e Termodinâmica Prof.a Érica Muniz Capacidade térmica de um corpo: Capacidade térmica de um corpo é a grandeza que

Leia mais

O que é temperatura, energia interna e energia térmica?

O que é temperatura, energia interna e energia térmica? O CALOR O que é temperatura, energia interna e energia térmica? Temperatura: Vimos que temperatura de um corpo está associada com a energia cinética energia de movimento das moléculas/átomos que constituem

Leia mais

Ciências Físico-Química - 8º ANO

Ciências Físico-Química - 8º ANO ESCOLA BÁSICA E SECUNDÁRIA DA CALHETA Ciências Físico-Química - 8º ANO ANO LETIVO 2010/2011 Turma FICHA DE TRABALHO 1 Energia Fontes e formas Transferências e Transformação de energia Nome Nº. Data / /

Leia mais

Energia: Fontes de energia e transferências de energia

Energia: Fontes de energia e transferências de energia Energia: Fontes de energia e transferências de energia Metas 1.1 Definir sistema 5sico e associar-lhe uma energia (interna) que pode ser em parte transferida para outro sistema. 1.2 Iden@ficar, em situações

Leia mais

Física 20 Questões [Fácil]

Física 20 Questões [Fácil] Física 20 Questões [Fácil] 01 - (ITA SP) Uma máquina térmica reversível opera entre dois reservatórios térmicos de temperaturas 100 C e 127 C, respectivamente, gerando gases aquecidos para acionar uma

Leia mais

AULA 13 CALORIMETRIA. 1- Introdução

AULA 13 CALORIMETRIA. 1- Introdução AULA 13 CALORIMETRIA 1- Introdução Neste capítulo estudaremos o calor e suas aplicações. Veremos que o calor pode simplesmente alterar a temperatura de um corpo, ou até mesmo mudar o seu estado físico.

Leia mais

Professor Victor M Lima. Enem Ciências da natureza e suas tecnologias Física Conceitos temperatura e calor Propagação de calor

Professor Victor M Lima. Enem Ciências da natureza e suas tecnologias Física Conceitos temperatura e calor Propagação de calor Professor Victor M Lima Enem Ciências da natureza e suas tecnologias Física Conceitos temperatura e calor Propagação de calor Conceitos iniciais Estados da matéria Sólido Volume e fomato definidos, energia

Leia mais

Temperatura, Calor e a Primeira Lei da Termodinâmica

Temperatura, Calor e a Primeira Lei da Termodinâmica Temperatura, Calor e a Primeira Temperatura; A Lei Zero da Termodinâmica; Medindo a Temperatura; Escala Celsius e Fahrenheit; Dilatação Térmica; Temperatura e Calor; Absorção de Calor por Sólidos e Líquidos;

Leia mais

25/Mar/2015 Aula /Mar/2015 Aula 9

25/Mar/2015 Aula /Mar/2015 Aula 9 20/Mar/2015 Aula 9 Processos Politrópicos Relações politrópicas num gás ideal Trabalho: aplicação aos gases perfeitos Calor: aplicação aos gases perfeitos Calor específico politrópico Variação de entropia

Leia mais

CURSO: Engenharia Civil DISCIPLINA: Tópicos de Física Geral e Experimental PROFº: MSc. Demetrius Leão

CURSO: Engenharia Civil DISCIPLINA: Tópicos de Física Geral e Experimental PROFº: MSc. Demetrius Leão CURSO: Engenharia Civil DISCIPLINA: Tópicos de Física Geral e Experimental PROFº: MSc. Demetrius Leão 1 ACOMPANHE A DISCIPLINA PELA INTERNET Página com as aulas e listas de exercícios: Palavra-chave no

Leia mais

Componente de Física

Componente de Física Componente de Física Módulo Inicial Das Fontes de Energia ao Utilizador 1. Situação energética mundial: degradação de energia O que é a energia? Sabemos que nos rodeia e que é imprescindível a todas as

Leia mais

ESCOLA SECUNDÁRIA DE CASQUILHOS

ESCOLA SECUNDÁRIA DE CASQUILHOS ESCOLA SECUNDÁRIA DE CASQUILHOS 10.º teste sumativo de FQA 9.maio.015 10.º Ano Turma A Professora: M.ª do Anjo Albuquerque Versão 1 Duração da prova: 90 minutos. Este teste é constituído por 10 páginas

Leia mais

Entropia e a Segunda Lei da Termodinâmica II. Entropia e Temperatura. Marcos Moura & Carlos Eduardo Aguiar

Entropia e a Segunda Lei da Termodinâmica II. Entropia e Temperatura. Marcos Moura & Carlos Eduardo Aguiar UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Física Programa de Pós-Graduação em Ensino de Física Mestrado Profissional em Ensino de Física Mestrado Nacional Profissional em Ensino de Física Entropia

Leia mais

DO SOL AO AQUECIMENTO A ENERGIA NO AQUECIMENTO/ ARREFECIMENTO DE SISTEMAS

DO SOL AO AQUECIMENTO A ENERGIA NO AQUECIMENTO/ ARREFECIMENTO DE SISTEMAS DO SOL AO AQUECIMENTO A ENERGIA NO AQUECIMENTO/ ARREFECIMENTO DE SISTEMAS 01-03-2013 Dulce Campos 2 O que é de facto ENERGIA? ENERGIA Ainda não sabemos o que é energia " Ainda não sabemos o que é energia.

Leia mais

Capítulo 4: Análise de Sistemas - 1ª e 2ª Leis da Termodinâmica

Capítulo 4: Análise de Sistemas - 1ª e 2ª Leis da Termodinâmica Capítulo 4: Análise de Sistemas - 1ª e 2ª Leis da Termodinâmica A segunda lei da termodinâmica Máquinas térmicas e bombas de calor Ciclos reversíveis Ciclo de Carnot A segunda lei da termodinâmica O que

Leia mais

FORMAS DE ENERGIA E SUAS CONVERSÕES. Profa. Me Danielle Evangelista Cardoso

FORMAS DE ENERGIA E SUAS CONVERSÕES. Profa. Me Danielle Evangelista Cardoso FORMAS DE ENERGIA E SUAS CONVERSÕES Profa. Me Danielle Evangelista Cardoso danielle@profadaniell.com.br www.profadanielle.com.br Tipos de Energia Energia pode exisitr em inúmeras formas como: Energia Mecânica

Leia mais

Entropia e Segunda Lei

Entropia e Segunda Lei Entropia e Segunda Lei BC0205 Roosevelt Droppa Jr. roosevelt.droppa@ufabc.edu.br Entropia e Segunda Lei Sentido de um processo Desordem no processo Conceito de entropia Entropia em proc. reversíveis e

Leia mais

EM34F Termodinâmica A

EM34F Termodinâmica A EM34F Termodinâmica A Prof. Dr. André Damiani Rocha arocha@utfpr.edu.br Energia 2 Energia Transferência de Energia por Calor Sempre que existir diferença de temperatura haverá transferência de calor. Se

Leia mais

Profa.. Dra. Ana Maria Pereira Neto

Profa.. Dra. Ana Maria Pereira Neto 5/09/0 Universidade Federal do ABC BC309 Termodinâmica Aplicada Profa.. Dra. Ana Maria Pereira Neto ana.neto@ufabc.edu.br Bloco A, torre, sala 637 Calor, Trabalho e Primeira Lei da Termodinâmica 5/09/0

Leia mais

2º Lei da Termodinâmica. Introdução Enunciado da 2º lei Rendimento de uma máquina térmica Ciclo de Carnot

2º Lei da Termodinâmica. Introdução Enunciado da 2º lei Rendimento de uma máquina térmica Ciclo de Carnot 2º Lei da Termodinâmica Introdução Enunciado da 2º lei Rendimento de uma máquina térmica Ciclo de Carnot Introdução Chamamos, genericamente, de máquina a qualquer dispositivo que tenha por finalidade transferir

Leia mais

defi departamento de física

defi departamento de física defi departamento de física aboratórios de Física www.defi.isep.ipp.pt Condutividade térmica Instituto Superior de Engenharia do Porto- Departamento de Física Rua Dr. António Bernardino de Almeida, 431

Leia mais

Professor: Renan Oliveira

Professor: Renan Oliveira Professor: Renan Oliveira Questão 01 - (FFFCMPA RS/2008) Considere as seguintes afirmações sobre termologia. I. O calor específico é uma propriedade das substâncias e a capacidade térmica é uma propriedade

Leia mais

TERMODINÂMICA 3 INTRODUÇÃO AO 2º PRINCÍPIO DA TERMODINÂMICA

TERMODINÂMICA 3 INTRODUÇÃO AO 2º PRINCÍPIO DA TERMODINÂMICA 3 INRODUÇÃO AO º PRINCÍPIO DA ERMODINÂMICA 3. O ciclo de Carnot (84). ERMODINÂMICA Investigou os princípios que governam a transformação de energia térmica, calor em energia mecânica, trabalho. Baseou

Leia mais

Aluno (a): nº: Professor: Fernanda Tonetto Surmas Data: / /2015 Turma: ORIENTAÇÕES DE ESTUDO REC 2º TRI

Aluno (a): nº: Professor: Fernanda Tonetto Surmas Data: / /2015 Turma: ORIENTAÇÕES DE ESTUDO REC 2º TRI 1º EM E.M. FÍSICA Aluno (a): nº: Professor: Fernanda Tonetto Surmas Data: / /2015 Turma: ORIENTAÇÕES DE ESTUDO REC 2º TRI VERIFICAR DATA e HORÁRIO da PROVA de REC de FÍSICA!!!!!!! /09 ª feira Física CONTEÚDO

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidade Estadual do Sudoeste da Bahia Departamento de Estudos Básicos e Instrumentais 4 Termodinâmica Física II Ferreira 1 ÍNDICE 1. Conceitos Fundamentais; 2. Sistemas Termodinâmicos; 3. Leis da

Leia mais

Os efeitos do calor sobre os corpos fazem parte do nosso cotidiano e podem ser facilmente percebidos. A ideia de que o calor é uma forma de energia

Os efeitos do calor sobre os corpos fazem parte do nosso cotidiano e podem ser facilmente percebidos. A ideia de que o calor é uma forma de energia Capítulo 4 Calor: energia térmica em trânsito Os efeitos do calor sobre os corpos fazem parte do nosso cotidiano e podem ser facilmente percebidos. A ideia de que o calor é uma forma de energia foi estabelecida

Leia mais

Fís. Professor: Leo Gomes Monitor: Arthur Vieira. Fís

Fís. Professor: Leo Gomes Monitor: Arthur Vieira. Fís . Semana 19 Professor: Leo Gomes Monitor: Arthur Vieira Exercícios de calorimetria 19 jun EXERCÍCIOS DE AULA 1. (ENEM) Aquecedores solares usados em residências têm o objetivo de elevar a temperatura da

Leia mais

A partir dos dados, tem-se a seguinte correspondência: Usando a proporcionalidade, tem-se: x x = =

A partir dos dados, tem-se a seguinte correspondência: Usando a proporcionalidade, tem-se: x x = = 01 A partir dos dados, tem-se a seguinte correspondência: Usando a proporcionalidade, tem-se: x 20 92 32 x 20 60 = = 80 20 212 32 60 180 x 20 = 20 x = 40 mm Resposta: B 1 02 A partir dos dados, tem-se:

Leia mais

Aula anterior: Esta Aula: Próxima aula:

Aula anterior: Esta Aula: Próxima aula: Aula anterior: Composição da atmosfera: do que é composta; fontes e sumidouros; como alcançou o estado atual. Breve discussão sobre pressão, densidade, temperatura. Esta Aula: Temperatura, pressão e densidade

Leia mais

As leis da Termodinâmica

As leis da Termodinâmica PARTE I Unidade D 9 Capítulo As leis da Termodinâmica Seções: 91 Considerações preliminares 92 O princípio da conservação da energia aplicado à Termodinâmica 93 Transformações gasosas 94 A conversão de

Leia mais

Preencha a tabela a seguir, de acordo com as informações do texto.

Preencha a tabela a seguir, de acordo com as informações do texto. 1. Uma amostra de um gás está contida em um cilindro ao qual se adapta um êmbolo. A figura a seguir mostra o diagrama pressão X volume das transformações sofridas pelo gás. A energia interna do gás no

Leia mais

Calorimetria (Unesp 92) Considere as seguintes afirmações incompletas:

Calorimetria (Unesp 92) Considere as seguintes afirmações incompletas: 1. (Fuvest 93) Um recipiente de vidro de 500 g e calor específico 0,20 cal/g C contém 500 g de água cujo calor específico é 1,0 cal/g C. O sistema encontra-se isolado e em equilíbrio térmico. Quando recebe

Leia mais

CONDUÇÃO TÉRMICA. Condução é o processo de propagação de calor no qual a energia térmica passa de partícula para partícula de um meio.

CONDUÇÃO TÉRMICA. Condução é o processo de propagação de calor no qual a energia térmica passa de partícula para partícula de um meio. PROPAGAÇÃO DE CALOR CONDUÇÃO TÉRMICA Condução é o processo de propagação de calor no qual a energia térmica passa de partícula para partícula de um meio. FLUXO DE CALOR (Φ) LEI DE FOURIER Q t (θ 1 > θ

Leia mais

6ª Ficha de Avaliação de Conhecimentos Turma: 10ºA. Física e Química A - 10ºAno

6ª Ficha de Avaliação de Conhecimentos Turma: 10ºA. Física e Química A - 10ºAno 6ª Ficha de Avaliação de Conhecimentos Turma: 10ºA Física e Química A - 10ºAno Professora Paula Melo Silva Data: 24 abril 2015 Ano Letivo: 2014/2015 90 min 1. Considere duas centrais produtoras de energia

Leia mais