PESO DOS ELEMENTOS CONSTRUTIVOS FIXOS E DAS INSTALAÇÕES PERMANENTES

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "3.1.1.1.2 PESO DOS ELEMENTOS CONSTRUTIVOS FIXOS E DAS INSTALAÇÕES PERMANENTES"

Transcrição

1 3 AÇÕES, SOLICITAÇÕES E RESISTÊNCIAS 3.1 TIPOS DE AÇÕES Na análise estrutural deve ser considerada a influência de todas as ações que possam produzir efeitos significativos para a segurança da estrutura em exame, levando-se em conta os possíveis estados limites últimos e os de serviço. As ações a considerar classificam-se de acordo com a ABNT NBR 8681 em: permanentes; variáveis; excepcionais AÇÕES PERMANENTES Ações permanentes são as que ocorrem com valores praticamente constantes durante toda a vida da construção. Também são consideradas como permanentes as ações que crescem no tempo, tendendo a um valor limite constante. As ações permanentes devem ser consideradas com seus valores representativos mais desfavoráveis para a segurança. As ações permanentes são constituídas pelas: ações permanentes diretas; ações permanentes indiretas AÇÕES PERMANENTES DIRETAS As ações permanentes diretas são constituídas pelos: peso próprio da estrutura; pesos dos elementos construtivos fixos e das instalações permanentes; empuxos permanentes PESO PRÓPRIO DA ESTRUTURA Nas construções correntes admite-se que o peso próprio da estrutura seja avaliado considerando a massa específica do material conforme estabelecido em PESO DOS ELEMENTOS CONSTRUTIVOS FIXOS E DAS INSTALAÇÕES PERMANENTES As massas específicas dos materiais de construção correntes podem ser avaliadas com base nos valores indicados na ABNT NBR Os pesos das instalações permanentes são considerados com os valores nominais indicados pelos respectivos fornecedores EMPUXOS PERMANENTES Consideram-se como permanentes os empuxos de terra e outros materiais granulosos quando forem admitidos não removíveis. Como representativos devem ser considerados os valores característicos Fk,sup ou Fk,inf conforme a ABNT NBR

2 AÇÕES PERMANENTES INDIRETAS As ações permanentes indiretas são constituídas pelas deformações impostas por: retração; fluência; deslocamentos de apoio; imperfeições geométricas RETRAÇÃO DO CONCRETO A deformação específica de retração do concreto deve ser calculada conforme indica o Anexo A da ABNT NBR Na grande maioria dos casos, permite-se que ela seja calculada simplificadamente através da Tabela 1.2, por interpolação. Essa tabela fornece o valor característico superior da deformação específica de retração entre os instantes t0 e t, cs(t,t0), em algumas situações usuais. Nos casos correntes das obras de concreto armado, em função da restrição à retração do concreto, imposta pela armadura, satisfazendo o mínimo especificado na ABNT NBR 6118, o valor de cs(t,t0) pode ser adotado igual a ( ) ( ) Equação 3.1 Esse valor admite elementos estruturais de dimensões usuais, entre 10 cm e 100 cm sujeitos a umidade ambiental não inferior a 75%. O valor característico inferior da retração do concreto é considerado nulo. Nos elementos estruturais permanentes submetidos a diferentes condições de umidade em faces opostas, admite-se variação linear da retração ao longo da espessura do elemento estrutural entre os dois valores correspondentes a cada uma das faces FLUÊNCIA DO CONCRETO As deformações decorrentes da fluência do concreto devem ser calculadas conforme indica o Anexo A da ABNT NBR 618. Nos casos em que a tensão c(t0) não varia significativamente, permite-se que essas deformações sejam calculadas simplificadamente pela expressão: ( ) ( ) [ ( ) ( ) ] Equação 3.2 ( ) onde: c(t,t0) é a deformação específica total do concreto entre os instantes t0 e t ; c(t0) é a tensão no concreto devida ao carregamento aplicado em t0; (t,t0) é o limite para o qual tende o coeficiente de fluência provocado por carregamento aplicado em t0; Eci(t0) é o módulo de elasticidade inicial do concreto no instante t0; e Eci(28) é o módulo de elasticidade inicial do concreto aos 28 dias. O valor de (t,t0) pode ser calculado por interpolação da Tabela 1.2. Essa Tabela fornece o valor característico 3-19

3 superior de (t,t0) em algumas situações usuais. O valor característico inferior de (t,t0) é considerado nulo DESLOCAMENTOS DE APOIO Os deslocamentos de apoio só devem ser considerados quando gerarem esforços significativos em relação ao conjunto das outras ações, isto é, quando a estrutura for hiperestática e muito rígida. O deslocamento de cada apoio deve ser avaliado em função das características físicas do correspondente material de fundação. Como representativo desses deslocamentos, devem ser considerados os valores característicos superiores, k,sup, calculados com avaliação pessimista da rigidez do material de fundação, correspondente, em princípio, à quantidade de 5% da respectiva distribuição de probabilidade. Os valores característicos inferiores podem ser considerados nulos. O conjunto desses deslocamentos constitui-se numa única ação, admitindo-se que todos eles sejam majorados pelo mesmo coeficiente de ponderação IMPERFEIÇÕES GEOMÉTRICAS Na verificação do estado limite último das estruturas reticuladas, devem ser consideradas as imperfeições geométricas do eixo dos elementos estruturais da estrutura descarregada. Essas imperfeições podem ser divididas em dois grupos: imperfeições globais; imperfeições locais AÇÕES VARIÁVEIS As ações variáveis são constituídas pelas: ações variáveis diretas; ações variáveis indiretas AÇÕES VARIÁVEIS DIRETAS As ações variáveis diretas são constituídas pelas: cargas acidentais 11 previstas para o uso da construção; ação do vento e da chuva. Todas as ações devem respeitar as prescrições feitas por Normas Brasileiras específicas CARGAS ACIDENTAIS PREVISTAS PARA O USO DA CONSTRUÇÃO As cargas acidentais correspondem normalmente a: cargas verticais de uso da construção; cargas móveis, considerando o impacto vertical; 11 O termo "cargas acidentais", embora bastante consagrado na engenharia brasileira de estruturas, não representa carregamento que provoque acidente, mas corresponde, apenas e tão somente, as "cargas não permanentes". Nos paises de língua inglesa, cargas acidentais (não permanentes) são definidas como "live loads" e cargas permanentes como "dead loads". 3-20

4 impacto lateral; força longitudinal de frenação ou aceleração; força centrífuga. Essas cargas devem ser dispostas nas posições mais desfavoráveis para o elemento estudado, ressalvadas as simplificações permitidas por Normas Brasileiras específicas AÇÃO DO VENTO Os esforços devidos à ação do vento devem ser considerados e recomenda-se que sejam determinados de acordo com o prescrito pela ABNT NBR 6123, permitindo-se o emprego de regras simplificadas previstas em Normas Brasileiras específicas AÇÃO DA ÁGUA O nível d'água, ou de outro líquido, adotado para cálculo de reservatórios, tanques, decantadores e outros deve ser igual ao máximo possível compatível com o sistema de extravasão, considerando apenas o coeficiente f = f3 =1,2 (ver 3.5 e 3.6). Nas estruturas em que a água de chuva possa ficar retida deve ser considerada a presença de uma lâmina de água correspondente ao nível da drenagem efetivamente garantida pela construção AÇÕES VARIÁVEIS DURANTE A CONSTRUÇÃO As estruturas em que todas as fases construtivas não tenham sua segurança garantida pela verificação da obra pronta, devem ter, incluídas no projeto, as verificações das fases construtivas mais significativas e sua influência na fase final. A verificação de cada uma dessas fases deve ser feita considerando a parte da estrutura já executada e as estruturas provisórias auxiliares com os respectivos pesos próprios. Além disso devem ser consideradas as cargas acidentais de execução AÇÕES VARIÁVEIS INDIRETAS As ações variáveis indiretas são constituídas pelas: variações uniformes de temperatura; variações não uniformes de temperatura VARIAÇÕES UNIFORMES DE TEMPERATURA A variação da temperatura da estrutura, causada globalmente pela variação da temperatura da atmosfera e pela insolação direta, é considerada uniforme. Ela depende do local de implantação da construção e das dimensões dos elementos estruturais que a compõem. De maneira genérica podem ser adotados os seguintes valores: para elementos estruturais cuja menor dimensão não seja superior a 50 cm, deve ser considerada uma oscilação de temperatura em torno da média de 10ºC a 15ºC; para elementos estruturais maciços ou ocos com os espaços vazios inteiramente fechados, cuja menor dimensão seja superior a 70 cm, admite-se que essa oscilação seja reduzida respectivamente para 5ºC a 10ºC; para elementos estruturais cuja menor dimensão esteja entre 50 cm e 70 cm admite-se que seja feita uma interpolação linear entre os valores acima indicados. A escolha de um valor entre esses dois limites pode ser feita considerando 50% da diferença entre as 3-21

5 temperaturas médias de verão e inverno, no local da obra. Em edifícios de vários andares devem ser respeitadas as exigências construtivas prescritas pela ABNT NBR 6118 para que sejam minimizados os efeitos das variações de temperatura sobre a estrutura da construção VARIAÇÕES NÃO UNIFORMES DE TEMPERATURA Nos elementos estruturais em que a temperatura possa ter distribuição significativamente diferente da uniforme, devem ser considerados os efeitos dessa distribuição. Na falta de dados mais precisos, pode ser admitida uma variação linear entre os valores de temperatura adotados, desde que a variação de temperatura considerada entre uma face e outra da estrutura não seja inferior a 5ºC AÇÕES DINÂMICAS Quando a estrutura, pelas suas condições de uso, está sujeita a choques ou vibrações, os respectivos efeitos devem ser considerados na determinação das solicitações e a possibilidade de fadiga deve ser considerada no dimensionamento dos elementos estruturais de acordo com a seção 23 da ABNT NBR AÇÕES EXCEPCIONAIS No projeto de estruturas sujeitas a situações excepcionais de carregamento, cujos efeitos não possam ser controlados por outros meios, devem ser consideradas ações excepcionais com os valores definidos, em cada caso particular, por Normas Brasileiras específicas. 3.2 TIPOS DE ESTRUTURAS Segundo a ABNT NBR 8681, as estruturas são classificadas como: grandes pontes; edificações tipo 1; edificações tipo GRANDES PONTES Grandes pontes são aquelas em que o peso próprio da estrutura supera 75% da totalidade das ações permanentes EDIFICAÇÕES TIPO 1 Edificações tipo 1 são aquelas onde as cargas acidentais superam 5 kn/m EDIFICAÇÕES TIPO 2 Edificações tipo 2 são aquelas onde as cargas acidentais não superam 5 kn/m VALORES DAS AÇÕES VALORES CARACTERÍSTICOS Os valores característicos Fk das ações são estabelecido em função da variabilidade de suas intensidades. 3-22

6 AÇÕES PERMANENTES Para as ações permanentes, os valores característicos devem ser adotados iguais aos valores médios das respectivas distribuições de probabilidade, sejam valores característicos superiores ou inferiores. Esses valores estão definidos na ABNT NBR 6118 ou em Normas Brasileiras específicas, como a ABNT NBR Alguns valores apresentados na ABNT NBR 6120, para peso específico de materiais de construção, correspondem a: blocos de argamassa kn/m 3 lajotas cerâmicas kn/m 3 tijolos furados kn/m 3 tijolos maciços kn/m 3 argamassa de cal, cimento e areia kn/m 3 argamassa de cimento e areia kn/m 3 concreto simples kn/m 3 concreto armado kn/m AÇÕES VARIÁVEIS Os valores característicos das ações variáveis, Fqk estabelecidos por consenso e indicados em Normas Brasileiras específicas, correspondem a valores que têm de 25% a 35% de probabilidade de serem ultrapassados no sentido desfavorável, durante um período de 50 anos, o que significa que o valor característico Fqk é o valor com período médio de retorno de 200 a 140 anos respectivamente. Esses valores estão definidos na ABNT NBR 6118 ou em Normas Brasileiras específicas, como a ABNT NBR Alguns valores apresentados na ABNT NBR 6120, para valores mínimos de cargas verticais, correspondem a: ginásios de esportes... 5,0 kn/m 2 lojas... 4,0 kn/m 2 restaurantes... 3,0 kn/m 2 escritórios... 2,0 kn/m 2 forros... 0,5 kn/m 2 edifícios residenciais dormitório, sala, copa, cozinha e banheiro... 1,5 kn/m 2 despensa, área de serviço e lavanderia... 2,0 kn/m 2 escadas com acesso ao público... 3,0 kn/m 2 sem acesso ao público... 2,5 kn/m VALORES REPRESENTATIVOS As ações são quantificadas por seus valores representativos, que podem ser: valores característicos conforme definido em 3.3.1; valores convencionais excepcionais, que são os valores arbitrados para as ações excepcionais; valores reduzidos, em função da combinação de ações, tais como: verificações de estados limites últimos, quando a ação considerada se combina com a ação principal. Os valores reduzidos são determinados a partir dos valores característicos pela expressão 0 Fk, que considera muito baixa a probabilidade de ocorrência simultânea dos valores característicos de duas ou mais ações variáveis de naturezas diferentes; e verificações de estados limites de serviço. Estes valores reduzidos são determinados a partir dos valores característicos pelas expressões 1 Fk e 2 Fk, que estimam valores freqüentes e quase permanentes, respectivamente, de uma ação que acompanha a ação principal. 3-23

7 3.3.3 VALORES DE CÁLCULO Os valores de cálculo Fd das ações são obtidos a partir dos valores representativos, multiplicando-os pelos respectivos coeficientes de ponderação f. 3.4 TIPOS DE CARREGAMENTO 12 Durante o período de vida da construção, podem ocorrer os seguintes tipos de carregamento: normal; especial; excepcional; de construção. Os tipos de carregamento podem ser de longa duração ou transitórios, conforme seu tempo de duração CARREGAMENTO NORMAL O carregamento normal decorre do uso previsto para construção. Admite-se que o carregamento normal possa ter duração igual ao período de referência da estrutura, e sempre deve ser considerado na verificação da segurança, tanto em relação a estados limites últimos quanto em relação a estados limites de serviço CARREGAMENTO ESPECIAL Um carregamento especial decorre da atuação de ações variáveis de natureza ou intensidade especiais, cujos efeitos superem em intensidade os efeitos produzidos pelas ações consideradas no carregamento normal. Os carregamentos especiais são transitórios, com duração muito pequena em relação ao período de referência da estrutura. Os carregamentos especiais são em geral considerados apenas na verificação da segurança em relação aos estados limites últimos, não se observando as exigências referentes aos estados limites de serviço CARREGAMENTO EXCEPCIONAL Um carregamento excepcional decorre da atuação de ações excepcionais que podem provocar efeitos catastróficos. Os carregamentos excepcionais somente devem ser considerados no projeto de estrutura de determinados tipos de construção, para os quais a ocorrência de ações excepcionais não possa ser desprezada e que, além disso, na concepção estrutural, não possam ser tomadas medidas que anulem ou atenuem a gravidade das conseqüências dos efeitos dessas ações. O carregamento excepcional é transitório, com duração extremamente curta. Com um carregamento do tipo excepcional, considera-se apenas a verificação da segurança em relação a estados limites últimos, através de uma única combinação última excepcional de ações CARREGAMENTO DE CONSTRUÇÃO O carregamento de construção é considerado apenas nas estruturas em que haja risco de ocorrência de estados limites, já durante a fase de construção. O carregamento de construção é transitório e sua duração deve ser definida em cada caso particular. Devem ser consideradas tantas combinações de ações quantas sejam necessárias para verificação das condições de segurança em relação a todos os estados limites que são de se temer durante a fase de construção. 3.5 COEFICIENTES DE PONDERAÇÃO DAS AÇÕES 12 O texto relativo a este capítulo é, basicamente, uma cópia do item da ABNT NBR

8 3.5.1 ESTADO LIMITE ÚLTIMO COEFICIENTES DE MAJORAÇÃO DE AÇÕES Quando se consideram estados limites últimos, os coeficientes f de ponderação (majoração) das ações podem ser considerados como o produto de dois outros, de tal forma que: Equação 3.3 onde 13 : f1 leva em conta a variabilidade das ações; e f3 considera os possíveis erros de avaliação dos efeitos das ações, seja por problemas construtivos, seja por deficiência do método de cálculo empregado. O desdobramento do coeficiente de segurança f em coeficientes parciais permite que os valores gerais estabelecidos para f possam ser discriminados em função de peculiaridades dos diferentes tipos de estruturas e de materiais de construção considerados. Tendo em vista as diversas ações levadas em conta no projeto, o índice do coeficiente f pode ser alterado para identificar a ação considerada, resultando os símbolos g, q e, de tal forma que: { (ações permanentes diretas) (ações permanentes indiretas) (ações variáveis diretas) (ações variáveis indiretas) Equação 3.4 Os coeficientes de ponderação para combinações últimas g, g, q e q são apresentados, em forma de tabelas, na ABNT NBR 8681, considerando: ações permanentes diretas consideradas separadamente (ABNT NBR 8681, Tabela 1); ações permanentes diretas agrupadas (ABNT NBR 8681, Tabela 2); efeitos de recalques de apoio e de retração dos materiais (ABNT NBR 8681, Tabela 3); ações variáveis consideradas separadamente (ABNT NBR 8681, Tabela 4); ações variáveis consideradas conjuntamente (ABNT NBR 8681, Tabela 5). A ABNT NBR 6118 procura sintetizar, na sua Tabela 11.1, os valores mais usados apresentados nas Tabelas 1 a 5 da ABNT NBR Por se tratar de uma tabela incompleta (não leva em conta os tipos de estrutura, não diferencia ações consideradas separadamente de ações agrupadas, não apresenta coeficientes para efeitos de temperatura, etc.) recomenda-se, sempre, o uso das tabelas da ABNT NBR Quando as ações permanentes diretas são agrupadas (Tabela 1 da ABNT NBR 8681) e as ações variáveis são consideradas conjuntamente (Tabela 5 da ABNT NBR 8681), os valores de g, g, q e q assumem os valores apresentados na Tabela , Tabela 3.2 e Tabela O coeficiente de combinação 0 faz o papel do terceiro coeficiente, que seria indicado por f2. 14 A Tabela 3.1, Tabela 3.2 e Tabela 3.3 foram construídas com base na afirmação contida no rodapé da Tabela 5 da ABNT NBR 8681: Quando as ações variáveis forem consideradas conjuntamente, o coeficiente de ponderação mostrado na tabela 5 se aplica a todas as ações, devendo-se considerar também conjuntamente as ações permanentes diretas. Nesse caso permite-se considerar separadamente as ações indiretas como recalque de apoio e retração dos materiais conforme tabela 3 e o efeito de temperatura conforme tabela

9 Combinações de ações Grandes pontes Ações Permanentes Variáveis Diretas (g) Indiretas ( g) Diretas (q) Indiretas ( q) D F D F D F D F Normais 1,3 1,0 1,2 0,0 1,5 0,0 1,2 0,0 Especiais ou de construção 1,2 1,0 1,2 0,0 1,3 0,0 1,0 0,0 Excepcionais 1,1 1,0 0,0 0,0 1,0 0,0 0,0 0,0 D desfavorável F favorável Tabela 3.1: ELU - Coeficientes f Grandes pontes - Ações permanentes diretas agrupadas e ações variáveis consideradas conjuntamente. Combinações de ações Edificações tipo 1 e pontes em geral Ações Permanentes Variáveis Diretas (g) Indiretas ( g) Diretas (q) Indiretas ( q) D F D F D F D F Normais 1,35 1,0 1,2 0,0 1,5 0,0 1,2 0,0 Especiais ou de construção 1,25 1,0 1,2 0,0 1,3 0,0 1,0 0,0 Excepcionais 1,15 1,0 0,0 0,0 1,0 0,0 0,0 0,0 D desfavorável F favorável Tabela 3.2: ELU - Coeficientes f Edificações tipo 1 e pontes em geral - Ações permanentes diretas agrupadas e ações variáveis consideradas conjuntamente. Combinações de ações Edificações tipo 2 Ações Permanentes Variáveis Diretas (g) Indiretas ( g) Diretas (q) Indiretas ( q) D F D F D F D F Normais 1,4 1,0 1,2 0,0 1,4 0,0 1,2 0,0 Especiais ou de construção 1,3 1,0 1,2 0,0 1,2 0,0 1,0 0,0 Excepcionais 1,2 1,0 0,0 0,0 1,0 0,0 0,0 0,0 D desfavorável F favorável Tabela 3.3: ELU - Coeficientes f Edificações tipo 2 - Ações permanentes diretas agrupadas e ações variáveis consideradas conjuntamente. O valor do coeficiente de ponderação, de cargas permanentes de mesma origem, num dado carregamento, deve ser o mesmo ao longo de toda estrutura. A única exceção é o caso da verificação da estabilidade como corpo rígido. 3-26

10 O valor do coeficiente de ponderação, para ações variáveis direta decorrentes de empuxos d'água, ou de outro líquido, adotado para cálculo de reservatórios, tanques, decantadores e outros deve ser considerando como sendo 1,2 (ver ) PILARES COM DIMENSÃO INFERIOR A 20 CM Em casos especiais, permite-se a consideração de pilares ou pilares-parede com dimensões entre 19 cm e 12 cm, desde que se multipliquem as ações a serem consideradas no dimensionamento por um coeficiente adicional (coeficiente de ajustamento) n apresentado na Tabela 3.4. Em qualquer caso não se permite pilar com seção transversal inferior a 360 cm 2. b (cm) n 1,00 1,05 1,10 1,15 1,20 1,25 1,30 1,35 onde: n = 1,95 0,05b (b em cm) b é a menor dimensão da seção transversal da parede ou pilar. nota: o coeficiente n deve majorar os esforços solicitantes finais de cálculo nos pilares, quando de seu dimensionamento. Tabela 3.4: Coeficiente n ELU FATORES DE COMBINAÇÃO DE AÇÕES A consideração da simultaneidade das ações variáveis é expressa pelo fator 0 da ABNT NBR 8681 e estão, resumidamente, apresentados na Tabela 3.5. O fator 0 pode ser representado por: Equação 3.5 Cargas acidentais de edifícios Vento Temperatura Passarelas e pontes Ações 0 Edificações residenciais, de acesso restrito 0,5 Edificações comerciais, de escritórios e de acesso público 0,7 Bibliotecas, arquivos, depósitos, oficinas e garagens 0,8 Pressão dinâmica do vento nas estruturas em geral 0,6 Variações uniformes de temperatura em relação à média anual local 0,6 Passarelas de pedestre 0,6 Pontes rodoviárias 0,7 Pontes ferroviárias não especializadas 0,8 Pontes ferroviárias especializadas 1,0 Vigas de rolamento de pontes rolantes 1,0 Tabela 3.5: Coeficiente f2 ELU ESTADO LIMITE DE SERVIÇO O coeficiente de ponderação das ações para estados limites de serviço é dado pela Equação 3.6 e tem valor variável conforme a verificação que se deseja fazer, Tabela

11 Equação 3.6 onde: f2 = 1,0 para combinações raras; f2 = 1 para combinações freqüentes; f2 = 2 para combinações quase permanentes. Cargas acidentais de edifícios Vento Temperatura Passarelas e pontes Ações 1 2 1), 2) Edificações residenciais, de acesso restrito 0,4 0,3 Edificações comerciais, de escritórios e de acesso público 0,6 0,4 Bibliotecas, arquivos, depósitos, oficinas e garagens 0,7 0,6 Pressão dinâmica do vento nas estruturas em geral 0,3 0,0 Variações uniformes de temperatura em relação à média anual local 0,5 0,3 Passarelas de pedestre 0,4 0,3 Pontes rodoviárias 0,5 0,3 Pontes ferroviárias não especializadas 0,7 0,5 Pontes ferroviárias especializadas 1,0 0,6 Vigas de rolamento de pontes rolantes 0,8 0,5 1) Para combinações excepcionais onde a ação principal for sismo, admite-se adotar para 2 o valor zero. 2) Para combinações excepcionais onde a ação principal for o fogo, o fator de redução 2 pode ser reduzido, multiplicando-o por 0,7. Tabela 3.6: Coeficiente f2 ELS. 3.6 COMBINAÇÕES DE AÇÕES Um carregamento é definido pela combinação das ações que têm probabilidades não desprezíveis de atuarem simultaneamente sobre a estrutura, durante um período pré-estabelecido. A combinação das ações deve ser feita de forma que possam ser determinados os efeitos mais desfavoráveis para a estrutura. A verificação da segurança em relação aos estados limites últimos e aos estados limites de serviço deve ser realizada em função de combinações últimas e combinações de serviço, respectivamente COMBINAÇÕES ÚLTIMAS Uma combinação última pode ser classificada em: normal; especial ou de construção; excepcional COMBINAÇÕES ÚLTIMAS NORMAIS Em cada combinação devem estar incluídas as ações permanentes e a ação variável principal, com seus valores característicos e as demais ações variáveis, consideradas como secundárias, com seus valores reduzidos de combinação, conforme ABNT NBR De modo geral, as combinações últimas usuais de ações deverão considerar: o esgotamento da capacidade resistente de elementos estruturais de concreto armado; 3-28

12 a perda de equilíbrio como corpo rígido ESGOTAMENTO DA CAPACIDADE RESISTENTE DE ELEMENTOS ESTRUTURAIS A equação para o cálculo de solicitações considerando o possível esgotamento da capacidade resistente de elementos estruturais de concreto armado pode ser representada por: ( ) Equação 3.7 onde: Fd Fgk F gk Fq1k Fqjk F qk g g q é o valor de cálculo das ações para combinação última. representa as ações permanentes diretas (valor característico): peso próprio da estrutura; peso dos elementos construtivos fixos das instalações permanentes; e empuxos permanentes. representa as ações permanentes indiretas (valor característico): retração do concreto; fluência do concreto; deslocamentos de apoio; e imperfeições geométricas. representa a ação variável direta considerada como principal (valor característico). representa as ações variáveis diretas das quais Fq1k é escolhida principal (valor característico): cargas acidentais; ação do vento; e ação da água. representa as ações variáveis indiretas (valor característico): variações uniformes de temperatura; e variações não uniformes de temperatura. representa o coeficiente de ponderação para ações permanentes diretas: Grandes pontes (Tabela 3.1): 1,3 para combinação desfavorável; 1,0 para combinação favorável. Edificações tipo 1 e pontes em geral (Tabela 3.2): 1,35 para combinação desfavorável; e 1,0 para combinação favorável. Edificações tipo 2 (Tabela 3.3): 1,4 para combinação desfavorável; e 1,0 para combinação favorável. representa o coeficiente de ponderação para ações permanentes indiretas (Tabela 3.1, Tabela 3.2 e Tabela 3.3): 1,2 para combinação desfavorável; e 0,0 para combinação favorável. representa o coeficiente de ponderação para ações variáveis diretas: Grandes pontes (Tabela 3.1): 1,5 para combinação desfavorável; e 0,0 para combinação favorável. Edificações tipo 1 e pontes em geral (Tabela 3.2): 1,5 para combinação desfavorável; e 0,0 para combinação favorável. Edificações tipo 2 (Tabela 3.3): 1,4 para combinação desfavorável; e 3-29

13 0,0 para combinação favorável. q representa o coeficiente de ponderação para ações variáveis indiretas (Tabela 3.1, Tabela 3.2 e Tabela 3.3): 1,2 para combinação desfavorável; e 0,0 para combinação favorável. 0j representa o fator de redução de combinação para ações variáveis diretas (Tabela 3.5): 0,5 para cargas acidentais de edifícios residenciais; 0,7 para cargas acidentais de edifícios comerciais ou de escritórios; 0,8 para bibliotecas, arquivos, oficinas e garagens; e 0,6 para o vento. 0 representa o fator de redução de combinação para ações variáveis indiretas (Tabela 3.5): 0,6 para variações uniformes de temperatura. No caso geral, devem ser consideradas inclusive combinações onde o efeito favorável das cargas permanentes seja reduzido pela consideração de g = 1,0. No caso de estruturas usuais de edifícios essas combinações que consideram g reduzido (1,0) não precisam ser consideradas. Deve ser observado que a Equação 3.7 não considera a ação variável indireta (temperatura) como possível de ser a ação principal dentre as ações variáveis (diretas ou indiretas). Caso os efeitos de temperatura (F qk) venham a se constituir em fator altamente significativo para a determinação dos esforços em estruturas, constituindo-se numa possível ação variável principal, a seguinte equação deve também ser verificada: Equação CARGAS DE FUNDAÇÕES A capacidade de carga 15 de fundações superficiais (sapatas) ou de fundações profundas (estacas ou tubulões), de modo geral, são definidas por tensões admissíveis (fundações superficiais) ou cargas admissíveis (fundações profundas). Essas tensões ou cargas admissíveis incluem coeficientes (fatores) de segurança que minoram as resistências dos elementos de fundação. Segundo a Tabela 1 da ABNT NBR 6122, os fatores de segurança globais mínimos correspondem a: capacidade de carga de fundações superficiais 3,0 capacidade de carga de estacas ou tubulões sem prova de carga 2,0 capacidade de carga de estacas ou tubulões com prova de carga 1,6 Os valores das solicitações correspondentes às reações de apoio a serem suportadas por elementos de fundação, decorrentes das combinações de ações estabelecidas pela Equação 3.7 (estado limite último), consideram coeficientes de ponderação (majoração) variáveis de acordo com a natureza das ações. Se as reações de apoio a serem suportadas por elementos de fundação, definidas pela Equação 3.7 do estado limite último, forem usadas diretamente nos projetos de fundações superficiais ou profundas, baseados no critério das tensões ou cargas admissíveis, haverá um confronto de critérios de segurança, pois: o critério do estado limite último usa coeficientes de segurança diferenciados tanto para as solicitações (ações) como para as resistências dos materiais; o critério das tensões ou cargas admissíveis usa um único coeficiente de segurança global envolvendo tanto as solicitações (ações) com as resistências dos materiais. Portanto, para que não ocorra confronto entre critérios de segurança, a aplicação do critério das tensões ou 15 A ABNT NBR 6122 estabelece dois modos de verificação de segurança. O cálculo empregando fator de segurança global (tensões e cargas admissíveis) e o cálculo empregando-se fatores de segurança parciais (estado limite último). O primeiro é quase que o único utilizado. 3-30

14 cargas admissíveis nas fundações superficiais ou profundas implica na necessidade das solicitações resultantes das combinações de ações atuantes na estrutura serem consideradas sem coeficientes de ponderação (majoração). Por outro lado, a probabilidade de ocorrência simultânea de diferentes ações variáveis (cargas acidentais, vento, temperatura, etc.), representada pelo coeficiente 0, deve ser considerada. Desta forma, a equação para a definição das reações de apoio a serem suportadas por elementos de fundação superficiais ou profundas, que empregam fator se segurança global (tensões ou cargas admissíveis), corresponde a: ( ) Equação 3.9 A Figura 3.1 mostra as solicitações decorrentes das diversas combinações de ações, a serem usadas na verificação da capacidade do terreno de fundação superficial (sapata). A força normal Nz, sendo de compressão, tem o sentido indicado na Figura. Os momentos fletores Mx e My, bem como as forças horizontais Hx e Hy dependem das combinações das ações (direção do vento, por exemplo) e podem assumir tanto valores positivos como negativos. Figura 3.1: Solicitações em sapatas de concreto armado. Deve-se tomar muito cuidado com a manipulação da Equação 3.7 e da Equação 3.9. No caso específico da Figura 3.1, a Equação 3.7 deve ser usada para o dimensionamento da sapata de concreto armado, ao passo que a Equação 3.9 seria a usada para a verificação da capacidade do terreno de fundação. EXEMPLO 3.1 Definir a equação de cálculo das ações para a combinação última normal (Fd) de estruturas de edifícios comerciais onde os carregamentos são resultantes de combinações que só levam em consideração as ações permanentes diretas (peso próprio da estrutura, paredes, caixa d'água, etc.) e ações variáveis diretas (cargas acidentais e vento). Considerar o esgotamento da capacidade resistente de edificações tipo 2 para: carregamentos gerais desfavoráveis; efeito favorável das cargas permanentes. Estabelecer, também, as equações de cálculo a serem usadas em projeto de fundação. Solução: Para a combinação última normal, deverão ser usados, para a Equação 3.7, os valores da Tabela 3.3 e 3-31

15 da Tabela 3.5. Para o projeto de fundações diretas, deverá ser usada a Equação 3.9. Fgk: Fqk,acid: Fqk,vento: g: q: Gk (valor característico da ação permanente direta) Qk (valor característico da ação variável direta carga acidental) Wk (valor característico da ação variável direta vento) 1,4 (combinação normal, ação permanente direta desfavorável) 1,0 (combinação normal, ação permanente direta favorável) 1,4 (combinação normal, ação variável direta desfavorável geral) 0,0 (combinação normal, ação variável direta favorável) 0: 0,7 (carga acidental de edifício comercial - desfavorável) 0,0 (carga acidental de edifício comercial - favorável) 0: 0,6 (vento - desfavorável) 0,0 (vento - favorável) a) Ação permanente direta desfavorável (g =1,4) ( ) Fd = 1,4 Gk + 0,0 (Qk + 0,0 Wk) Fd = 1,4 Gk Fd = 1,4 Gk + 1,4 (Qk + 0,0 Wk) Fd = 1,4 Gk + 1,4 Qk Fd = 1,4 Gk + 1,4 (Qk + 0,6 Wk) Fd = 1,4 Gk + 1,4 Qk + 0,84 Wk Fd = 1,4 Gk + 1,4 (Wk + 0,0 Qk) Fd = 1,4 Gk + 1,4 Wk Fd = 1,4 Gk + 1,4 (Wk + 0,7 Qk) Fd = 1,4 Gk + 1,4 Wk + 0,98 Qk b) Ação permanente direta favorável (g =1,0) ( ) Fd = 1,0 Gk + 0,0 (Qk + 0,0 Wk) Fd = 1,0 Gk Fd = 1,0 Gk + 1,4 (Qk + 0,0 Wk) Fd = 1,0 Gk + 1,4 Qk Fd = 1,0 Gk + 1,4 (Qk + 0,6 Wk) Fd = 1,0 Gk + 1,4 Qk + 0,84 Wk Fd = 1,0 Gk + 1,4 (Wk + 0,0 Qk) Fd = 1,0 Gk + 1,4 Wk Fd = 1,0 Gk + 1,4 (Wk + 0,7 Qk) Fd = 1,0 Gk + 1,4 Wk + 0,98 Qk c) Ação para projeto de fundação ( ) Fd = Gk + 0,0 (Qk + Wk) Fd = Gk Fd = Gk + (Qk + 0,0 Wk) Fd = Gk + Qk Fd = Gk + (Qk + 0,6 Wk) Fd = Gk + Qk + 0,6 Wk Fd = Gk + (Wk + 0,0 Qk) Fd = Gk + Wk Fd = Gk + (Wk + 0,7 Qk) Fd = Gk + Wk + 0,7 Qk d) Observações: I. Vento Todas as equações que envolvem o vento (Wk) equivalem a quatro, ou seja o vento tem que ser considerado atuando nas duas direções principais da estrutura (da esquerda para direita, da direita para a esquerda, de baixo para cima e de cima para baixo). Isto vale dizer que haveria 14 combinações possíveis de ações (carregamentos) para o item a e mais 14 combinações para o item b. O total corresponderia a 28 possíveis combinações de ações (carregamentos) para a consideração do estado limite último - combinação normal. 3-32

16 II. Verificação da fundação direta Também para o projeto de fundação haveria outras 14 combinações de ações, dependentes das direções do vento. A planilha para fornecimento das ações possíveis de atuarem nos elementos de fundação, para cada um deles (cada pilar), tem o aspecto mostrado a seguir. É importante observar que as 14 combinações de ações, individualmente, têm que ser verificadas. A combinação de valores da tabela, como por exemplo valores máximos, não deve ser incluída como outros casos possíveis de combinação de ações. Sapata (Bloco) nº... Nz Mx My Hx Hy Cp cp + ca cp + ca + (0,6 vt1) cp + ca + (0,6 vt2) cp + ca + (0,6 vt3) cp + ca + (0,6 vt4) cp + vt1 cp + vt2 cp + vt3 cp + vt4 cp + vt1 + (0,7 ca) cp + vt2 + (0,7 ca) cp + vt3 + (0,7 ca) cp + vt4 + (0,7 ca) cp: carga permanente ca: carga acidental vt: vento III. Estruturas usuais de edifícios Caso a estrutura venha a ser considerada como usual, os efeitos decorrentes das ações permanentes diretas favoráveis (g =1,0) não precisam ser considerados. Isto vale dizer que todo o item b poderia ser desconsiderado. IV. Carregamentos obrigatórios em estruturas As ações (carregamentos) consideradas neste exemplo (cargas permanentes, cargas acidentais e vento) constituem as ações obrigatórias de serem consideradas em todas as estruturas. Para qualquer tipo de estrutura, a ação do vento tem que ser considerada. Incluindo a definição dos carregamentos nos elementos de fundação, são necessárias 42 combinações de ações para o projeto estrutural de um edifício de concreto armado. A consideração de ações indiretas (fluência, retração, recalques de apoio, temperatura, etc.) elevaria bem mais este valor. 3-33

17 PERDA DE EQUILÍBRIO COMO CORPO RÍGIDO A equação para a verificação da perda de equilíbrio como corpo rígido pode ser representada por: ( ) ( ) ( ) Equação 3.10 onde: S(Fsd) é o valor de cálculo das solicitações estabilizantes. S(Fnd) é o valor de cálculo das solicitações não estabilizantes. Fsd representa as ações estabilizantes (valor de cálculo). Fnd representa as ações não estabilizantes (valor de cálculo). Rd é o esforço resistente considerado como estabilizante, quando houver. Gsk é o valor característico da ação permanente estabilizante. Gnk é o valor característico da ação permanente instabilizante. Q1k é o valor característico da ação variável instabilizante considerada como principal. Qjk é o valor característico da ação variável instabilizante. Qs,min é o valor característico mínimo da ação variável estabilizante que acompanha obrigatoriamente uma ação variável instabilizante. gs representa o coeficiente de ponderação para ações permanentes diretas estabilizante: 1,0 para combinação favorável. gn representa o coeficiente de ponderação para ações permanentes diretas instabilizante: valores das Tabelas 1 e 2 da ABNT NBR q representa o coeficiente de ponderação para ações variáveis diretas instabilizante: valores das Tabelas 4 e 5 da ABNT NBR qs representa o coeficiente de ponderação da ação variável estabilizante que acompanha obrigatoriamente uma ação variável instabilizante: usar o valor que conduza ao máximo Fnd. 0j representa o fator de redução de combinação para ações variáveis diretas instabilizantes: usar valores que levem em conta a simultaneidade das ações. EXEMPLO 3.2 Verificar as condições de segurança quanto ao tombamento da barragem de rejeito abaixo representada. Considerar: massa específica do concreto da barragem igual a 2200 kg/m 3 ; massa específica do material de rejeito igual 1300 kg/m 3. Solução: Deverá ser verificada a condição de perda de equilíbrio como corpo rígido da barragem. Para tal 3-34

18 deverão ser calculados o momento estabilizante [S(Fsd)] e o momento não estabilizantes [S(Fnd)] em relação ao pé da barragem (ponto A). A barragem será segura se [S(Fsd)] [S(Fnd)]. Deverão ser usados, para a Equação 3.10, as seguintes notações e os seguintes valores para as ações e coeficientes: Gsk = Gpp,bar (peso próprio da barragem - ação característica estabilizante) Q1k = Erej (empuxo do material de rejeito - ação característica não Fsd = gs Gsk = gs Gpp,bar (valor de cálculo da ação estabilizante) Fnd = q Q1k = q Erej (valor de cálculo da ação não estabilizante) gs = 1,0 (combinação normal, ação permanente direta favorável) q = 1,2 (ver ) a) Massas específicas e pesos específicos do concreto e do material de rejeito (valores característicos) conc = kg/m 3 pconc = N/m 3 = 22 kn/m 3 rej = kg/m 3 prej = N/m 3 = 13 kn/m 3 b) Ação permanente estabilizante (peso próprio da barragem) c) Ação variável não estabilizante (empuxo do material de rejeito) d) Solicitações de cálculo (momentos referentes ao pé da barragem - ponto A) 3-35

19 ( ) ( ) e) Condição de segurança ( ) ( ) ( ) ( ) Barragem segura f) Consideração do material de rejeito como sólido Como o peso próprio da estrutura supera em 75% peso total das ações permanentes deve ser considerado para q o valor 1,5 (Tabela 5 da ABNT NBR 8681). I. Ação variável não estabilizante (empuxo do material de rejeito) II. Solicitações de cálculo (momentos referentes ao pé da barragem ponto A) 3-36

20 ( ) ( ) III. Condição de segurança ( ) ( ) ( ) ( ) Barragem NÃO segura COMBINAÇÕES ÚLTIMAS ESPECIAIS OU DE CONSTRUÇÃO Em cada combinação devem estar presentes as ações permanentes e a ação variável especial, quando existir, com seus valores característicos e as demais ações variáveis com probabilidade não desprezível de ocorrência simultânea, com seus valores reduzidos de combinação, conforme ABNT NBR As combinações últimas de ações deverão considerar o esgotamento da capacidade resistente de elementos estruturais. A equação para o cálculo de solicitações pode ser representada por: ( ) Equação 3.11 onde: Fd Fgk F gk Fq1k Fqjk F qk g é o valor de cálculo das ações para combinação última. representa as ações permanentes diretas, para a situação transitória considerada (valor característico). peso próprio parcial da estrutura; peso dos elementos construtivos transitórios; empuxos transitórios. representa as ações permanentes indiretas, para a situação transitória considerada (valor característico). retração parcial do concreto; fluência parcial do concreto; e deslocamentos de apoio. representa a ação variável direta principal (especial, se for o caso), para a situação transitória considerada (valor característico). representa as demais ações variáveis diretas que podem agir concomitantemente com a ação principal Fq1k (valor característico): ações variáveis transitórias durante a construção; e demais ações variáveis diretas (vento, água, etc.). representa as ações variáveis indiretas que podem agir concomitantemente com a ação principal Fq1k (valor característico). variações de temperatura. representa o coeficiente de ponderação para ações permanentes diretas: Grandes pontes (Tabela 3.1): 1,2 para combinação desfavorável; e 1,0 para combinação favorável. Edificações tipo 1 e pontes em geral (Tabela 3.2): 1,25 para combinação desfavorável; e 1,0 para combinação favorável. Edificações tipo 2 (Tabela 3.3): 1,3 para combinação desfavorável; e 1,0 para combinação favorável. 3-37

21 g representa o coeficiente de ponderação para ações permanentes indiretas (Tabela 3.1, Tabela 3.2 e Tabela 3.3): 1,2 para combinação desfavorável; e 0,0 para combinação favorável. q representa o coeficiente de ponderação para ações variáveis diretas: Grandes pontes (Tabela 3.1): 1,3 para combinação desfavorável; e 0,0 para combinação favorável. Edificações tipo 1 e pontes em geral (Tabela 3.2): 1,3 para combinação desfavorável; e 0,0 para combinação favorável. Edificações tipo 2 (Tabela 3.3): 1,2 para combinação desfavorável; e 0,0 para combinação favorável. q representa o coeficiente de ponderação para ações variáveis indiretas (Tabela 3.1, Tabela 3.2 e Tabela 3.3): 1,0 para combinação desfavorável; 0,0 para combinação favorável. 0j 16 representa o fator de redução de combinação para ações variáveis diretas que podem agir concomitantemente com a ação principal Fq1k, durante a situação transitória. Este fator deverá ser igual aos valores adotados nas combinações normais (Tabela 3.5), salvo quando a ação principal Fq1k tiver um tempo de atuação muito pequeno ou probabilidade de ocorrência muito baixa, caso em que 0j pode ser tomado com o correspondente 2j (Tabela 3.6): 0,5 ou 0,3 para cargas acidentais de edifícios residenciais; 0,7 ou 0,4 para cargas acidentais de edifícios comerciais ou de escritórios; 0,8 ou 0,6 para bibliotecas, arquivos, oficinas e garagens; e 0,6 ou 0,0 para o vento. 0 representa o fator de redução de combinação para ações variáveis indiretas que podem agir concomitantemente com a ação principal Fq1k, durante a situação transitória. Este fator deverá ser igual aos valores adotados nas combinações normais (Tabela 3.5), salvo quando a ação principal Fq1k tiver um tempo de atuação muito pequeno ou probabilidade de ocorrência muito baixa, caso em que 0 pode ser tomado com o correspondente 2 (Tabela 3.6): 0,6 ou 0,3 para variações uniformes de temperatura. Deve ser observado, que a Equação 3.11 não considera a ação variável indireta (temperatura) como possível de ser a ação principal dentre as ações variáveis (diretas ou indiretas). Caso os efeitos de temperatura (F qk) venham a se constituir em fator altamente significativo para a determinação dos esforços em estruturas, constituindo-se numa possível ação variável principal, a seguinte equação deve também ser verificada: Equação COMBINAÇÕES ÚLTIMAS EXCEPCIONAIS Em cada combinação devem figurar as ações permanentes e a ação variável excepcional, quando existir, com seus valores representativos e as demais ações variáveis com probabilidade não desprezível de ocorrência simultânea, com seus valores reduzidos de combinação, conforme ABNT NBR Nesse caso se enquadram, entre outras, sismo, incêndio e colapso progressivo. As combinações últimas de ações deverão considerar o esgotamento da capacidade resistente de elementos 16 A ABNT NBR 8681 define este fator como 0,ef. Como a ABNT NBR 6118 não faz distinção de valores 0, a Equação 3.7 (combinação última normal) e a Equação 3.11 (combinação última especial ou de construção) são iguais na apresentação, embora com significados diferentes na aplicação. 3-38

22 estruturais. A equação 17 para o cálculo de solicitações pode ser representada por: Equação 3.13 onde: Fd é o valor de cálculo das ações para combinação última. Fgk representa as ações permanentes diretas, para a situação transitória considerada (valor característico). peso próprio parcial da estrutura; peso dos elementos construtivos transitórios; e empuxos transitórios. Fq1exc representa a ação variável transitória excepcional (valor característico). Fqjk representa as ações variáveis diretas que podem agir concomitantemente com a ação excepcional Fq1exc (valor característico). ações variáveis transitórias; e demais ações variáveis diretas (vento, água, etc.). g representa o coeficiente de ponderação para ações permanentes diretas: Grandes pontes (Tabela 3.1: ELU - Coeficientes f Grandes pontes - Ações permanentes diretas agrupadas e ações variáveis consideradas conjuntamente.): 1,1 para combinação desfavorável; e 1,0 para combinação favorável. Edificações tipo 1 e pontes em geral (Tabela 3.2: ELU - Coeficientes f Edificações tipo 1 e pontes em geral - Ações permanentes diretas agrupadas e ações variáveis consideradas conjuntamente.): 1,15 para combinação desfavorável; e 1,0 para combinação favorável. Edificações tipo 2 (Tabela 3.3): 1,2 para combinação desfavorável; e 1,0 para combinação favorável. q representa o coeficiente de ponderação para ações variáveis diretas Grandes pontes (Tabela 3.1): 1,0 para combinação desfavorável; e 0,0 para combinação favorável. Edificações tipo 1 e pontes em geral (Tabela 3.2): 1,0 para combinação desfavorável; e 0,0 para combinação favorável. Edificações tipo 2 (Tabela 3.3): 1,0 para combinação desfavorável; e 0,0 para combinação favorável. 0j representa o fator de redução de combinação para ações variáveis diretas que podem agir concomitantemente com a ação excepcional Fq1exc, durante a situação transitória. Este fator deverá ser igual aos valores adotados nas combinações normais (Tabela 3.5), salvo quando a ação excepcional Fq1exc tiver um tempo de atuação muito pequeno ou probabilidade de ocorrência muito baixa, caso em que 0j pode ser tomado com o correspondente 2j (Tabela 3.6). 0,5 ou 0,3 para cargas acidentais de edifícios residenciais; 17 A equação apresentada pela ABNT NBR 6118 contém os termos Fgk e Fqk, o que não faz sentido pois os coeficientes g e q são nulos (Tabela 3.1: ELU - Coeficientes f Grandes pontes - Ações permanentes diretas agrupadas e ações variáveis consideradas conjuntamente., Tabela 3.2: ELU - Coeficientes f Edificações tipo 1 e pontes em geral - Ações permanentes diretas agrupadas e ações variáveis consideradas conjuntamente. e Tabela 3.3: ELU - Coeficientes f Edificações tipo 2 - Ações permanentes diretas agrupadas e ações variáveis consideradas conjuntamente. 3-39

23 0,7 ou 0,4 para cargas acidentais de edifícios comerciais ou de escritórios; 0,8 ou 0,6 para bibliotecas, arquivos, oficinas e garagens; e 0,6 ou 0,0 para o vento COMBINAÇÕES DE SERVIÇO As combinações de serviço são classificadas de acordo com sua permanência na estrutura e devem ser verificadas como estabelecido a seguir: quase permanentes; freqüentes; raras COMBINAÇÕES QUASE PERMANENTES DE SERVIÇO São combinações que podem atuar durante grande parte do período de vida da estrutura e sua consideração pode ser necessária na verificação do estado limite de deformações excessivas. Nas combinações quase permanentes de serviço, todas as ações variáveis são consideradas com seus valores quase permanentes 2 Fqk. A equação para o cálculo de solicitações pode ser representada por: Equação 3.14 onde: Fd,ser é o valor de cálculo das ações para combinações de serviço. Fgk representa as ações permanentes diretas (valor característico): peso próprio da estrutura; peso dos elementos construtivos fixos das instalações permanentes; e empuxos permanentes. Fqjk representa as ações variáveis diretas (valor característico): cargas acidentais; ação do vento; e ação da água. 2j representa o fator de redução de combinação quase permanente para as ações variáveis diretas (Tabela 3.6): 0,3 para cargas acidentais de edifícios residenciais; 0,4 para cargas acidentais de edifícios comerciais ou de escritórios; 0,6 para bibliotecas, arquivos, oficinas e garagens; e 0,0 para o vento COMBINAÇÕES FREQÜENTES DE SERVIÇO São combinações que se repetem muitas vezes durante o período de vida da estrutura e sua consideração pode ser necessária na verificação dos estados limites de formação de fissuras, de abertura de fissuras e de vibrações excessivas. Podem também ser consideradas para verificações de estados limites de deformações excessivas decorrentes de vento ou temperatura que podem comprometer as vedações. Nas combinações freqüentes de serviço, a ação variável principal Fq1 é tomada com seu valor freqüente 1 Fq1k e todas as demais ações variáveis são tomadas com seus valores quase permanentes 2 Fqk. A equação para o cálculo de solicitações pode ser representada por: 3-40

24 Equação 3.15 onde: Fd,ser é o valor de cálculo das ações para combinações de serviço. Fgk representa as ações permanentes diretas (valor característico): peso próprio da estrutura; peso dos elementos construtivos fixos das instalações permanentes; e empuxos permanentes. Fq1k representa a ação variável direta considerada como principal (valor característico). Fqjk representa as ações variáveis diretas das quais Fq1k é escolhida principal (valor característico): cargas acidentais; ação do vento; e ação da água. 1 representa o fator de redução de combinação frequente para a ação variável direta principal Tabela 3.6): 0,4 para cargas acidentais de edifícios residenciais; 0,6 para cargas acidentais de edifícios comerciais ou de escritórios; 0,7 para bibliotecas, arquivos, oficinas e garagens; e 0,3 para o vento. 2j representa o fator de redução de combinação quase permanente para as ações variáveis diretas (Tabela 3.6): 0,3 para cargas acidentais de edifícios residenciais; 0,4 para cargas acidentais de edifícios comerciais ou de escritórios; 0,6 para bibliotecas, arquivos, oficinas e garagens; e 0,0 para o vento COMBINAÇÕES RARAS DE SERVIÇO São combinações que ocorrem algumas vezes durante o período de vida da estrutura e sua consideração pode ser necessária na verificação do estado limite de formação de fissuras. Nas combinações raras de serviço, a ação variável principal Fq1 é tomada com seu valor característico Fq1k e todas as demais ações são tomadas com seus valores frequentes 1 Fqk. A equação para o cálculo de solicitações pode ser representada por: Equação 3.16 onde: Fd,ser é o valor de cálculo das ações para combinações de serviço. Fgk representa as ações permanentes diretas (valor característico): peso próprio da estrutura; peso dos elementos construtivos fixos das instalações permanentes; e empuxos permanentes. Fq1k representa a ação variável direta considerada como principal (valor característico). Fqjk representa as ações variáveis diretas das quais Fq1k é escolhida principal (valor característico): cargas acidentais; ação do vento; e ação da água. 1 representa o fator de redução de combinação frequente para a ação variável direta principal Tabela 3.6): 0,4 para cargas acidentais de edifícios residenciais; 3-41

25 0,6 para cargas acidentais de edifícios comerciais ou de escritórios; 0,7 para bibliotecas, arquivos, oficinas e garagens; e 0,3 para o vento. EXEMPLO 3.3 Definir as equações cálculo das ações para as combinações de serviço (Fd,ser) de estruturas de edifícios residenciais onde os carregamentos são resultantes de combinações que só levam em consideração as ações permanentes diretas (peso próprio da estrutura, paredes, caixa d'água, etc.) e ações variáveis diretas (cargas acidentais e vento). Solução: Deverá ser usada a Equação 3.14 para a combinação quase permanente, a Equação 3.15 para a combinação frequente e a Equação 3.16 para a combinação rara. Os valores de 1 e 2 são os constantes da Tabela 3.6. Fgk: Fqk,acid: Fqk,vento: a) Combinação quase permanente Gk (valor característico da ação permanente direta) Qk (valor característico da ação variável direta carga acidental) Wk (valor característico da ação variável direta vento) 1: 0,4 (carga acidental de edifício residencial - desfavorável) 0,0 (carga acidental de edifício residencial - favorável) 2: 0,3 (carga acidental de edifício residencial - desfavorável) 0,0 (carga acidental de edifício residencial - favorável) 1: 0,3 (vento - desfavorável) 0,0 (vento - favorável) 2: 0,0 (vento - desfavorável) 0,0 (vento - favorável) Fd,ser = Gk + 0,3 Qk + 0,0 Wk Fd,ser = Gk + 0,3 Qk b) Combinação frequente Fd,ser = Gk + 0,4 Qk + 0,0 Wk Fd,ser = Gk + 0,4 Qk Fd,ser = Gk + 0,3 Wk + 0,3 Qk Fd,ser = Gk + 0,3 Wk + 0,3 Qk c) Combinação rara Fd,ser = Gk + Qk + 0,3 Wk Fd,ser = Gk + Qk + 0,3 Wk Fd,ser = Gk + Wk + 0,4 Qk Fd,ser = Gk + Wk + 0,4 Qk Todas as equações que envolvem o vento (Wk) equivalem a quatro, ou seja, o vento tem que ser considerado atuando nas duas direções principais da estrutura (da esquerda para direita, da direita para a esquerda, de baixo para cima e de cima para baixo). Isto vale dizer que haveria 5 combinações possíveis de ações (carregamentos) para a combinação frequente e 8 combinações possíveis para a combinação rara. 3.7 SOLICITAÇÕES E TENSÕES DE CÁLCULO 3-42

26 As solicitações (esforços), decorrentes das ações atuantes em elementos estruturais, classificam-se em: Solicitações normais, caracterizadas pelos momentos fletores (M) e forças normais de (N), e Solicitações de cisalhamento, caracterizadas pelos momentos torçores (T) e forças cortantes (V). As tensões, também decorrentes das ações, classificam-se em: Tensões normais (), relacionadas aos momentos fletores (M) e forças normais (N), e Tensões de cisalhamento (), relacionadas aos momentos torçores (T) e forças cortantes (V). Como as ações a serem consideradas no projeto estrutural correspondem às ações de cálculo (ações combinadas), as solicitações e as tensões deverão, também, ser representadas pelos seus valores de cálculo. Desta, forma, para efeito de dimensionamento e verificação de elementos estruturais os valores das solicitações e tensões a serem considerados são: Solicitações e tensões normais: MSd momento fletor solicitante de cálculo; NSd força normal solicitante de cálculo; e Sd tensão normal solicitante de cálculo. Solicitações e tensões de cisalhamento: TSd momento torçor solicitante de cálculo; VSd força cortante solicitante de cálculo; e Sd tensão de cisalhamento solicitante de cálculo. EXEMPLO 3.4 Determinar, para a viga abaixo indicada, a envoltória do diagrama de momentos fletores solicitantes de cálculo (MSd), considerando ações diretas, estado limite último, combinações últimas normais, edificação tipo 2 e peso próprio desprezível. Admitir: a) estrutura qualquer, onde as combinações das ações que consideram o efeito favorável das cargas permanentes (g = 1,0) precisam ser consideradas; e b) estrutura usual de edifício onde as combinações das ações que consideram o efeito favorável das cargas permanentes (g = 1,0) não precisam ser consideradas (ver ). Solução: Deverão ser usados, para a Equação 3.7, os seguintes valores para as ações e coeficientes (Tabela 3.3 edificação tipo 2): ( ) Fgk = Gk = 10 kn (valor característico da ação permanente direta) Fq1k = Qk = 5 kn (valor característico da ação variável direta principal) g = 1,4 (combinação normal, ação permanente direta desfavorável) g = 1,0 (combinação normal, ação permanente direta favorável) q = 1,4 (combinação normal, ação variável direta desfavorável geral) q = 0,0 (combinação normal, ação variável direta favorável geral) Para o caso a, deverão ser consideradas as seguintes combinações: 3-43

27 Fd = 1,4 Gk + 0,0 Qk (permanente desfavorável + ação variável favorável) Fd = 1,4 Gk + 1,4 Qk (permanente desfavorável + variável desfavorável geral) Fd = 1,0 Gk + 0,0 Qk (permanente favorável + ação variável favorável) Fd = 1,0 Gk + 1,4 Qk (permanente favorável + variável desfavorável geral) Para o caso b, deverão ser consideradas as seguintes combinações: Fd = 1,4 Gk + 0,0 Qk (permanente desfavorável + ação variável favorável) Fd = 1,4 Gk + 1,4 Qk (permanente desfavorável + variável desfavorável geral) a) Consideração do efeito favorável da ação permanente I. Fd = 1,4 Gk + 0,0 Qk II. Fd = 1,4 Gk + 1,4 Qk III. Fd = 1,0 Gk + 0,0 Qk IV. Fd = 1,0 Gk + 1,4 Qk V. Envoltória MSd 3-44

28 b) Não consideração do efeito favorável da ação permanente I. Fd = 1,4 Gk + 0,0 Qk II. Fd = 1,4 Gk + 1,4 Qk III. Envoltória MSd c) Observações: Deve ser observado que a consideração ou não do efeito favorável da carga permanente define a existência ou não de momentos positivos atuando na viga. A envoltória MSd mostrada no item a.5 mostra um momento positivo máximo de 4 knm, enquanto que a envoltória MSd mostrada no item b.3 não apresenta momentos positivos. Em princípio, deve-se acreditar que o efeito favorável da carga permanente deva ser sempre considerado nas combinações de ações, e que a envoltória apresentada no item a.5 é a única correta. Na realidade a opção mostrada em , onde a ABNT NBR 6118 estabelece "No caso de estruturas usuais de edifícios essas combinações que consideram g reduzido (1,0) não precisam ser consideradas" não pode ser usada isoladamente. A ABNT NBR 6118 estabelece, também: " Estruturas usuais de edifícios - Aproximações permitidas 3-45

29 Vigas contínuas Pode ser utilizado o modelo clássico de viga contínua, simplesmente apoiada nos pilares, para o estudo das cargas verticais, observando-se a necessidade das seguintes correções adicionais: a) não devem ser considerados momentos positivos menores que os que se obteriam se houvesse engastamento perfeito da viga nos apoios internos; b)..." Portanto, ao diagrama (envoltória) apresentado no item b.3, deve-se acrescentar o diagrama de momentos fletores para o seguinte carregamento: Desta forma, embora o efeito favorável da ação permanente não tenha sido considerado nas combinações últimas, a envoltória MSd apresenta momentos positivos, como mostrado no diagrama seguinte. 3.8 RESISTÊNCIAS VALORES CARACTERÍSTICOS Os valores característicos fk das resistências são os que, num lote de material, têm uma determinada probabilidade de serem ultrapassados, no sentido desfavorável para a segurança. Usualmente é de interesse a resistência característica inferior fk,inf., cujo valor é menor que a resistência média fm, embora por vezes haja interesse na resistência característica superior fk,sup, cujo valor é maior que fm. Para os efeitos desta Norma, a resistência característica inferior é admitida como sendo o valor que tem apenas 5% de probabilidade de não ser atingido pelos elementos de um dado lote de material (Figura 3.2). 3-46

30 Figura 3.2: Valor característico de resistência RESISTÊNCIA CARACTERÍSTICA DO CONCRETO O concreto, quer preparado no canteiro quer pré-misturado, deverá apresentar uma resistência característica fck, compatível com a adotada no projeto. Conforme mostrado na Tabela 1.1, ao se definir a classe do concreto, fica estabelecido o valor da sua resistência característica (por exemplo, para o concreto classe C25, o valor de fck corresponde a 25 MPa). A especificação pura e simples da classe não é suficiente para a caracterização do concreto. A ABNT NBR 6118 exige, também, que seja fixado um valor máximo para a relação água/cimento, conforme mostrado na Tabela 2.2. Outras características do concreto, tais como diâmetro máximo da brita, slump, etc. também podem ser requeridas. Em casos específicos, o consumo mínimo de cimento por metro cúbico de concreto pode vir a ser solicitado. Outro fator importante que deve ser estabelecido pelo profissional responsável pelo projeto é a data em que o concreto deverá ser solicitado estruturalmente. Etapas construtivas, tais como, retirada de cimbramento, manuseio de pré-moldados, etc., definem valores da resistência característica do tipo fck,14, fck,90, fck,180, onde o número posterior à vírgula corresponde à data em que o concreto deverá ser solicitado estruturalmente. A não indicação da data significa que o concreto foi dosado para atingir sua resistência característica aos 28 dias (fck = fck,28) RESISTÊNCIA CARACTERÍSTICA DO AÇO Conforme mostrado na Tabela 1.3, ao se definir a categoria do aço, fica estabelecido o valor da sua resistência característica (por exemplo, para o aço CA-25, o valor de fyk corresponde a 250 MPa) VALORES DE CÁLCULO RESISTÊNCIA DE CÁLCULO A resistência de cálculo fd é dada pela expressão: Equação

31 onde: fd fk m resistência de cálculo; resistência característica; e coeficiente de ponderação (minoração) da resistência. O coeficiente m é obtido pela multiplicação de três fatores, de tal forma que: Equação 3.18 onde: m1 m2 m3 leva em conta a variabilidade da resistência efetiva, transformando a resistência característica num valor extremo de menor probabilidade de ocorrência; considera as diferenças entre a resistência efetiva do material da estrutura e a resistência medida convencionalmente em corpos-de-prova padronizados; e considera as incertezas existentes na determinação das solicitações resistentes, seja em decorrência de métodos construtivos seja em virtude do método de cálculo empregado RESISTÊNCIA DE CÁLCULO DO CONCRETO Quando os valores de projeto são referidos à resistência do concreto aos 28 dias, a resistência de cálculo fica definida pela expressão: Equação 3.19 O valor de c varia acordo com os estados limites e com as combinações de ações. Seus valores estão mostrados na Tabela 3.7. Estado Limite Ultimo Combinações c Normais 1,40 Especiais ou de construção 1,20 Excepcionais 1,20 Estado Limite de Serviço 1,00 Tabela 3.7: Valores de c. Para a execução de elementos estruturais nos quais estejam previstas condições desfavoráveis (por exemplo, más condições de transporte, ou adensamento manual, ou concretagem deficiente por concentração de armadura), o coeficiente c deve ser multiplicado por 1,1. Para elementos estruturais pré-moldados e pré-fabricados deve ser consultada a ABNT NBR Admite-se, no caso de testemunhos extraídos da estrutura, dividir o valor de c por 1,1 No caso em que o concreto venha a ser solicitado antes dos 28 dias, a resistência de cálculo fica definida pela expressão: Equação

32 Na Equação 3.20, fckj representa a resistência característica do concreto aos j dias. Os valores de 1 dependem do tipo de cimento e podem ser estabelecidos pelas expressões: [ ( )] para concreto de cimento CPIII e CPIV [ ( )] para concreto de cimento CPI e CPII Equação 3.21 [ ( )] para concreto de cimento CPV e ARI Na Equação 3.21, t corresponde a idade efetiva do concreto, em dias. Alguns valores de 1 estão mostrados na Tabela Dias CPIII e CPIV CPI e CPII CPV - ARI 3 0,46 0,60 0,66 7 0,68 0,78 0, ,85 0,90 0, ,94 0,96 0, ,00 1,00 1,00 Tabela 3.8: Valores de 1. EXEMPLO 3.5 Definir o valor de fcd para o concreto classe C25. Considerar combinação de ações normais para estado limite último, cimento CPIV e concreto solicitado aos 10 e 28 dias. Considerar, também, estado limite de serviço. Solução: A fixação da classe do concreto automaticamente define o valor da resistência característica fck, conforme mostrado na Tabela 1.1. A obtenção do valor da resistência de cálculo fcd aos 28 dias é feita pela Equação 3.19, com valores de c obtidos da Tabela 3.7. Para a determinação do valor da resistência de cálculo fcd aos 10 dias deverão ser usadas a Equação 3.20 e a Equação a) Valor de fcd aos 28 dias para o concreto classe C25 ELU f ck 25 MPa 2,5 kn/cm 2 c 1,4 b) Valor de fcd aos 28 dias para o concreto classe C25 ELS f ck 25 MPa 2,5 kn/cm 2 c 1,0 c) Valor de fcd aos 10 dias para o concreto classe C25, cimento CPIV - ELU 3-49

33 f ck c 25 MPa 1,4 2,5 kn/cm 2 t 10 dias Cimento = CPIV ,381 0,381 t 10 1 e e 0,774 d) Valor de fcd aos 10 dias para o concreto classe C25, cimento CPIV - ELS f ck c 25 MPa 1,0 2,5 kn/cm 2 t 10 dias Cimento = CPIV ,381 0,381 t 10 1 e e 0, RESISTÊNCIA DE CÁLCULO DO AÇO O valor da resistência de cálculo fyd é definido pela expressão: Equação 3.22 O valor de s varia acordo com os estados limites e com as combinações de ações. Seus valores estão mostrados na Tabela 3.9. Estado Limite Ultimo Combinações s Normais 1,15 Especiais ou de construção 1,15 Excepcionais 1,00 Estado Limite de Serviço 1,00 Tabela 3.9: Valores de s. EXEMPLO

34 Definir o valor de fyd para o aço CA-50. Considerar ações normais para o estado limite último, e estado limite de serviço. Solução: A fixação da categoria do aço automaticamente define o valor da resistência característica fyk, conforme mostrado na Tabela 1.3. A obtenção do valor da resistência de cálculo fyd é feita pela Equação 3.22, com valores de s obtidos da Tabela 3.9. a) Valor de fyk para o aço CA-50 ELU f yk 500 MPa 50 kn/cm 2 s 1,15 b) Valor de fyk para o aço CA-50 ELS f yk 500 MPa 50 kn/cm 2 s 1,0 3.9 ESFORÇOS RESISTENTES DE CÁLCULO Os esforços resistentes de cálculo decorrem da distribuição de tensões (resistentes) atuantes numa dada seção do elemento estrutural. Desta forma, assim como para as solicitações e tensões de cálculo, os esforços e as tensões resistências de cálculo a serem consideradas são: Esforços e tensões normais: MRd momento fletor resistente de cálculo; NRd força normal resistente de cálculo; e Rd tensão normal resistente de cálculo. Esforços e tensões de cisalhamento: TRd momento torçor resistente de cálculo; VRd força cortante resistente de cálculo; e Rd tensão de cisalhamento resistente de cálculo VERIFICAÇÃO DA SEGURANÇA Na verificação da segurança das estruturas de concreto devem ser atendidas: as condições construtivas; as condições analíticas de segurança CONDIÇÕES CONSTRUTIVAS DE SEGURANÇA Para as condições construtivas de segurança devem ser atendidas as exigências estabelecidas: 3-51

35 nos critérios de detalhamento constantes das seções 18 e 20 da ABNT NBR 6118; nas normas de controle dos materiais, especialmente a ABNT NBR 12655; e no controle de execução da obra, conforme ABNT NBR e Normas Brasileiras específicas CONDIÇÕES ANALÍTICAS DE SEGURANÇA As condições analíticas de segurança devem ser verificadas para o: estado limite último; e estado limite de utilização ESTADO LIMITE ÚLTIMO As condições analíticas de segurança estabelecem que as resistências não devem ser menores que as solicitações e devem ser verificadas em relação a todos os estados limites e todos os carregamentos especificados para o tipo de construção considerada, ou seja, em qualquer caso deve ser respeitada a condição: Equação 3.23 onde: Rd Sd representa os esforços resistentes de cálculo; e representa as solicitações de cálculo. Os valores de cálculo dos esforços resistentes são determinados a partir dos valores de cálculo das resistências dos materiais adotados no projeto, ou das tensões resistentes de cálculo, como definido em As solicitações de cálculo são calculadas, para a combinação de ações considerada, de acordo com a análise estrutural. Para a verificação do estado limite último de perda de equilíbrio como corpo rígido, Rd e Sd devem assumir os valores de cálculo das ações estabilizantes e desestabilizantes respectivamente. Uma condição analítica de segurança pode ser representada no trecho de uma viga de concreto armado, mostrada na Figura 3.3. Figura 3.3: Solicitações e resistências em viga de concreto armado. 3-52

A SEGURANÇA NAS ESTRUTURAS

A SEGURANÇA NAS ESTRUTURAS A SEGURANÇA NAS ESTRUTURAS CONCEITO DE SEGURANÇA Quando uma estrutura pode ser considerada segura? SEGURANÇA: Resistência Estabilidade Durabilidade ENVOLVE DOIS CONCEITOS: Conceito Qualitativo: (Método

Leia mais

Módulo 2 Ações e Segurança e. Comportamento Básico dos Materiais. Métodos de Verificação da Segurança. Método dos Estados Limites

Módulo 2 Ações e Segurança e. Comportamento Básico dos Materiais. Métodos de Verificação da Segurança. Método dos Estados Limites NBR 68 e Comportamento Básico dos ateriais P R O O Ç Ã O Conteúdo Comportamento Básico dos ateriais étodos de Verificação da Segurança étodo dos Estados Limites Ações Coeficientes de Ponderação das Ações

Leia mais

UNIDADE 2 DIMENSIONAMENTO DE ESTRUTURAS DE CONCRETO ARMADO

UNIDADE 2 DIMENSIONAMENTO DE ESTRUTURAS DE CONCRETO ARMADO Universidade Federal de Pelotas Centro de Engenharias Curso de Engenharia Civil e Engenahria Agrícola UNIDADE 2 DIMENSIONAMENTO DE ESTRUTURAS DE CONCRETO ARMADO (AULA 2 AÇÕES E SOLICITAÇÕES) Prof. Estela

Leia mais

BASES PARA CÁLCULO CAPÍTULO 6 BASES PARA CÁLCULO 6.1 ESTADOS LIMITES

BASES PARA CÁLCULO CAPÍTULO 6 BASES PARA CÁLCULO 6.1 ESTADOS LIMITES BASES PARA CÁLCULO CAPÍTULO 6 Libânio M. Pinheiro, Cassiane D. Muzardo, Sandro P. Santos 6 maio 2003 BASES PARA CÁLCULO 6.1 ESTADOS LIMITES As estruturas de concreto armado devem ser projetadas de modo

Leia mais

Módulo 6 Pilares: Estados Limites Últimos Detalhamento Exemplo. Imperfeições Geométricas Globais. Imperfeições Geométricas Locais

Módulo 6 Pilares: Estados Limites Últimos Detalhamento Exemplo. Imperfeições Geométricas Globais. Imperfeições Geométricas Locais NBR 68 : Estados Limites Últimos Detalhamento Exemplo P R O O Ç Ã O Conteúdo Cargas e Ações Imperfeições Geométricas Globais Imperfeições Geométricas Locais Definições ELU Solicitações Normais Situações

Leia mais

2QUALIDADE DAS ESTRUTURAS

2QUALIDADE DAS ESTRUTURAS 2.1 Condições gerais 1 2 2QUALIDADE DAS ESTRUTURAS As estruturas de concreto devem atender aos requisitos mínimos de qualidade, durante sua construção e serviço, e aos requisitos adicionais estabelecidos

Leia mais

e-mail: ederaldoazevedo@yahoo.com.br

e-mail: ederaldoazevedo@yahoo.com.br Centro de Ensino Superior do Amapá-CEAP Curso: Arquitetura e Urbanismo Assunto: Cálculo de Pilares Prof. Ederaldo Azevedo Aula 4 e-mail: ederaldoazevedo@yahoo.com.br Centro de Ensino Superior do Amapá-CEAP

Leia mais

MINISTERIO PÚBLICO DO TRABALHO PROCURADORIA REGIONAL DO TRABALHO 23ª REGIÃO RUA E S/N, CENTRO POLÍTICO ADMINISTRATIVO, CUIABÁ - MT

MINISTERIO PÚBLICO DO TRABALHO PROCURADORIA REGIONAL DO TRABALHO 23ª REGIÃO RUA E S/N, CENTRO POLÍTICO ADMINISTRATIVO, CUIABÁ - MT MINISTERIO PÚBLICO DO TRABALHO PROCURADORIA REGIONAL DO TRABALHO 23ª REGIÃO RUA E S/N, CENTRO POLÍTICO ADMINISTRATIVO, CUIABÁ - MT MEMÓRIA DE CÁLCULO ESTRUTURA DE CONCRETO SUMÁRIO 1. INTRODUÇÃO 1.1. Hipóteses

Leia mais

Sistema laje-viga-pilar

Sistema laje-viga-pilar Sistema laje-viga-pilar Pré-dimensionamento das lajes de concreto, vigas e pilares de aço Taipe-101 (004) Taipe/Taiwan 509m (448m) aço Prof. Valdir Pignatta e Silva AÇÕES tudo aquilo que pode produzir

Leia mais

Efeito do comportamento reológico do concreto

Efeito do comportamento reológico do concreto Efeito do comportamento reológico do concreto FLECHAS E ELEENTOS DE CONCRETO ARADO 1 - INTRODUÇÃO Todo o cálculo das deformações de barras, devidas à fleão, tem por base a clássica equação diferencial

Leia mais

Tensão para a qual ocorre a deformação de 0,2%

Tensão para a qual ocorre a deformação de 0,2% O QUE É DIMENSIONAR UMA ESTRUTURA DE CONCRETO ARMADO? Dimensionar uma estrutura de concreto armado é determinar a seção de concreto (formas) e de aço (armadura) tal que: a estrutura não entre em colapso

Leia mais

Facear Concreto Estrutural I

Facear Concreto Estrutural I 1. ASSUNTOS DA AULA Durabilidade das estruturas, estádios e domínios. 2. CONCEITOS As estruturas de concreto devem ser projetadas e construídas de modo que, quando utilizadas conforme as condições ambientais

Leia mais

Projeto estrutural de edifícios de alvenaria: decisões, desafios e impactos da nova norma de projeto

Projeto estrutural de edifícios de alvenaria: decisões, desafios e impactos da nova norma de projeto Projeto estrutural de edifícios de alvenaria: decisões, desafios e impactos da nova norma de projeto Prof. Associado Márcio Roberto Silva Corrêa Escola de Engenharia de São Carlos Universidade de São Paulo

Leia mais

CURSO TÉCNICO DE EDIFICAÇÕES. Disciplina: Projeto de Estruturas. Aula 7

CURSO TÉCNICO DE EDIFICAÇÕES. Disciplina: Projeto de Estruturas. Aula 7 AULA 7 CURSO TÉCNICO DE EDIFICAÇÕES Disciplina: Projeto de Estruturas CLASSIFICAÇÃO DAS ARMADURAS 1 CLASSIFICAÇÃO DAS ARMADURAS ALOJAMENTO DAS ARMADURAS Armadura longitudinal (normal/flexão/torção) Armadura

Leia mais

ESTRUTURAS METÁLICAS

ESTRUTURAS METÁLICAS SEÇÃO DE ENSINO DE ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO ESTRUTURAS METÁLICAS DIMENSIONAMENTO SEGUNDO A NBR-8800:2008 Forças devidas ao Vento em Edificações Prof Marcelo Leão Cel Prof Moniz de Aragão

Leia mais

ATUALIZAÇÃO EM SISTEMAS ESTRUTURAIS

ATUALIZAÇÃO EM SISTEMAS ESTRUTURAIS AULA 04 ATUALIZAÇÃO EM SISTEMAS ESTRUTURAIS Prof. Felipe Brasil Viegas Prof. Eduardo Giugliani http://www.feng.pucrs.br/professores/giugliani/?subdiretorio=giugliani 0 AULA 04 INSTABILIDADE GERAL DE EDIFÍCIOS

Leia mais

Recomendações para Elaboração de Projetos Estruturais de Edifícios de Concreto

Recomendações para Elaboração de Projetos Estruturais de Edifícios de Concreto Recomendações para Elaboração de Projetos Estruturais de Edifícios de Concreto INTRODUÇÃO O presente trabalho tem como objetivo fornecer aos projetistas e contratantes, recomendações básicas e orientações

Leia mais

Notas de aulas - Concreto Armado. Lançamento da Estrutura. Icléa Reys de Ortiz

Notas de aulas - Concreto Armado. Lançamento da Estrutura. Icléa Reys de Ortiz Notas de aulas - Concreto Armado 2 a Parte Lançamento da Estrutura Icléa Reys de Ortiz 1 1. Lançamento da Estrutura Antigamente costumava-se lançar vigas sob todas as paredes e assim as lajes ficavam menores

Leia mais

SEGURANÇA E ESTADOS-LIMITES AÇÕES RESISTÊNCIAS

SEGURANÇA E ESTADOS-LIMITES AÇÕES RESISTÊNCIAS 3-1 3.1 Segurança e estados-limites 1 33 SEGURNÇ E ESTDOS-LIMITES ÇÕES RESISTÊNCIS 3.1.1 Critérios de segurança Os critérios de segurança adotados na BNT NBR 6118 baseiam-se na BNT NBR 8681. 3.1.2 Estados-limites

Leia mais

ÍNDICE DO LIVRO CÁLCULO E DESENHO DE CONCRETO ARMADO autoria de Roberto Magnani SUMÁRIO LAJES

ÍNDICE DO LIVRO CÁLCULO E DESENHO DE CONCRETO ARMADO autoria de Roberto Magnani SUMÁRIO LAJES ÍNDICE DO LIVRO CÁLCULO E DESENHO DE CONCRETO ARMADO autoria de Roberto Magnani SUMÁRIO LAJES 2. VINCULAÇÕES DAS LAJES 3. CARREGAMENTOS DAS LAJES 3.1- Classificação das lajes retangulares 3.2- Cargas acidentais

Leia mais

ESTRUTURAS METÁLICAS 3 Solicitações de cálculo

ESTRUTURAS METÁLICAS 3 Solicitações de cálculo PUC Pontifícia Universidade Católica de Goiás Departamento de Engenharia Civil ESTRUTURAS METÁLICAS 3 Solicitações de cálculo Professor Juliano Geraldo Ribeiro Neto, MSc. Goiânia, março de 2014. 3.1 PROJETO

Leia mais

Profª. Angela A. de Souza DESENHO DE ESTRUTURAS

Profª. Angela A. de Souza DESENHO DE ESTRUTURAS DESENHO DE ESTRUTURAS INTRODUÇÃO A estrutura de concreto armado é resultado da combinação entre o concreto e o aço. Porém, para a sua execução, não é suficiente apenas a presença desses dois materiais;

Leia mais

SUPERESTRUTURA estrutura superestrutura infra-estrutura lajes

SUPERESTRUTURA estrutura superestrutura infra-estrutura lajes SUPRSTRUTUR s estruturas dos edifícios, sejam eles de um ou vários pavimentos, são constituídas por diversos elementos cuja finalidade é suportar e distribuir as cargas, permanentes e acidentais, atuantes

Leia mais

PEF 2303 ESTRUTURAS DE CONCRETO I INTRODUÇÃO À SEGURANÇA DAS ESTRUTURAS

PEF 2303 ESTRUTURAS DE CONCRETO I INTRODUÇÃO À SEGURANÇA DAS ESTRUTURAS PEF 2303 ESTRUTURAS DE CONCRETO I INTRODUÇÃO À SEGURANÇA DAS ESTRUTURAS Conceito de Segurança Métodos de Verificação da Segurança Método das Tensões Admissíveis Métodos Probabilísticos Método Semi-Probabilístico

Leia mais

MEMÓRIA DESCRITIVA PÓRTICO METÁLICO COM PONTE GRUA

MEMÓRIA DESCRITIVA PÓRTICO METÁLICO COM PONTE GRUA MEMÓRIA DESCRITIVA PÓRTICO METÁLICO COM PONTE GRUA INSTITUTO POLITÉCNICO DE BRAGANÇA! "# $&%(')*&,+ -.,/!0 1 2 23 Índice: 1- Informações gerais sobre o projecto e cálculo...1 2- Tipologia estrutural...2

Leia mais

A concepção estrutural deve levar em conta a finalidade da edificação e atender, tanto quanto possível, às condições impostas pela arquitetura.

A concepção estrutural deve levar em conta a finalidade da edificação e atender, tanto quanto possível, às condições impostas pela arquitetura. ESTRUTURAS DE CONCRETO CAPÍTULO 4 Libânio M. Pinheiro, Cassiane D. Muzardo, Sandro P. Santos 2 de abril, 2003. CONCEPÇÃO ESTRUTURAL A concepção estrutural, ou simplesmente estruturação, também chamada

Leia mais

ESCADAS USUAIS DOS EDIFÍCIOS

ESCADAS USUAIS DOS EDIFÍCIOS Volume 4 Capítulo 3 ESCDS USUIS DOS EDIFÍCIOS 1 3.1- INTRODUÇÃO patamar lance a b c d e Formas usuais das escadas dos edifícios armada transversalmente armada longitudinalmente armada em cruz V3 V4 Classificação

Leia mais

1.1 Conceitos fundamentais... 19 1.2 Vantagens e desvantagens do concreto armado... 21. 1.6.1 Concreto fresco...30

1.1 Conceitos fundamentais... 19 1.2 Vantagens e desvantagens do concreto armado... 21. 1.6.1 Concreto fresco...30 Sumário Prefácio à quarta edição... 13 Prefácio à segunda edição... 15 Prefácio à primeira edição... 17 Capítulo 1 Introdução ao estudo das estruturas de concreto armado... 19 1.1 Conceitos fundamentais...

Leia mais

Recomendações para elaboração de projetos estruturais de edifícios em aço

Recomendações para elaboração de projetos estruturais de edifícios em aço 1 Av. Brigadeiro Faria Lima, 1685, 2º andar, conj. 2d - 01451-908 - São Paulo Fone: (11) 3097-8591 - Fax: (11) 3813-5719 - Site: www.abece.com.br E-mail: abece@abece.com.br Av. Rio Branco, 181 28º Andar

Leia mais

Lajes de Edifícios de Concreto Armado

Lajes de Edifícios de Concreto Armado Lajes de Edifícios de Concreto Armado 1 - Introdução As lajes são elementos planos horizontais que suportam as cargas verticais atuantes no pavimento. Elas podem ser maciças, nervuradas, mistas ou pré-moldadas.

Leia mais

ESTADOS LIMITES DE SERVIÇO SEGUNDO A NBR 6118

ESTADOS LIMITES DE SERVIÇO SEGUNDO A NBR 6118 Universidade Federal de Santa Maria Departamento de Estruturas e Construção Civil ESTADOS LIMITES DE SERVIÇO SEGUNDO A NBR 6118 Eng. Gerson Moacyr Sisniegas Alva MOTIVAÇÃO INICIAL Alunos de graduação Engenharia

Leia mais

01 projeto / normalização

01 projeto / normalização 01 projeto / normalização revisão_das_práticas_recomendadas para_edificações_de_até_5_pavimentos apresentação O trabalho é uma revisão da primeira versão das PRs, que serve como texto base para a norma

Leia mais

PRÉ-DIMENSIONAMENTO DA ESTRUTURA

PRÉ-DIMENSIONAMENTO DA ESTRUTURA ECC 1008 ESTRUTURAS DE CONCRETO PRÉ-DIMENSIONAMENTO DA ESTRUTURA (Aulas 9-12) Prof. Gerson Moacyr Sisniegas Alva Algumas perguntas para reflexão... É possível obter esforços (dimensionamento) sem conhecer

Leia mais

ES015 - Projeto de Estruturas Assistido por Computador: Cálculo e Detalhamento

ES015 - Projeto de Estruturas Assistido por Computador: Cálculo e Detalhamento Escola Politécnica da Universidade de São Paulo Departamento de Engenharia de Estruturas e Fundações ES015 - Projeto de Estruturas Assistido por Computador: Cálculo e Detalhamento Prof. Túlio Nogueira

Leia mais

ALVENARIA ESTRUTURAL BLOCOS CERÂMICOS PARTE 1: PROJETOS

ALVENARIA ESTRUTURAL BLOCOS CERÂMICOS PARTE 1: PROJETOS ALVENARIA ESTRUTURAL BLOCOS CERÂMICOS PARTE 1: PROJETOS APRESENTAÇÃO 1) Este 1º Projeto foi elaborado pela CE-02:123.03 - Alvenaria Estrutural - Blocos Cerâmicos - do ABNT/CB- 02 - Construção Civil, nas

Leia mais

OBRAS DE TERRA MUROS DE ARRIMO OU DE CONTENÇÃO

OBRAS DE TERRA MUROS DE ARRIMO OU DE CONTENÇÃO OBRAS DE TERRA Dimensionamento MUROS DE ARRIMO OU DE CONTENÇÃO CURSO: Engenharia Civil SÉRIE: 10º Semestre DISCIPLINA: Obras de Terra CARGA HORÁRIA SEMANAL: 02 aulas-hora CARGA HORÁRIA SEMESTRAL: 40 aulas-hora

Leia mais

Recomendações para a Elaboração do Projeto Estrutural

Recomendações para a Elaboração do Projeto Estrutural Universidade Estadual de Maringá - Centro de Tecnologia Departamento de Engenharia Civil Disciplina: Estruturas em Concreto I Professor: Rafael Alves de Souza Recomendações para a Elaboração do Projeto

Leia mais

EXERCÍCIOS DE ESTRUTURAS DE MADEIRA

EXERCÍCIOS DE ESTRUTURAS DE MADEIRA UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA CIVIL,ARQUITETURA E URBANISMO Departamento de Estruturas EXERCÍCIOS DE ESTRUTURAS DE MADEIRA RAFAEL SIGRIST PONTES MARTINS,BRUNO FAZENDEIRO DONADON

Leia mais

CAPÍTULO III SISTEMAS ESTRUTURAIS CONSTRUÇÕES EM ALVENARIA

CAPÍTULO III SISTEMAS ESTRUTURAIS CONSTRUÇÕES EM ALVENARIA 1 CAPÍTULO III SISTEMAS ESTRUTURAIS CONSTRUÇÕES EM ALVENARIA I. SISTEMAS ESTRUTURAIS Podemos citar diferentes sistemas estruturais a serem adotados durante a concepção do projeto de uma edificação. A escolha

Leia mais

2 a Prova de EDI-49 Concreto Estrutural II Prof. Flávio Mendes Junho de 2012 Duração prevista: até 4 horas.

2 a Prova de EDI-49 Concreto Estrutural II Prof. Flávio Mendes Junho de 2012 Duração prevista: até 4 horas. 2 a Prova de EDI-49 Concreto Estrutural II Prof. Flávio Mendes Junho de 212 Duração prevista: até 4 horas. Esta prova tem oito (8) questões e três (3) laudas. Consulta permitida somente ao formulário básico.

Leia mais

1. Definição dos Elementos Estruturais

1. Definição dos Elementos Estruturais A Engenharia e a Arquitetura não devem ser vistas como duas profissões distintas, separadas, independentes uma da outra. Na verdade elas devem trabalhar como uma coisa única. Um Sistema Estrutural definido

Leia mais

O concreto armado tem inúmeras aplicações: estruturas, pavimentos, paredes, fundações, barragens, reservatórios.

O concreto armado tem inúmeras aplicações: estruturas, pavimentos, paredes, fundações, barragens, reservatórios. AS ESTRUTURAS DE CONCRETO ARMADO. Concreto armado - é um material da construção civil que se tornou um dos mais importantes elementos da arquitetura do século XX. É usado nas estruturas dos edifícios.

Leia mais

Concepção Estrutural de Edifícios

Concepção Estrutural de Edifícios de maneira geral, uma construção é concebida para atender a determinadas finalidades. a sua implantação envolve a utilização dos mais diversos materiais: o concreto armado, as alvenarias de tijolos ou

Leia mais

Artigo submetido ao Curso de Engenharia Civil da UNESC - Como requisito parcial para obtenção do Título de Engenheiro Civil

Artigo submetido ao Curso de Engenharia Civil da UNESC - Como requisito parcial para obtenção do Título de Engenheiro Civil Como requisito parcial para obtenção do Título de Engenheiro Civil AVALIAÇÃO DO COMPORTAMENTO DE UMA ESTRUTURA DE CONCRETO ARMADO ANALISANDO A RIGIDEZ DO ENGASTAMENTO ENTRE VIGAS E PILARES E UTILIZANDO

Leia mais

TC 071 PONTES E ESTRUTURAS ESPECIAIS II Período: 2º semestre Professor: Jorge Luiz Ceccon Carga horária da disciplina = 120 h - 4 h por semana

TC 071 PONTES E ESTRUTURAS ESPECIAIS II Período: 2º semestre Professor: Jorge Luiz Ceccon Carga horária da disciplina = 120 h - 4 h por semana UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE CONSTRUÇÃO CIVIL TC 071 PONTES E ESTRUTURAS ESPECIAIS II Ano: 2010 Período: 2º semestre Professor: Jorge Luiz Ceccon Carga horária da disciplina = 120 h -

Leia mais

As lajes de concreto são consideradas unidirecionais quando apenas um ou dois lados são considerados apoiados.

As lajes de concreto são consideradas unidirecionais quando apenas um ou dois lados são considerados apoiados. LAJES DE CONCRETO ARMADO 1. Unidirecionais As lajes de concreto são consideradas unidirecionais quando apenas um ou dois lados são considerados apoiados. 1.1 Lajes em balanço Lajes em balanço são unidirecionais

Leia mais

e-mail: ederaldoazevedo@yahoo.com.br

e-mail: ederaldoazevedo@yahoo.com.br Assunto: Fundações Diretas Prof. Ederaldo Azevedo Aula 5 e-mail: ederaldoazevedo@yahoo.com.br Introdução: Todo peso de uma obra é transferido para o terreno em que a mesma é apoiada. Os esforços produzidos

Leia mais

MATERIAIS DE CONSTRUÇÃO II TECNOLOGIA DA ARGAMASSA E DO CONCRETO

MATERIAIS DE CONSTRUÇÃO II TECNOLOGIA DA ARGAMASSA E DO CONCRETO SEÇÃO DE ENSINO DE ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO MAJ MONIZ DE ARAGÃO MATERIAIS DE CONSTRUÇÃO II TECNOLOGIA DA ARGAMASSA E DO CONCRETO Idade do concreto. Verificação da resistência. Módulo de

Leia mais

O CONTROLE DA RESISTÊNCIA DO CONCRETO E A TEORIA DA CONFIABILIDADE

O CONTROLE DA RESISTÊNCIA DO CONCRETO E A TEORIA DA CONFIABILIDADE O CONTROLE DA RESISTÊNCIA DO CONCRETO E A TEORIA DA CONFIABILIDADE Fernando Rebouças Stucchi São Paulo,Outubro/2010 Resumo 1. Segurança estrutural 2. Teoria da Confiabilidade e as variabilidades 3. Método

Leia mais

ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO CADERNO DE QUESTÕES

ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO CADERNO DE QUESTÕES CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO CADERNO DE QUESTÕES 2014 1 a QUESTÃO Valor: 1,00 O núcleo central de inércia é o lugar geométrico da seção transversal

Leia mais

LAJES MACIÇAS DE CONCRETO ARMADO

LAJES MACIÇAS DE CONCRETO ARMADO CAPÍTULOS 1 A 4 Volume LAJES MACIÇAS DE CONCRETO ARMADO 1 1- Tipos usuais de lajes dos edifícios Laje h Laje maciça apoiada em vigas Vigas h Lajes nervuradas nervuras aparentes material inerte Laje Laje

Leia mais

UNIVERSIDADE DE MARÍLIA

UNIVERSIDADE DE MARÍLIA UNIVERSIDADE DE MARÍLIA Faculdade de Engenharia, Arquitetura e Tecnologia SISTEMAS ESTRUTURAIS (NOTAS DE AULA) Professor Dr. Lívio Túlio Baraldi MARILIA, 2007 1. DEFINIÇÕES FUNDAMENTAIS Força: alguma causa

Leia mais

AUTOMATIZAÇÃO DA VERIFICAÇÃO DE SEÇÕES DE CONCRETO ARMADO SUBMETIDAS À FLEXÃO COMPOSTA OBLÍQUA YURI MAGALHÃES CUNHA. Aprovado por:

AUTOMATIZAÇÃO DA VERIFICAÇÃO DE SEÇÕES DE CONCRETO ARMADO SUBMETIDAS À FLEXÃO COMPOSTA OBLÍQUA YURI MAGALHÃES CUNHA. Aprovado por: AUTOMATIZAÇÃO DA VERIFICAÇÃO DE SEÇÕES DE CONCRETO ARMADO SUBMETIDAS À FLEXÃO COMPOSTA OBLÍQUA YURI MAGALHÃES CUNHA Projeto de Graduação apresentado ao corpo docente do Departamento de Mecânica Aplicada

Leia mais

LISTA 1 CS2. Cada aluno deve resolver 3 exercícios de acordo com o seu númeo FESP

LISTA 1 CS2. Cada aluno deve resolver 3 exercícios de acordo com o seu númeo FESP LISTA 1 CS2 Cada aluno deve resolver 3 exercícios de acordo com o seu númeo FESP Final 1 exercícios 3, 5, 15, 23 Final 2 exercícios 4, 6, 17, 25 Final 3- exercícios 2, 7, 18, 27 Final 4 exercícios 1 (pares),

Leia mais

DESCRITIVO TÉCNICO - EST 1

DESCRITIVO TÉCNICO - EST 1 DESCRITIVO TÉCNICO - EST 1 1 DESCRITIVO TÉCNICO 1.1 CONSIDERAÇÕES INICIAIS Todos os cálculos e detalhamentos estão de acordo com o prescrito nas normas NBR 6118:2014 Projeto de Estruturas de Concreto -

Leia mais

ESTADO DE MATO GROSSO SECRETARIA DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP DEPARTAMENTO DE

ESTADO DE MATO GROSSO SECRETARIA DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP DEPARTAMENTO DE ESTADO DE MATO GROSSO SECRETARIA DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP DEPARTAMENTO DE ENGENHARIA CIVIL PROJETO DE FUNDAÇÕES Todo projeto de fundações

Leia mais

FUNDAÇÕES FUNDAÇÕES FUNDAÇÕES FUNDAÇÕES. Tutorial. Tutorial. Tutorial. Tutorial. MULTIPLUS www.multiplus.com. MULTIPLUS www.multiplus.

FUNDAÇÕES FUNDAÇÕES FUNDAÇÕES FUNDAÇÕES. Tutorial. Tutorial. Tutorial. Tutorial. MULTIPLUS www.multiplus.com. MULTIPLUS www.multiplus. Tutorial Tutorial FUNDAÇÕES FUNDAÇÕES Hot Line: (11) 3337-5552 SIM /controle/acesso.asp Praça da República, 386 6º and 01045-000 São Paulo - SP Hot Line: (11) 3337-5552 SIM /controle/acesso.asp Praça da

Leia mais

VIABILIDADE TÉCNICA E ECONÔMICA DA ALVENARIA ESTRUTURAL COM BLOCOS DE CONCRETO

VIABILIDADE TÉCNICA E ECONÔMICA DA ALVENARIA ESTRUTURAL COM BLOCOS DE CONCRETO VIABILIDADE TÉCNICA E ECONÔMICA DA ALVENARIA ESTRUTURAL COM BLOCOS DE CONCRETO 1a. parte: TÉCNICA Engenheiro Civil - Ph.D. 85-3244-3939 9982-4969 la99824969@yahoo.com.br skipe: la99824969 de que alvenaria

Leia mais

2 Sistema de Lajes com Forma de Aço Incorporado

2 Sistema de Lajes com Forma de Aço Incorporado 2 Sistema de Lajes com Forma de Aço Incorporado 2.1. Generalidades As vantagens de utilização de sistemas construtivos em aço são associadas à: redução do tempo de construção, racionalização no uso de

Leia mais

Artigo submetido ao Curso de Engenharia Civil da UNESC - como requisito parcial para obtenção do Título de Engenheiro Civil

Artigo submetido ao Curso de Engenharia Civil da UNESC - como requisito parcial para obtenção do Título de Engenheiro Civil ANÁLISE DO DIMENSIONAMENTO DE PILARES DE CONCRETO ARMADO PELO MÉTODO DO PILAR PADRÃO COM RIGIDEZ κ APROXIMADA E PELO MÉTODO DO PILAR PADRÃO COM CURVATURA APROXIMADA PARA EFEITOS DE 2º ORDEM Augusto Figueredo

Leia mais

Exemplo de projeto estrutural

Exemplo de projeto estrutural Planta de formas do pavimento tipo Exemplo de projeto estrutural P1-30x30 P2-20x50 P3-30x30 V1 L1 L2 P4-20x50 P5-40x40 P-20x50 V2 Estruturas de Concreto Armado Prof. José Milton de Araújo L3 480 cm 480

Leia mais

MANUAL DE COLOCAÇÃO. Laje Treliça. Resumo Esse material tem como objetivo auxiliar no dimensionamento, montagem e concretagem da laje.

MANUAL DE COLOCAÇÃO. Laje Treliça. Resumo Esse material tem como objetivo auxiliar no dimensionamento, montagem e concretagem da laje. MANUAL DE COLOCAÇÃO Laje Treliça Resumo Esse material tem como objetivo auxiliar no dimensionamento, montagem e concretagem da laje. Henrique. [Endereço de email] 1 VANTAGENS LAJE TRELIÇA É capaz de vencer

Leia mais

Caso (2) X 2 isolado no SP

Caso (2) X 2 isolado no SP Luiz Fernando artha étodo das Forças 6 5.5. Exemplos de solução pelo étodo das Forças Exemplo Determine pelo étodo das Forças o diagrama de momentos fletores do quadro hiperestático ao lado. Somente considere

Leia mais

Materiais e sistemas para protensão DEFINIÇÕES

Materiais e sistemas para protensão DEFINIÇÕES 19 2 Materiais e sistemas para protensão DEFINIÇÕES 2.1 Definições (conforme a Norma NBR6118:2003 - Projeto de Estruturas de Concreto - Procedimento). 2.1.1. Elementos de concreto protendido. Aqueles nos

Leia mais

CÁLCULO DE VIGAS. - alvenaria de tijolos cerâmicos furados: γ a = 13 kn/m 3 ; - alvenaria de tijolos cerâmicos maciços: γ a = 18 kn/m 3.

CÁLCULO DE VIGAS. - alvenaria de tijolos cerâmicos furados: γ a = 13 kn/m 3 ; - alvenaria de tijolos cerâmicos maciços: γ a = 18 kn/m 3. CAPÍTULO 5 Volume 2 CÁLCULO DE VIGAS 1 1- Cargas nas vigas dos edifícios peso próprio : p p = 25A c, kn/m ( c A = área da seção transversal da viga em m 2 ) Exemplo: Seção retangular: 20x40cm: pp = 25x0,20x0,40

Leia mais

PROJETO ESTRUTURAL EM CONCRETO ARMADO

PROJETO ESTRUTURAL EM CONCRETO ARMADO UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO TECNOLÓGICO DEPARTAMENTO DE ENGENHARIA CIVIL RAFAEL DO VALLE PEREIRA CARDOSO TRABALHO DE CONCLUSÃO DE CURSO PROJETO ESTRUTURAL EM CONCRETO ARMADO FLORIANÓPOLIS

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO ESCOLA POLITÉCNICA Curso de Engenharia Civil Departamento de Mecânica Aplicada e Estruturas

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO ESCOLA POLITÉCNICA Curso de Engenharia Civil Departamento de Mecânica Aplicada e Estruturas UNIVERSIDADE FEDERAL DO RIO DE JANEIRO ESCOLA POLITÉCNICA Curso de Engenharia Civil Departamento de Mecânica Aplicada e Estruturas PROJETO DE ESTRUTURAS COM GRANDES VARANDAS EDUARDO VIEIRA DA COSTA Projeto

Leia mais

SISTEMAS ESTRUTURAIS II

SISTEMAS ESTRUTURAIS II Pontifícia Universidade Católica do Rio Grande do Sul Faculdade de Engenharia Faculdade de Arquitetura e Urbanismo SISTEMAS ESTRUTURAIS II 2. CARGAS ATUANTES SOBRE ESTRUTURAS Professor Eduardo Giugliani

Leia mais

UNIVERSIDADE DE SANTA CRUZ DO SUL CURSO DE ENGENHARIA CIVIL

UNIVERSIDADE DE SANTA CRUZ DO SUL CURSO DE ENGENHARIA CIVIL UNIVERSIDADE DE SANTA CRUZ DO SUL CURSO DE ENGENHARIA CIVIL Jorge Henrique Marciniak ANÁLISE DA ESTABILIDADE GLOBAL E EFEITOS DE SEGUNDA ORDEM EM ESTRUTURAS DE CONCRETO ARMADO Santa Cruz do Sul 2013 1

Leia mais

MESOESTRUTURA ESFORÇOS OS ATUANTES NOS PILARES

MESOESTRUTURA ESFORÇOS OS ATUANTES NOS PILARES MESOESTRUTURA ESFORÇOS OS ATUANTES NOS PILARES DETERMINAÇÃO DE ESFORÇOS OS HORIZONTAIS ESFORÇOS ATUANTES NOS PILARES Os pilares estão submetidos a esforços verticais e horizontais. Os esforços verticais

Leia mais

SAPATAS ARMADAS Fundações rasas Solos arenosos

SAPATAS ARMADAS Fundações rasas Solos arenosos SAPATAS ARMADAS Fundações rasas Solos arenosos Prof. Marco Pádua Se a superestrutura do edifício for definida por um conjunto de elementos estruturais formados por lajes, vigas e pilares caracterizando

Leia mais

LAJE ALVEOLAR PROTENDIDA

LAJE ALVEOLAR PROTENDIDA LAJE ALVEOLAR PROTENDIDA 1. DEFINIÇÃO A Laje Alveolar é constituída de painéis de concreto protendido que possuem seção transversal com altura constante e alvéolos longitudinais, responsáveis pela redução

Leia mais

detalhamento da armadura longitudinal da viga

detalhamento da armadura longitudinal da viga conteúdo 36 detalhamento da armadura longitudinal da viga 36.1 Decalagem do diagrama de momentos fletores (NBR6118/2003 Item 17.4.2.2) Quando a armadura longitudinal de tração for determinada através do

Leia mais

Transporte Vertical Normas Brasileiras e Cálculo de Tráfego

Transporte Vertical Normas Brasileiras e Cálculo de Tráfego Transporte Vertical Normas Brasileiras e Cálculo de Tráfego Elevadores de Passageiros Conhecimentos iniciais: Normas da ABNT NORMA NBR - 5666 Elevadores Elétricos - Terminologia NORMA NBR - NM 207 Elevadores

Leia mais

Study of structural behavior of a low height precast concrete building, considering the continuity of beam-column connections

Study of structural behavior of a low height precast concrete building, considering the continuity of beam-column connections Study of structural behavior of a low height precast concrete building, considering the continuity of beam-column connections Universidade Federal de Viçosa - Av. P.H. Rolfs s/n - Viçosa MG - 36.570-000

Leia mais

Sistemas de Pisos em Estruturas de Aço

Sistemas de Pisos em Estruturas de Aço Sistemas de Pisos em Estruturas de Aço Aplicações para edificações Estruturas de Aço e Madeira Prof Alexandre Landesmann FAU/UFRJ AMA Loft A1 1 Definição do sistema estrutural do pavimento Lajes armadas

Leia mais

P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II FLEXÃO SIMPLES

P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II FLEXÃO SIMPLES P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II FLEXÃO SIMPLES (OUTRA APRESENTAÇÃO) Prof. Almir Schäffer PORTO ALEGRE

Leia mais

Durabilidade e Análise Estrutural. Parâmetros Decisivos na Durabilidade. Classes de Agressividade Ambiental

Durabilidade e Análise Estrutural. Parâmetros Decisivos na Durabilidade. Classes de Agressividade Ambiental NBR 6118 Durabilidade e P R O M O Ç Ã O Conteúdo Parâmetros Decisivos na Durabilidade Cobrimentos Nominais Classes de Agressividade Ambiental Diretrizes para Durabilidade Depoimento Eng o José Zamarion

Leia mais

poder de compra x custo da construção poder de compra:

poder de compra x custo da construção poder de compra: w ALVENARIA ESTRUTURAL COM BLOCOS DE CONCRETO poder de compra x custo da construção poder de compra: - Conceito Geral - Engenheiro Civil - Ph.D. (85)3244-3939 (85)9982-4969 luisalberto1@terra.com.br custo

Leia mais

ANÁLISE ESTRUTURAL DE RIPAS PARA ENGRADAMENTO METÁLICO DE COBERTURAS

ANÁLISE ESTRUTURAL DE RIPAS PARA ENGRADAMENTO METÁLICO DE COBERTURAS ANÁLISE ESTRUTURAL DE RIPAS PARA ENGRADAMENTO METÁLICO DE COBERTURAS Leandro de Faria Contadini 1, Renato Bertolino Junior 2 1 Eng. Civil, UNESP-Campus de Ilha Solteira 2 Prof. Titular, Depto de Engenharia

Leia mais

TECNICAS CONSTRUTIVAS I

TECNICAS CONSTRUTIVAS I Curso Superior de Tecnologia em Construção de Edifícios TECNICAS CONSTRUTIVAS I Prof. Leandro Candido de Lemos Pinheiro leandro.pinheiro@riogrande.ifrs.edu.br FUNDAÇÕES Fundações em superfície: Rasa, Direta

Leia mais

Estruturas de Concreto Armado. Eng. Marcos Luís Alves da Silva luisalves1969@gmail.com unip-comunidade-eca@googlegroups.com

Estruturas de Concreto Armado. Eng. Marcos Luís Alves da Silva luisalves1969@gmail.com unip-comunidade-eca@googlegroups.com Estruturas de Concreto Armado Eng. Marcos Luís Alves da Silva luisalves1969@gmail.com unip-comunidade-eca@googlegroups.com 1 CENTRO TECNOLÓGICO DEPARTAMENTO DE ENGENHARIA CIVIL EA 851J TEORIA EC6P30/EC7P30

Leia mais

FUNÇÃO DO SISTEMA DE MASSA MOLA = ATENUAR VIBRAÇÕES

FUNÇÃO DO SISTEMA DE MASSA MOLA = ATENUAR VIBRAÇÕES Análise do comportamento estrutural das lajes de concreto armado dos Aparelhos de Mudança de Via (AMV), com sistema de amortecimento de vibrações, oriundas dos tráfegos dos trens, da Linha 2 - Verde, do

Leia mais

ESTRUTURAS DE CONCRETO CAPÍTULO 2 CARACTERÍSTICAS DO CONCRETO

ESTRUTURAS DE CONCRETO CAPÍTULO 2 CARACTERÍSTICAS DO CONCRETO ESTRUTURAS DE CONCRETO CAPÍTULO 2 Libânio M. Pinheiro, Cassiane D. Muzardo, Sandro P. Santos Março de 2004 CARACTERÍSTICAS DO CONCRETO Como foi visto no capítulo anterior, a mistura em proporção adequada

Leia mais

Mecânica de Solos Prof. Fabio Tonin

Mecânica de Solos Prof. Fabio Tonin Compactação dos Solos Mecânica de Solos Prof. Fabio Tonin Compactação É o processo mecânico de aplicação de forças externas, destinadas a reduzir o volume dos vazios do solo, até atingir a massa específica

Leia mais

O AÇO ESTRUTURAL (uma parte do material desta página foi extraída do site www.gerdau.com.br) Aços CA-50 e CA-25

O AÇO ESTRUTURAL (uma parte do material desta página foi extraída do site www.gerdau.com.br) Aços CA-50 e CA-25 O AÇO ESTRUTURAL (uma parte do material desta página foi extraída do site www.gerdau.com.br) Os aços são classificados conforme sua resistência, definida pela sua composição e processo de fabricação. Assim,

Leia mais

Projetos de Fundação

Projetos de Fundação Projetos de Fundação PROF. LUIS FERNANDO P. SALES Engenheiro Civil - Mestre em Geotecnia CREA/SC 039.164-3 TERMINOLOGIA: SEMINÁRIO SOBRE FUNDAÇÕES E CONTENÇÕES AREA/IT 20 DE AGOSTO DE 2014 Fundação

Leia mais

PROJETO DE ESTRUTURA DE CONCRETO ARMADO CENTRO ESPECIALIZADO EM REABILITAÇÃO

PROJETO DE ESTRUTURA DE CONCRETO ARMADO CENTRO ESPECIALIZADO EM REABILITAÇÃO MEMORIAL DESCRITIVO PROJETO EXECUTIVO PROJETO DE ESTRUTURA DE CONCRETO ARMADO Referência: Projeto: Data: MD-ESTRUTURA DE CONCRETO CENTRO ESPECIALIZADO EM REABILITAÇÃO 11/OUTUBRO/2013 SUMARIO 1 DADOS GERAIS

Leia mais

Considerações sobre a Relevância da Interação Solo-Estrutura em Recalques: Caso de um Prédio na Cidade do Recife

Considerações sobre a Relevância da Interação Solo-Estrutura em Recalques: Caso de um Prédio na Cidade do Recife Considerações sobre a Relevância da Interação Solo-Estrutura em Recalques: Caso de um Prédio na Cidade do Recife Raquel Cristina Borges Lopes de Albuquerque Escola Politécnica, Universidade de Pernambuco,

Leia mais

Blocos de. Absorção de água. Está diretamente relacionada à impermeabilidade dos produtos, ao acréscimo imprevisto de peso à Tabela 1 Dimensões reais

Blocos de. Absorção de água. Está diretamente relacionada à impermeabilidade dos produtos, ao acréscimo imprevisto de peso à Tabela 1 Dimensões reais Blocos de CONCRETO DESCRIÇÃO: Elementos básicos para a composição de alvenaria (estruturais ou de vedação) BLOCOS VAZADOS DE CONCRETO SIMPLES COMPOSIÇÃO Cimento Portland, Agregados (areia, pedra, etc.)

Leia mais

NBR 7187. Projeto de pontes de concreto armado e de concreto protendido - Procedimento. ABNT - Associação Brasileira de Normas Técnicas MAR 2003

NBR 7187. Projeto de pontes de concreto armado e de concreto protendido - Procedimento. ABNT - Associação Brasileira de Normas Técnicas MAR 2003 MAR 2003 NBR 7187 ABNT - Associação Brasileira de Normas Técnicas Projeto de pontes de concreto armado e de concreto protendido - Procedimento Sede: Rio de Janeiro Av. Treze de Maio, 13/28º andar CEP 20003-900

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO Escola de Minas DECIV Patologia das Construções. Patologia das Fundações

UNIVERSIDADE FEDERAL DE OURO PRETO Escola de Minas DECIV Patologia das Construções. Patologia das Fundações UNIVERSIDADE FEDERAL DE OURO PRETO Escola de Minas DECIV Patologia das Construções Patologia das Fundações ETAPAS IMPORTANTES: Determinar o número de furos de sondagem, bem como a sua localização; Analisar

Leia mais

ESPECIFICAÇÃO DE SERVIÇO

ESPECIFICAÇÃO DE SERVIÇO ESPECIFICAÇÃO DE SERVIÇO BUEIROS CAPEADOS Grupo de Serviço DRENAGEM Código DERBA-ES-D-11/01 1. OBJETIVO Esta especificação de serviço tem por objetivo definir e orientar a execução de bueiros capeados,

Leia mais

ELABORAÇÃO DE TABELAS PARA AUXÍLIO NO PROJETO DE LAJES MACIÇAS ARMADAS EM UMA SÓ DIREÇÃO

ELABORAÇÃO DE TABELAS PARA AUXÍLIO NO PROJETO DE LAJES MACIÇAS ARMADAS EM UMA SÓ DIREÇÃO CENTRO UNIVERSITÁRIO UNIVATES CURSO DE ENGENHARIA CIVIL ELABORAÇÃO DE TABELAS PARA AUXÍLIO NO PROJETO DE LAJES MACIÇAS ARMADAS EM UMA SÓ DIREÇÃO Maio Allebrand Jaeger Lajeado, juno de 2014 Maio Allebrand

Leia mais

OTIMIZAÇÃO DE VIGAS CONSIDERANDO ESTADOS LIMITES ÚLTIMOS, DE UTILIZAÇÃO E DISPOSIÇÕES CONSTRUTIVAS

OTIMIZAÇÃO DE VIGAS CONSIDERANDO ESTADOS LIMITES ÚLTIMOS, DE UTILIZAÇÃO E DISPOSIÇÕES CONSTRUTIVAS OTIMIZAÇÃO DE VIGAS CONSIDERANDO ESTADOS LIMITES ÚLTIMOS, DE UTILIZAÇÃO E DISPOSIÇÕES CONSTRUTIVAS Eng. Civil Leonardo Roncetti da Silva, TECHCON Engenharia e Consultoria Ltda. Resumo Estuda-se a otimização

Leia mais

GERAL GERAL MEMORIAL DE CRITÉRIOS E CONDICIONANTES. Empresa Brasileira de Infra-Estrutura Aeroportuária. 05 Item 2.15, 2.16 e 3.85 07/07/05 Edmundo

GERAL GERAL MEMORIAL DE CRITÉRIOS E CONDICIONANTES. Empresa Brasileira de Infra-Estrutura Aeroportuária. 05 Item 2.15, 2.16 e 3.85 07/07/05 Edmundo 05 Item 2.15, 2.16 e 3.85 07/07/05 Edmundo REV. MODIFICAÇÃO DATA projetista DESENHISTA APROVO ESCALA DATA DESENHISTA AUTOR DO PROJETO CREA UF EDMUNDO F. BRITO 3411/D DF COORDENADOR Empresa Brasileira de

Leia mais

PROVA DE ENGENHARIA CIVIL. Para uma viga bi-apoiada, com carga concentrada, se desprezarmos o efeito do peso próprio, é CORRETO afirmar:

PROVA DE ENGENHARIA CIVIL. Para uma viga bi-apoiada, com carga concentrada, se desprezarmos o efeito do peso próprio, é CORRETO afirmar: 18 PROVA DE ENGENHARIA CIVIL QUESTÃO 41 Para uma viga bi-apoiada, com carga concentrada, se desprezarmos o efeito do peso próprio, é CORRETO afirmar: a) o diagrama do esforço cortante (DEC) é composto

Leia mais

GENERALIDADES SOBRE PAVIMENTOS

GENERALIDADES SOBRE PAVIMENTOS GENERALIDADES SOBRE PAVIMENTOS Pavimento x outras obras civis Edifícios: Área de terreno pequena, investimento por m 2 grande FS à ruptura grande Clima interfere muito pouco no comportamento estrutural

Leia mais

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONA E MUCURI DIAMANTINA MG ESTUDO DIRIGIDO

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONA E MUCURI DIAMANTINA MG ESTUDO DIRIGIDO MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONA E MUCURI DIAMANTINA MG ESTUDO DIRIGIDO Disciplina: Construções Rurais 2011/1 Código: AGR006/AGR007 Curso (s): Agronomia e Zootecnia

Leia mais

Ação do vento. c) calcular a pressão dinâmica q:

Ação do vento. c) calcular a pressão dinâmica q: Ação do vento Neste item são apresentados os principais procedimentos para a determinação da ação do vento sobre edificações, extraídos da NBR 6123 (ABNT, 1988). 2.3.1 Procedimentos para o cálculo das

Leia mais