MECANISMOS DE COMUNICAÇÃO ENTRE OS NEURÔNIOS E DOS NEURÔNIOS COM OS ÓRGÃOS EFETUADORES

Tamanho: px
Começar a partir da página:

Download "MECANISMOS DE COMUNICAÇÃO ENTRE OS NEURÔNIOS E DOS NEURÔNIOS COM OS ÓRGÃOS EFETUADORES"

Transcrição

1 37 MECANISMOS DE COMUNICAÇÃO ENTRE OS NEURÔNIOS E DOS NEURÔNIOS COM OS ÓRGÃOS EFETUADORES Os neurônios estabelecem comunicações entre si por meio de estruturas denominadas sinapses nervosas. A comunicação entre os neurônios motor e as células musculares ocorre por meio da junção neuromuscular. As sinapses nervosas podem ser químicas ou elétricas Sinapse química. Forma de comunicação dos neurônios com outros neurônios ou com as células efetuadoras por meio de mediadores químicos denominados neurotransmissores (NT). Os NT são sintetizados pelos próprios neurônios e armazenados dentro de vesículas. Essas vesículas concentram-se no terminal axônico e quando os impulsos nervosos chegam a esses terminais os NT são liberados por meio de exocitose. A membrana do terminal que libera os NT denomina-se membrana pré-sináptica e a imediatamente vizinha, membrana póssinaptica. Entre elas há um espaço em torno de A chamado fenda sináptica. A interação dos NT com a membrana pós-sinaptica é realizada por meio de receptores protéicos altamente específicos. Além dos NT, os neurônios sintetizam mediadores conhecidos como neuromoduladores cujo efeito é o modular (controlar, regular) a transmissão sináptica. Sinapse elétrica. Comunicação nervosa que dispensa mediadores químicos; a neurotransmissâo é estabelecida através da passagem direta de íons por meio das junções abertas ou comunicantes (gap junctions). Os canais iônicos ficam acoplados e formas unidades funcionais denominadas conexinas. A transmissão da informação é muito rápida, mas oferece quase nenhuma versatilidade quanto ao controle da neurotransmissão. São particularmente úteis nas vias reflexas rápidas e nas respostas sincrônicas de alguns neurônios do SNC. Durante a fase de desenvolvimento ontogenético do SN humano os neurônios possuem ambos os tipos de sinapses, mas depois predominam as neurotransmissões químicas.

2 38 Sinapse química Sinapse elétrica MECANISMO DA NEUROTRANSMISSÃO QUÍMICA Liberação dos NT Com a chegada do PA no terminal (1), os canais de Ca ++ voltagem dependentes abrem-se e ocorre a difusão de Ca ++ para o interior do terminal (2). O aumento de Ca ++ intracelular estimula a exocitose dos NT para a fenda sináptica (3, 4). Os NT ligam-se a receptores da membrana pós-sinaptica (5) e causam mudanças de permeabilidade iônica. O fluxo resultante de íons muda o potencial de membrana pós-sinaptico transitoriamente, causando uma resposta pós-sinaptica. Os NT por outro lado, são inativados por enzimas específicas (6). Os NT causam alterações no potencial de membrana Os NT liberados para a fenda difundem-se até a membrana pós-sináptica e ligam-se, reversivelmente, às moléculas receptoras. Essas moléculas são de natureza protéica e se ligam especificamente ao seu mediador químico promovendo eventos elétricos. Conforme o tipo de NT, a interação causa uma mudança na condutância iônica da membrana pós-sináptica e um fluxo resultante de íons que pode levar à uma despolarização (entrada de cátions) ou hiperpolarizaçâo (saída de cátions ou entrada de anions). Essas respostas elétricas da membrana pós-sináptica são chamadas de potenciais pós-sinápticos e propagam-se passivamente a distâncias bem curtas. O intervalo de tempo que corresponde a liberação do NT até o inicio do potencial sináptico (em torno de 0,5ms) chama-se retardo sináptico. Esse retardo pode variar conforme o tipo de receptor sináptico ativado. A freqüência dos impulsos nervosos determina a quantidade de NT liberados Em cada vesícula sináptica há centenas de moléculas de NT. Quando o impulso de um único PA chegar ao terminal, um certo número de vesículas é esvaziado. Se a freqüência dos PA aumentar, proporcionalmente, mais vesículas são liberadas, pois o aumento da atividade nervosa no terminal manterá os canais de Ca ++ abertos por mais tempo. Por outro lado, se a

3 39 freqüência dos PA se mantiver alta por muito tempo, poderá ocorrer falta de vesículas e a neurotransmissâo poderá falhar até que o estoque de NT seja reposto. A neurotransmissâo química é quântica A unidade elementar da neurotransmissão química é o efeito causado pelos NT contidos em uma vesícula. Como cada vesícula contém a mesma quantidade de NT, a resposta pós-sinaptica é quântica, ou seja, a amplitude do potencial pós-sinaptico será sempre o múltiplo da resposta causada por uma única vesícula. Como desativar a neurotransmissão? Os NT (ou os neuromoduladores) exocitados não podem permanecer ligados aos receptores permanentemente. O sistema de recepção precisa voltar rapidamente ao seu estado de repouso, prontificando-se para receber novas mensagens. Há três maneiras de inativar os mediadores químicos: a) difusão lateral; b) degradação enzimática e c) recaptação pela membrana pré-sináptica via proteínas especificas de transporte (com consumo de ATP) e assistida pelos astrócitos. A acetilcolina é o único NT que não sofre recaptação. Os neurônios possuem dois tipos de NT Se o NT causar despolarização na membrana pós-sináptica, o NT e a sinapse são chamados de excitatórios. Mas, se causarem hiperpolarização são chamados de inibitórios. Há vários tipos de NT excitatórios e inibitórios. O potencial pós-sináptico despolarizante é denominado potencial pós-sináptico excitatório (PEPS) e o hiperpolarizante, potencial póssináptico inibitório (PIPS). Os PEPS e PIPS são, portanto, alterações localizadas no potencial de membrana causadas por aberturas de canais iônicos dependentes de NT. A figura ilustra o efeito do NT excitatório causando uma corrente de despolarização na membrana pós-sináptica (influxo de Na + ) e de NT inibitórios, causando uma corrente de hiperpolarização (influxo de Cl - ). Os PEPs e os PIPs são respostas elétricas de baixa voltagem e as respectivas amplitudes dependem da quantidade de NT. Os potenciais pós-sinápticos são eventos elétricos causados pela

4 40 abertura de canais iônicos NT dependentes cuja amplitude é baixa mas variável. Já os PA são eventos elétricos do tipo tudo-ou-nada (amplitude e duração constantes) causados pela abertura de canais iônicos (Na e K) voltagem dependentes. OS NT agem sobre dois tipos de receptores pós-sinápticos Receptores ionotrópicos: possuem sítios de recepção para os NT localizados em um canal iônico com comporta. Quando o NT se liga ao sítio receptor ocorre uma mudança de conformação espacial resultando na abertura (ou fechamento) de poro iônico. Receptores metabotrópicos: são moléculas que possuem sítios para os NT, mas que não são canais iônicos. A formação do complexo NT-receptor inicia reações bioquímicas que culmina com a abertura indireta dos canais iônicos. Nesse caso o receptor pós-sinaptico ativa uma proteína reguladora chamada proteína G que por sua vez, aciona uma outra proteína chamada efetuadora que efetivamente, poderá mudar a conformação de um canal iônico ou então, ativar uma enzima chave que modifica o metabolismo do neurônio pós-sinaptico. Esses tipos de receptores ativam uma reação em cascata e usam um segundo mensageiro (o primeiro é NT). Assim, nas sinapses em que os NT agem diretamente sobre receptores ionotrópicos, a neurotransmissâo é bastante rápida e nas sinapses mediadas por receptores metabotrópicos a comunicação é mais demorada. À esquerda, receptor ionotrópico. Á direita, receptor metabotrópico, mostrando dois sistema da proteína G: ação direta e via 2 o mensageiro A proteína G é uma molécula que fica ancorada na membrana citoplasmática e possui três subunidades (, e ). Quando ela está em repouso, a unidade está ligada a uma molécula de GDP. Quando o NT se liga ao receptor, a proteína G troca a molécula de GDP pelo GTP e a subunidade desliza-se pela membrana até encontrar uma molécula efetora. Por exemplo, quando a acetilcolina liberada pelos terminais nervosos se liga ao seu receptor nas fibras musculares cardíacas, a subunidade age abrindo os canais de K e a sua saída e causa PIPS. A hiperpolarização torna a fibra cardíaca menos excitável e como conseqüência, ocorre a redução na freqüência de batimento do coração. Outro NT, o GABA possui receptores metabotrópicos no SNC que agem de maneira semelhante, causando PIPS também pela abertura de canais de K. Proteína G e o sistema da adenilciclase A proteína G pode não só atuar diretamente sobre o canal iônico como também estimular a geração de 2º mensageiros e acionar outras proteínas efetuadoras intracelulares. A adenilciclase é uma das enzimas-chaves que uma vez ativada pela proteína G produz um 2º mensageiro conhecido como camp. Conforme a célula-alvo, encontraremos subtipos de proteínas G (G s, G i e G o ). O NT Noradrenalina, por exemplo, quando se liga ao receptor do tipo, ativa o sítio Gs da proteína G. A subunidade ativa a enzima-chave adenilciclase (AC) que a partir do ATP produzirá o 2 o mensageiro, o camp. O camp tem a função de ativar uma enzima quinase

5 41 A (PKA) cuja função é a de fosforilar canais de Ca ++. A entrada de cátions torna a membrana pós-sináptica mais fácil de ser excitada. Um outro tipo de receptor da mesma noradrenalina é um tipo 2 que tem efeito antagônico, ou seja, a inibe a AC. A inibição da enzima deixará de produzir camp e como conseqüência os canais de K + que estavam abertos, se fecham. Podemos concluir que um mesmo NT pode ter receptores diferentes e conforme a sinapse, apresentar efeitos antagônicos. Coração Vasos Proteína G e o sistema da fosfolipase C (PLC) Outros receptores metabotrópicos ativam outra enzima chave: a fosfolipase C (PLC) que como a adenilciclase flutua na membrana. A PLC age na membrana fosfolipídica quebrando o inositol fosfolipídio em dois componentes: IP3 (hidrossolúvel) e DAG (lipossolúvel). O DAG ativa a proteína quinase C (PKC) enquanto o IP3 difunde-se para o citosol e abre canais de Ca ++ dos reservatórios do retículo endoplasmático. A presença de Ca ++ intracelular altera o metabolismo do neurônio pós-sinaptico assim com a condutância iônica, mudando a excitabilidade celular. Este é um dos mecanismos de ação da serotonina. As células possuem mecanismos para reverter estes efeitos, graças a enzimas que defosforilam as moléculas fosfatadas pelas quinases. São as fosfatases. O efeito sobre os canais iônicos desses NT metabotrópicos dependerá do balanço entre as reações de fosforilação e de defosforilação. Que vantagens há em usar 2º mensageiros?

6 42 A vantagem é que intracelularmente são produzidos muitos mediadores, isto é, amplificação do sinal inicial: os receptores ionotrópicos possuem uma relação de 1 NT: 1 canal iônico. No sistema acoplado à proteína G a relação é de 1NT: muitos canais. Além disso, possui um efeito mais prolongado e os 2º mensageiros podem enviar sinais para dentro da célula. O fato de os receptores metabotrópicos demorarem mais tempo para modificar a excitabilidade do neurônio ou, então, por agirem modificando o metabolismo, torna os mediadores químicos, agentes moduladores da neurotransmissâo. MECANISMOS ELEMENTARES DE INTEGRAÇÃO DOS SINAIS NEURAIS Os PEPS e PIPS são computados algebricamente na membrana pós-sinaptica por somação Os potenciais pós-sinápticos gerados com a chegada dos NT propagam-se passivamente até a zona de gatilho. Se o PA será gerado ou não, isso dependerá do evento elétrico: a) se a despolarização atingir um valor crítico (ou limiar) será gerado um PA b) se a despolarização ultrapassar o potencial critico então mais de um PA será gerado c) se a despolarização atingir valores menores do que o crítico ou se houver hiperpolarização, não haverá qualquer PA Somação espacial e temporal Na superfície da membrana dos dendritos e dos corpos celulares há receptores para NT excitatórios e inibitórios. Isso quer dizer que o neurônio pós-sinaptico gera PEPS e PIPS conforme a sinapse que está em atividade. Então, como o neurônio realiza a análise dos sinais aferentes? Ele realiza uma análise combinatória de potenciais póssinápticos denominada somação que pode ser de duas maneiras: Somação Espacial: somação de potenciais pós-sinápticos causados por diferentes neurônios présinapticos. Somação Temporal: somação de

7 43 potenciais pós-sinápticos em rápida sucessão deflagrados pelo mesmo neurônio pré-sináptico. Os potenciais pós-sinápticos têm a propriedade de se somarem algebricamente modificando a sua intensidade. Assim a somação de três PEPS causados por neurônios distintos ou pelo mesmo neurônio aumenta as chances do potencial de membrana póssinaptico atingir o valor limiar. Enquanto os potenciais pós-sinapticos gerados nos dendritos e corpo celular são graduáveis em termos de intensidade, os PA, ao contrário, possuem duração e amplitude fixas. Isso que dizer que nos axônios, a decodificação de intensidade é feita pela modulação na freqüência dos PA. Esses comportamentos elétricos mediante os tipos de NT deixam bem claro que as sinapses químicas funcionam como processadores binários de sinais (despolarização/hiperpolarizaçao) e que na freqüência dos PA está codificada a mensagem resultante da análise. Por isso, um neurônio ao receber os sinais de vários neurônios distintos pode integrá-los por meio de somação e gerar (ou não) uma determinada freqüência de PA como resposta. Potenciais de placa das junções neuro-musculares Os motoneurônios são os elementos periféricos do SN motor somático cujos corpos celulares estão localizados na substância cinzenta da medula ou nos núcleos motores dos nervos cranianos. Seus axônios são mielinizados e conduzem os impulsos nervosos em alta velocidade. Os terminais axonicos fazem sinapse com uma região especializada do sarcolema chamada placa motora. A acetilcolina (Ach) é o NT responsável pela estimulação das fibras musculares e a sua liberação para a fenda sináptica ocorre como nas sinapses nervosas. A Ach causa um potencial pós-sináptico excitatório chamado potencial de placa. Como fora da placa motora há canais de Na e K voltagem dependentes, o potencial de placa causará PA ao longo do sarcolema que por sua vez causará a contração da fibra muscular. Os potenciais pós-sinapticos das sinapses nervosas e das junções neuro-musculares operam com níveis diferentes de segurança Nas junções neuromusculares, os potenciais de placa são excitatórios e devem ser à prova de falhas: a cada PA do motoneurônio, o terminal axônico deve liberar uma quantidade suficiente de vesículas (em torno de 200) capaz de produzir um potencial de placa suficiente para as fibras musculares se contraírem. Já nas sinapses nervosas a neurotransmissâo opera de maneira diferente: a quantidade de NT liberada pelas vesículas devido a um único PA não será suficiente para causar um PA no neurônio pós-sináptico: na verdade será necessária a somação espacial e/ou temporal de vários PEPS. Assim, as sinapses nervosas estão sempre em condições de processar previamente os sinais nervosos antes de produzir os sinais (PA) em seus axônios. Propriedades das comunicações neurais 1) Facilitação. Quando o neurônio estimula o outro com uma freqüência elevada durante um certo intervalo de tempo, a membrana pós-sináptica passa a responder com maior amplitude a cada estímulo isolado. Em outras palavras, ela fica mais fácil de ser despolarizada até o seu limiar (torna-se mais excitável). 2) Fadiga sináptica. Se os estímulos de alta freqüência se prolongarem, a membrana póssinaptica apresenta fadiga, resultando na suspensão temporária da transmissão nervosa, devido ao esgotamento do NT e à inativação dos receptores pós-sinapticos. 3) Potenciação pós-tetânica. É uma forma de facilitação sináptica mais prolongada. Logo após a fadiga sináptica, a membrana pós-sinaptica se torna excessivamente sensível à estimulação. Supõe-se que o acúmulo de Ca ++ dentro dos terminais pré-sinápticos facilite a liberação dos NT.

8 44 4) Potenciação em longo prazo (LTP). A potenciação pós-tetânica decai dentro de poucos minutos, mas em algumas sinapses centrais (como no hipocampo) o processo é mantido por longo tempo e parece estar associada à base da aprendizagem e memória. 5) Condução unidirecional. A condução dos impulsos nervosos através das sinapses se dá apenas unidirecionalmente, dos botões terminais para a membrana pós-sinaptica, nunca em sentido contrário, garantido o fluxo unidirecional das informações. Uma exceção é a ação de do neurotransmissor, NO que age do neurônio pós-sináptico para a o pré-sináptico. Um neurônio pode regular a excitabilidade de outro neurônio por meio de neurônios inibitórios Os PIPS causam redução na excitabilidade da membrana pós-sinaptica, pois o potencial de membrana se afasta do potencial limiar. A função do neurônio inibitório é justamente tornar o neurônio póssinaptico incapaz de deflagar um PA ou reduzir a freqüência dos PA. Na figura ao lado, observamos que o neurônio possui dois tipos de sinapses: um excitatório e outro inibitório. Suponha que apenas o neurônio excitatório esteja em atividade (figura de cima). O eletrodo colocado no dendrito acusa um PEPS e no soma observamos a propagação eletrotônica da despolarização. Já na figura de baixo, entra em ação a sinapse inibitória. Repare que o soma já não manifesta qualquer resposta excitatória, indicando a total incapacidade de gerar PA. A grande maioria dos canais iônicos dependentes de NT inibitórios é permeável aos íons Cl -. No SNC o principal NT inibitório é o GABA. Neurônio Excitatório Neurônio Inibitório Dendritos e Corpo Celular: local de integração dos potenciais pós sinápticos de baixa voltagem e graduados Zona de Gatilho do PA PEPS PIPS PEPS Zona de Gatilho: conforme o resultado da somação algébrica dos potenciais pós-sinapticos haverá ou não geração dos PA. A freqüência dos PA será determinada pela amplitude do PEPS.

9 45 CIRCUITOS NEURAIS: UM SISTEMA LÓGICO DE PROCESSAMENTO DE SINAIS ELÉTRICOS A relação dos NT excitatórios e inibitórios com suas respectivas famílias de receptores sugerem uma ampla flexibilidade no processo de análise e processamento da informação nervosa. Agora veremos que os arranjos arquitetônicos dos circuitos nervosos também propiciam sistemas de controle da informação. No SNC, as sinapses mais comuns são do tipo axo-somática ou axo-dendrítica. Há, porém, mais raramente, a ocorrência de sinapses axo-axônicas, dendro-dendríticas, somato-somáticas, somato-dendríticas e somato-axônicas. Apesar de incomum, o circuito nervoso mais simples possível seria o de um neurônio sensitivo e um neurônio motor, cujo estímulo no primeiro provocaria uma resposta no segundo. Entende-se por circuito neural o arranjo sináptico entre mais de dois neurônios. Um arco reflexo é um circuito que pode ter no mínimo um neurônio sensorial, um neurônio motor e o órgão efetuador. Neste caso, este circuito é denominado arco reflexo monossináptico, pois envolve uma única sinapse entre o neurônio sensorial e o neurônio motor. Mas o mais comum é encontrar circuitos polissinápticos, com a participação de não só um único interneurônio, mas vários que ficam interpostos entre os neurônios sensoriais e os motoneurônios. Em vários circuitos, os contatos sinápticos são estáveis e precisos com alto grau de reconhecimento celular, mas em outros, ocorrem rearranjos dramáticos e não raro, são eliminados. Ao longo do desenvolvimento, os circuitos são passiveis de serem modificados com o uso. Os circuitos neurais podem ser cadeias de neurônios abertas ou fechadas. Tipos de circuitos abertos Circuito convergente: arranjo no qual vários neurônios convergem para um único neurônio. Repare que este neurônio constitui uma via final comum de vários impulsos nervosos que podem chegar de diferentes regiões do SNC. Nos circuitos divergentes os neurônios estão arranjados de tal modo que uma célula pode redistribuir a informação para vários neurônios situados em diferentes locais do sistema nervoso. Tipos de circuitos fechados Circuitos neuronais como vemos na figura ao lado, propiciam a recorrência ou reverberação do impulso nervoso, auto-reforçando a propagação do impulso excitatório na cadeia. Denominamos este tipo de circuito de feedback positivo ou facilitatório. Assim, a informação é reverberada por um certo tempo que depende do número e tipos de associação dos componentes da cadeia. Entretanto, a presença de um neurônio inibitório neste tipo de circuito, ao contrário, autocontrola o nível de excitabilidade da própria cadeia: quanto maior o nível de excitação, maior vai ser o de inibição e o circuito é denominado de feedback negativo inibitório.

10 46 Circuito inibitório lateral No caso do arranjo de duas cadeias paralelas de neurônios excitatórios, uma poderá influenciar a outra através de um neurônio inibitório lateral. Este circuito é conhecido como inibição lateral. Se houver um outro neurônio inibitório influenciando o neurônio inibitório do circuito anterior, o primeiro inibiria o efeito inibitório do segundo, liberando o circuito excitatório. Neste caso temos um circuito desinibitório. Baseado numa forma binária de processamento de sinal (excitação/inibição) e infinitas possibilidades arquitetônicas na organização dos circuitos neurais um processamento nervoso progressivamente cada vez mais complexo é possível. Em outras palavras, quanto maior o numero de neurônios em um circuito maior será o grau de complexidade no processamento da informação. Zona de descarga e Orla Sublimiar A B Veja o circuito neuronal ao lado: suponha a estimulação apenas do neurônio A. Este é eficaz para causar PA no neurônio 1 mas só consegue causar PEPS sublimiares nos neurônios 2, 3 e 4. O mesmo acontece com a estimulação do neurônio B. Se ambos, A e B forem estimulados simultaneamente, além dos neurônios 1 e 5, a somação espacial facilitará os neurônios 2, 3 e 4 que também serão disparados. Denomina-se zona de descarga, o conjunto de neurônios que dispara em resposta ao estimulo limiar, no caso corresponde aos neurônios 1 e 5; já os neurônios 2, 3 e 4 corresponde à orla sublimiar. Células marcapasso No sistema nervoso, existem células que manifestam atividade elétrica espontânea. Uns descarregam-se ritmicamente e outros ao acaso. As células nervosas que regulam o ciclo respiratório possuem tais propriedades.

11 47 NEUROTRANSMISSORES E NEUROMODULADORES Um NT tem como características típicas: 1. ser sintetizado pelos neurônios pré-sinápticos; 2. ser armazenado dentro de vesículas e armazenados nos terminais axonicos; 3. ser exocitado para a fenda sináptica com a chegada do PA; 4. possuir receptores pós-sinápticos cuja ativação causa potenciais pós-sináptico (excitatórios ou inibitórios); 5. uma vez purificado, mimetizar os mesmos efeitos fisiológicos. Geralmente, um neurônio produz apenas um tipo de NT, excitatório ou inibitório. Não raro, entretanto, ele pode sintetizar e secretar dois tipos de mediadores químicos: um NT e outro neuromodulador. Esse último tem a função de regular o nível de excitabilidade da membrana pós-sinaptica. Os NTs são sintetizados no próprio terminal, mas os neuromoduladores peptídicos são fabricados no corpo celular e armazenados em grânulos secretores que são transportados até o terminal. A ação dos neuromoduladores não é tipicamente a de causar potenciais de ação, mas de controlar ou regular o grau de excitabilidade da membrana pós-sinaptica, facilitando ou dificultando a deflagração dos PA nas zonas de gatilho. Já vimos que os NT são inativados eficazmente pela combinação de vários mecanismos: a) difusão: os NT difundem-se para fora da sinapse. b) inativação química por enzimas específicas presentes na sinapse. c) captação pré-sináptica. d) recaptação pelas células gliais (astrócitos). CLASSES DE NEUROTRANSMISSORES E OS MECANISMOS DE AÇÃO Vimos que os NT apresentam dois tipos de efeitos na membrana pós-sináptica: os excitatórios que causam despolarização e os inibitórios, hiperpolarizaçâo. Tanto um efeito quanto outro pode ser causado não só por um tipo exclusivo de NT, mas por vários tipos diferentes. Além disso, um mesmo NT possui não só um tipo de receptor pós-sináptico, mas vários subtipos. Todas essas características da neurotransmissâo química conferem às sinapses nervosas, uma enorme diversidade e plasticidade. Biossíntese dos Neurotransmissores Os NT são dos seguintes tipos químicos: aminoácidos, aminas, purinas, peptídeos e gases (Veja a lista de alguns NT na tabela).

12 48 Neurotransmissores Neuromoduladores Aminoácidos Aminas Purinas Peptideos Gases Acido gama-amino-butirico Acetilcolina (ACh) Adenosina Gastrina, CCK NO (GABA) Glutamato (Glu) Adrenalina ou Epinefrina ATP Vasopressina, ocitocina CO Glicina (Gli) Dopamina Insulina Aspartato (Asp) Noradrenalina Neuropetideo opioide Norepinefrina Serotonina (5HT) Secretina, glucagon, VIP Substancia P, Substancia K Os NT são sintetizados a partir dos sistemas enzimáticos presentes nos terminais axônicos ou no corpo celular. Os aminoácidos, por exemplo, são sintetizados em todas as células a partir da glicose ou de proteínas decompostas. A única exceção é o GABA que é sintetizado a partir do glutamato por determinados neurônios. As aminas são todas sintetizadas no terminal sendo que a acetilcolina é sintetizada a partir da colina; a serotonina, a partir do triptofano e as catecolaminas (dopamina, adrenalina e noradrenalina), a partir da tirosina. Conhecer os passos da síntese dos NT é especialmente importante já que muitas doenças neurológicas e psiquiátricas estão associadas com falhas na síntese de NT. Por exemplo, os distúrbios na síntese de serotonina e noradrenalina causam quadros de depressão profunda. É interessante observar que muitas outras células sintetizam essas substâncias que chamamos de NT; mas os neurônios são especialistas em armazenar e concentrar tais substâncias ou os seus percussores dentro de vesículas. Os neuromoduladores peptídicos são todos sintetizados no reticulo endoplasmático rugoso e armazenados em granulos secretores. Princípios de Neurofarmacologia Nosso organismo está exposto a várias substâncias tóxicas: venenos de origem animal ou vegetal metais pesados (mercúrio, chumbo e cromo) e a um monte de drogas sintéticas (fármacos). Várias substâncias são neurotóxicas e afetam especificamente a neurotransmissâo. O conhecimento básico de alguns princípios de neurofarmacologia nos serão muito úteis. As substâncias exógenas que se ligam especificamente a um determinado receptor mimetizando fielmente os efeitos do NT natural são conhecidos como agonistas. Quando o contrário acontece, isto é quando o efeito natural é bloqueado, chamamos essas drogas de antagonistas. Já vimos que um mesmo NT pode ter muitos subtipos de receptores pós-sinapticos. Por exemplo, a ACh possui dois subtipos: os receptores nicotínicos e os muscarínicos. Os receptores nicotínicos são ionotrópicos, são estimulados somente pela nicotina e estão presentes somente nas placas motoras das fibras musculares esqueléticas; já os receptores muscarínicos são metabotrópicos, são estimulados exclusivamente pela muscarina e estão restritos às fibras musculares lisas e cardíacas. Além da ação das drogas agonistas, esses receptores possuem também antagonistas específicos: o curare bloqueia apenas os receptores nicotínicos e a atropina, os receptores muscarinicos. Essas propriedades não deixam dúvidas de que os receptores colinérgicos são farmacológica e molecularmente diferentes. Isso pode tornar a compreensão da neurotransmissâo um pouco mais complicada, mas, por outro lado, quer dizer que se torna possível fabricar medicamentos bastante específicos que agem ou coração ou nas fibras musculares esqueléticas.

13 49 A tabela abaixo resume alguns subtipos de receptores e os respectivos NT: Neurotransmissor Receptor Agonistas Antagonistas Ach Noradrenalina Glutamato GABA Muscarínico Nicotínico Receptor Receptor AMPA NMDA GABA A GABA B Muscarina Nicotina Fenilefrina Isoproterenol AMPA NMDA Muscimol Baclofen Atropina Curare Fenoxibenzoamina Propanolol CNQX AP5 Bicuculina Faclofen ACETILCOLINA Acetil CoA AC Transportador h de ACh AChE Colina Transportador de colina Colina + Acetato A Ach é um NT clássico e o primeiro a ser descoberto. Atua como mediador de várias sinapses nervosas centrais e periféricas. Os neurônios colinérgicos possuem a enzima-chave a acetilcolina transferase que transfere um grupo acetil do acetil-coa à colina. O neurônio também sintetiza a enzima acetilcolinesterase (AchE) que é secretada para a fenda sináptica e degrada o NT em colina e ácido acético. A colina é recaptada e reutilizada para síntese de novos NT. Venenos como o gás dos nervos e os inseticidas organofosforados inibem a ação da AchE. Esse efeito leva a uma exacerbação da atividade parassimpática e da atividade colinérgica sobre a musculatura esquelética. Receptor póssinaptico ACETILCOLINA Receptores nicotínicos Receptores muscarinicos Tipo Ionotrópico Metabotrópico Mecanismo de ação Abrem canais de Na Via proteína G; abrindo canais de K +. Subtipos M1, M2, M3, M4 e M5 Agonistas Nicotina Muscarina Antagonistas Curare Atropina Distribuição Placa motora; SNC SNA parassimpático CATECOLAMINAS OU AMINAS BIOGÊNICAS O aminoácido tirosina é o precursor de três NTs que possuem o grupo catecol: noradrenalina, adrenalina e dopamina conhecidas como catecolaminas. Sofrem recaptação na membrana pré-sináptica e são enzimaticamente degradadas pela MAO (monoaminooxidades) no terminal pré-sináptico. Muitas drogas interferem com a sua recaptação prolongando a presença do NT na fenda como a anfetamina e a cocaína.

14 50 ADRENALINA Receptores Receptores NORADRENALINA Tipo Metabotrópico Metabotrópico Mecanismo de ação Proteína G; camp Abrem canais de Ca Proteína G; Proteína G; camp Fecham canais de K + Subtipos 1, 2 1, 2 Agonsitas Fenilefrina Isoproterenol Antagonistas Fenoxibenzoamina Propanolol DOPAMINA Receptores Tipo Metabotrópico Mecanismo de ação Proteína G; camp Abrem canais de Ca ++ Subtipos D1, D2, D3, D4 e D5 Agonistas Antagonistas SEROTONINA Não é uma catecolamina, pois é uma amina sem o grupo catecol. É sintetizada a partir do aminoácido essencial triptofano. Os neurônios serotonérgicos centrais parecem estar envolvidos na regulação da temperatura, percepção sensorial, na indução do sono e na regulação dos níveis de humor. Como as catecolaminas são recaptadas pela membrana pré-sináptica e degradadas pela MAO. Drogas que atuam bloqueando a sua recaptação como fluoxetina (Prozac) são utilizados nos tratamentos antidepressivos. SEROTONINA Tipo Ionotrópico Metabotrópico Mecanismo de ação Canais iônicos Proteína G; camp Subtipos 5HT3 5 HT1A, 5 HT1B, 5 HT1C, 5 HT1D, 5HT2, e 5HT4 Agonsitas Antagonistas

15 51 AMINOÁCIDOS (Glutamato, Aspartato, GABA, Glicina) Glutamato e Aspartato Mais da metade dos neurônios do SNC utiliza o Glutamato (Glu) e Aspartato (Asp), principais NT excitatórios do SNC sendo que o Glu responde por 75% da atividade despolarizante. Os receptores para o Glu são do tipo: O Glu possui quatro tipos de receptores, sendo três deles ionotrópicos: AMPA: canal iônico para cátions (Na) produzindo despolarização rápida Kainato: parecido com o AMPA NMDA: canais para dois cátions (Na e Ca) produzindo despolarização lenta e persistente. Os receptores AMPA e NMDA co-existem na mesma sinapse. O neurônio pré-sinaptico liberar Glu e este liga-se a receptores NMDA, mas precisa de outro NT chamado Glicina para abrir o canal. Meso depois de aberto, o interior do canal está obstruído por íons Mg ++ impedindo a entrada de Ca ++. Como a ação do Glu no canal AMPA é mais rápido, a entrada de cátions por essa via despolariza a membrana repelindo os íons Mg ++ dos canais NMDA. Com isso, tornase possível a entrada de Na + e de Ca ++. Em outras palavras, a ação despolarizante do Glu depende de uma despolarização prévia, AMPA dependente. O Ca ++ então funciona como 2º mensageiro intracelular, mediando a regulação da expressão gênica. Essas sinapses estão associadas a mecanismos de consolidação da memória pelo hiopcampo. Saiba mais:

16 52 GLUTAMATO Receptores NMDA Receptores Ñ-NMDA Receptores Kainato Tipo ionotrópico (rápido) ionotrópico (lento) Metabotrópico Mecanismo de ação Abrem canais de Ca, Na e K Abrem canais de Na e K? Agonistas NMDA AMPA KAINATO Antagonistas AP5 CNQX? GABA, GLICINA O ácido -aminobutírico (GABA) é um aminoácido que não entra na síntese de proteínas e só está presente nos neurônios gabaégicos. É o principal NT inibitório do SNC. Os receptores são de dois subtipos: GABA A : Ionotópicos que abrem canais de Cl - e hiperpolarizam a membrana. GABA B Metabotópicos que estão acoplados a proteína G e aumentam a condutância para os íons K +, hiperpolarizando a membrana. As drogas conhecidas como tranqüilizantes benzodiazepínicos (ansiolíticos) estimulam estes receptores, aumentando o nível de inibição do SNC e são utilizadas nos tratamentos da ansiedade e da convulsão. Já os barbitúricos têm o mesmo efeito, agindo em outro sitio de ligação; são tão potentes que são utilizados como anestésicos gerais. A Glicina é um NT inibitório que aumenta a condutância para o Cl - na membrana póssináptica dos neurônios espinhais. A sua presença é essencial para que os receptores NMDA funcionem. A bactéria Clostridium entra no organismo por lesões de pele tais como cortes, arranhaduras, mordidas de animais e causa o tétano. A bactéria possui toxinas que agem competitivamente sobre os receptores de glicina, removendo a sua ação inibidora sobre os neurônios motores do tronco encefálico e da medula espinhal. São os sinais da intoxicação: rigidez muscular em todo o corpo, principalmente no pescoço, dificuldade para abrir a boca (trismo) e engolir, riso sardônico produzido por espasmos dos músculos da face. A contratura muscular pode atingir os músculos respiratórios. A estricnina é um veneno alcalóide de sementes de Strichnos nux vomica que antagonizam os efeitos da Gli, causando convulsão e morte. Outros mediadores da neurotransmissâo ATP Em adição às aminas e aminoácidos, outras moléculas menores podem servir como mensageiros. Entre eles está o ATP, molécula chave do metabolismo: ele está concentrado em muitas sinapses do SNC e do SNP e é liberado na fenda dependente de cálcio. Parece abrir canais catiônicos na membrana pós-sinaptica Peptídeos Neuroativos Também conhecidos como neuropeptídeos, são sintetizados e liberados em baixa quantidade. Foram identificados ao menos 25 que atuam modulando atividades nervosas. A

17 53 ação neuromoduladora consiste em influenciar uma neurotransmissâo clássica, alterando présinapticamente a quantidade de NT liberada em resposta a um potencial de ação ou póssinapticamente, alterando a sua resposta a um NT. Geralmente os neuropeptídeos são coliberados juntamente com os NT clássicos, mas em vesículas separadas (vesículas secretoras). Substância P: um polipeptídio que se encontra em quantidade apreciável no intestino, e participa como importante mediador de reflexos gastrointestinais. É também sintetizado por neurônios aferentes primários influenciando a sensibilidade dolorosa. Peptídeos Opióides: os seus receptores são estimulados por substancias opióides como a morfina. A encefalina é encontrada nos terminais nervosos do trato gastrintestinal e modulam a sensibilidades dolorosa, agindo sobre os canais de Ca++ voltagem-dependentes. Há pelo menos 5 subtipos de receptores opiáceos:,,,, e que diferem entre si quanto às propriedades farmacológicas e distribuição. Oxido nítrico (NO) e monóxido de carbono (CO): ambos são moléculas gasosas pequenas e que são sintetizadas enzimas especificas presentes em alguns neurônios. A síntese desses gases geralmente nas sinapses excitatórias, especialmente mediadas pelo glutamato, através de receptores do tipo NMDA. Como são voláteis não são armazenados em vesículas e se difundem facialmente. Essas moléculas agem pós e pré-sinapticamente; neste ultimo caso, age facilitando a neurotransmissâo por retro-alimentaçâo positiva. Animações com mecanismos de ação de várias drogas que agem no SN realizado pela Unifesp. Alem desse, visite os outros sites sugeridos na homepage da disciplina.

Sinapses Curso de Neurofisiologia/Neurociências Graduação

Sinapses Curso de Neurofisiologia/Neurociências Graduação André Ricardo Massensini, Ph.D. Bruno Rezende de Souza, Ph.D. Grace Schenatto Pereira, Ph.D. Juliana Carvalho Tavares, Ph.D. Márcio Flávio Dutra Moraes, Ph.D. Núcleo de Neurociências Departamento de Fisiologia

Leia mais

Neurofisiologia. Profª Grace Schenatto Pereira Núcleo de Neurociências NNc Bloco A4, sala 168 Departamento de Fisiologia e Biofísica ICB-UFMG

Neurofisiologia. Profª Grace Schenatto Pereira Núcleo de Neurociências NNc Bloco A4, sala 168 Departamento de Fisiologia e Biofísica ICB-UFMG Neurofisiologia Profª Grace Schenatto Pereira Núcleo de Neurociências NNc Bloco A4, sala 168 Departamento de Fisiologia e Biofísica ICB-UFMG www.nnc.icb.ufmg.br link: apoio à graduação ciências biológicas

Leia mais

Profa. Dra. Eliane Comoli Depto de Fisiologia da FMRP-USP

Profa. Dra. Eliane Comoli Depto de Fisiologia da FMRP-USP Profa. Dra. Eliane Comoli Depto de Fisiologia da FMRP-USP Neurotransmissão ROTEIRO DE AULA TEÓRICA: NEUROTRANSMISSÃO 1. Definição de sinapse a. sinápse elétrica b. sinápse química 2. Princípios da Transmissão

Leia mais

ORGANIZAÇÃO DO SISTEMA NERVOSO FUNÇÕES BÁSICAS DAS SINAPSES E DAS SUBSTÂNCIAS TRANSMISSORAS

ORGANIZAÇÃO DO SISTEMA NERVOSO FUNÇÕES BÁSICAS DAS SINAPSES E DAS SUBSTÂNCIAS TRANSMISSORAS ORGANIZAÇÃO DO SISTEMA NERVOSO FUNÇÕES BÁSICAS DAS SINAPSES E DAS SUBSTÂNCIAS TRANSMISSORAS AULA 4 DISCIPLINA: FISIOLOGIA I PROFESSOR RESPONSÁVEL: FLÁVIA SANTOS Divisão sensorial do sistema nervoso Receptores

Leia mais

Profa Silvia Mitiko Nishida Depto de Fisiologia. SINAPSES NERVOSAS Neurotransmissores

Profa Silvia Mitiko Nishida Depto de Fisiologia. SINAPSES NERVOSAS Neurotransmissores Profa Silvia Mitiko Nishida Depto de Fisiologia SINAPSES NERVOSAS Neurotransmissores 1 Eletromicrografia S1 S2 2 SINAPSE NERVOSA Um neurônio faz sinapse com muitos neurônios Tipos de Sinapse Nervosas 1

Leia mais

SISTEMA NERVOSO AUTÔNOMO

SISTEMA NERVOSO AUTÔNOMO DIVISÃO DO SN SISTEMA NERVOSO AUTÔNOMO MIDRIASE E MIOSE clic Quem não tem colírio, usa óculos escuros... Raul Seixas http://www.qmc.ufsc.br/qmcweb/artigos/ma Salivação MEDO, PANICO, TERROR Reação de urgência

Leia mais

CURSO DE EXTENSÃO. Neurofisiologia I. Giana Blume Corssac

CURSO DE EXTENSÃO. Neurofisiologia I. Giana Blume Corssac 2017 CURSO DE EXTENSÃO Neurofisiologia I Giana Blume Corssac Tópicos da aula: Bioeletrogênese Potenciais de membrana Transmissão sináptica Sinapses Neurotransmissores Sistema nervoso autônomo Bioeletrogênese

Leia mais

Comunicação entre neurônios. Transmissão de sinais no sistema nervoso

Comunicação entre neurônios. Transmissão de sinais no sistema nervoso Comunicação entre neurônios Transmissão de sinais no sistema nervoso Neurônios Conduzem informações através de sinais elétricos Movimentos de íons através da membrana celular Correntes iônicas codificam

Leia mais

Transmissão sináptica

Transmissão sináptica Transmissão sináptica Lembrando que: Distribuição iônica através da membrana de um neurônio em repouso: Íon [i] mm [e] mm Pot. Equ. (mv) K + 400 20-75 Na + 50 440 +55 Cl - 52 560-60 A - 385 - - No Potencial

Leia mais

Sistema Nervoso Central Quem é o nosso SNC?

Sistema Nervoso Central Quem é o nosso SNC? Controle Nervoso do Movimento Muscular Sistema Nervoso Central Quem é o nosso SNC? 1 SNC Encéfalo Medula espinhal Encéfalo - Divisão anatômica Cérebro Cerebelo Tronco encefálico 2 Condução: Vias ascendentes

Leia mais

Sinapse. Permitem a comunicação e funcionamento do sistema nervoso. Neurónio pré-sináptico (envia a informação)

Sinapse. Permitem a comunicação e funcionamento do sistema nervoso. Neurónio pré-sináptico (envia a informação) Sinapse Medeia a transferência de informação de um neurónio para o seguinte, ou de um neurónio para uma célula efectora (ex.: célula muscular ou glandular); Permitem a comunicação e funcionamento do sistema

Leia mais

Prof. João Ronaldo Tavares de Vasconcellos Neto

Prof. João Ronaldo Tavares de Vasconcellos Neto Prof. João Ronaldo Tavares de Vasconcellos Neto A habilidade mais marcante do sistema nervoso baseiam-se nas interações entre os neurônios conectados. O grande número de neurônios e interações entre estas

Leia mais

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Síntese das catecolaminas

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Síntese das catecolaminas Síntese das catecolaminas Mecanismo de Ação Monoaminas não agem diretamente em canais iônicos. Exceção é o receptor 5HT-3 (serotonina). Agem através de segundos mensageiros, como camp. camp ativa PKA que

Leia mais

Sinapses. Comunicação entre neurônios. Transmissão de sinais no sistema nervoso

Sinapses. Comunicação entre neurônios. Transmissão de sinais no sistema nervoso Sinapses Comunicação entre neurônios Transmissão de sinais no sistema nervoso Biofísica 2018 / Ciências Biológicas / FCAV UNESP Recordando... Transmissão de sinais em um neurônio Fases: Estímulo alteração

Leia mais

FISIOLOGIA HUMANA UNIDADE II: SISTEMA NERVOSO

FISIOLOGIA HUMANA UNIDADE II: SISTEMA NERVOSO FISIOLOGIA HUMANA UNIDADE II: SISTEMA NERVOSO ORGANIZAÇÃO MORFOFUNCIONAL DO SISTEMA NERVOSO CANAIS IÔNICOS E BOMBAS CONDUÇÃO DE IMPULSOS NERVOSOS (SINÁPSES QUÍMICAS E ELÉTRICAS) SISTEMA NERVOSO SIMPÁTICO

Leia mais

SINAPSE. Sinapse é um tipo de junção especializada, em que um neurônio faz contato com outro neurônio ou tipo celular.

SINAPSE. Sinapse é um tipo de junção especializada, em que um neurônio faz contato com outro neurônio ou tipo celular. Disciplina: Fundamentos em Neurociências Profa. Norma M. Salgado Franco SINAPSE Sinapse é um tipo de junção especializada, em que um neurônio faz contato com outro neurônio ou tipo celular. Podem ser:

Leia mais

SINAPSE E TRANSMISSÃO SINÁPTICA

SINAPSE E TRANSMISSÃO SINÁPTICA SINAPSE E TRANSMISSÃO SINÁPTICA Prof. João M. Bernardes Uma vez que o sistema nervoso é composto por células distintas, torna-se necessário que os neurônios estejam conectados de alguma forma, a fim de

Leia mais

Introdução ao estudo de neurofisiologia

Introdução ao estudo de neurofisiologia Introdução ao estudo de neurofisiologia Introdução ao estudo de neurofisiologia Peixe Réptil Ave Boi Humano Por que os cérebros são diferentes entre as espécies? Introdução ao estudo de neurofisiologia

Leia mais

Neurofisiologia. Prof a Deise Maria F. de Mendonça

Neurofisiologia. Prof a Deise Maria F. de Mendonça Neurofisiologia Prof a Deise Maria F. de Mendonça Organização Geral do Sistema Nervoso Organização Geral do Sistema Nervoso Anatomia: Sistema Nervoso Central ou Neuroeixo - Encéfalo Telencéfalo (Córtex

Leia mais

CURSO DE EXTENSÃO. Neurofisiologia. Profa. Ana Lucia Cecconello

CURSO DE EXTENSÃO. Neurofisiologia. Profa. Ana Lucia Cecconello CURSO DE EXTENSÃO Neurofisiologia Profa. Ana Lucia Cecconello Transmissão Sináptica Informação sensorial (dor) é codificada Comportamento: erguer o pé Neurônio pré-sináptico Neurônio pós-sináptico sinapse

Leia mais

13/08/2016. Movimento. 1. Receptores sensoriais 2. Engrama motor

13/08/2016. Movimento. 1. Receptores sensoriais 2. Engrama motor Movimento 1. Receptores sensoriais 2. Engrama motor 1 Movimento Componentes Celulares e Funcionamento do Sistema Nervoso 2 O Sistema nervoso desempenha importantes funções, como controlar funções orgânicas

Leia mais

Funções do Sistema Nervoso Integração e regulação das funções dos diversos órgãos e sistemas corporais Trabalha em íntima associação com o sistema end

Funções do Sistema Nervoso Integração e regulação das funções dos diversos órgãos e sistemas corporais Trabalha em íntima associação com o sistema end FISIOLOGIA DO SISTEMA S NERVOSO Funções do Sistema Nervoso Integração e regulação das funções dos diversos órgãos e sistemas corporais Trabalha em íntima associação com o sistema endócrino (neuroendócrino)

Leia mais

Prof. João Ronaldo Tavares de Vasconcellos Neto

Prof. João Ronaldo Tavares de Vasconcellos Neto Prof. João Ronaldo Tavares de Vasconcellos Neto A habilidade mais marcante do sistema nervoso baseiam-se nas interações entre os neurônios conectados. O grande número de neurônios e interações entre estas

Leia mais

GÊNESE E PROPAGAÇÃO DO POTENCIAL DE AÇÃO

GÊNESE E PROPAGAÇÃO DO POTENCIAL DE AÇÃO GÊNESE E PROPAGAÇÃO DO POTENCIAL DE AÇÃO Comunicação entre os neurônios no sistema nervoso Introdução Mesmo para um simples reflexo é necessário que o SN, colete, distribua e integre a informação que

Leia mais

CONSIDERAÇÕES SOBRE POTENCIAIS DE MEMBRANA A DINÂMICA DOS FUNCIONAMENTO DOS CANAIS ATIVADOS POR NEUROTRANSMISSORES

CONSIDERAÇÕES SOBRE POTENCIAIS DE MEMBRANA A DINÂMICA DOS FUNCIONAMENTO DOS CANAIS ATIVADOS POR NEUROTRANSMISSORES CONSIDERAÇÕES SOBRE POTENCIAIS DE MEMBRANA A DINÂMICA DOS FUNCIONAMENTO DOS CANAIS ATIVADOS POR NEUROTRANSMISSORES PEÇAS QUE DEFINEM OS POTENCIAIS DE MEMBRANA Canais vazantes de potássio K Canais Sódio

Leia mais

POTENCIAL DE MEMBRANA E POTENCIAL DE AÇÃO

POTENCIAL DE MEMBRANA E POTENCIAL DE AÇÃO POTENCIAL DE MEMBRANA E POTENCIAL DE AÇÃO AULA 3 DISCIPLINA: FISIOLOGIA I PROFESSOR RESPONSÁVEL: FLÁVIA SANTOS Potencial de membrana Separação de cargas opostas ao longo da membrana plasmática celular

Leia mais

Organização do Sistema Nervoso e Sinapses. Fonte:

Organização do Sistema Nervoso e Sinapses. Fonte: Organização do Sistema Nervoso e Sinapses Fonte: http://supercerebro.com.br/blog/wp-content/uploads/2012/08/shutterstock_3478497.jpg Introdução O sistema nervoso (SN) e o sistema endócrino são responsáveis

Leia mais

Liberação de neurotransmissores Potenciais pós-sinápticos e integração sináptica Plasticidade sináptica Sinapses elétricas

Liberação de neurotransmissores Potenciais pós-sinápticos e integração sináptica Plasticidade sináptica Sinapses elétricas Liberação de neurotransmissores Potenciais pós-sinápticos e integração sináptica Plasticidade sináptica Sinapses elétricas A sinapse Elemento pré-sináptico Botão sináptico Junção neuromuscular Terminais

Leia mais

21/03/2016. NEURÓGLIA (Células da Glia) arredondadas, possuem mitose e fazem suporte nutricional aos neurônios.

21/03/2016. NEURÓGLIA (Células da Glia) arredondadas, possuem mitose e fazem suporte nutricional aos neurônios. NEURÓGLIA (Células da Glia) arredondadas, possuem mitose e fazem suporte nutricional aos neurônios. 1 NEURÔNIO responsável pela condução impulso nervoso, possibilitando a execução de ações e promoção da

Leia mais

INSETICIDAS NEUROTÓXICOS MECANISMOS DE AÇÃO

INSETICIDAS NEUROTÓXICOS MECANISMOS DE AÇÃO INSETICIDAS NEUROTÓXICOS MECANISMOS DE AÇÃO Transmissões nervosas em insetos Células nervosas neurônios com 2 filamentos Axônio Filamento longo que conduz os impulsos nervosos para fora da célula. Dendrito

Leia mais

Organização geral. Organização geral SISTEMA NERVOSO. Organização anatómica. Função Neuromuscular. Noções Fundamentais ENDÓCRINO ENDÓCRINO

Organização geral. Organização geral SISTEMA NERVOSO. Organização anatómica. Função Neuromuscular. Noções Fundamentais ENDÓCRINO ENDÓCRINO TP0 Função Neuromuscular TP1 Apresentação T1 (29/IX) Aspectos fundamentais da estrutura e funcionamento do sistema nervoso TP2 Aspectos fundamentais da estrutura e funcionamento do sistema nervoso (cont.)

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE CIÊNCIAS BIOLÓGICAS DEPARTAMENTO DE BIOQUÍMICA. Hormônios. Disciplina: Bioquímica 7 Turma: Medicina

UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE CIÊNCIAS BIOLÓGICAS DEPARTAMENTO DE BIOQUÍMICA. Hormônios. Disciplina: Bioquímica 7 Turma: Medicina UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE CIÊNCIAS BIOLÓGICAS DEPARTAMENTO DE BIOQUÍMICA Hormônios Disciplina: Bioquímica 7 Turma: Medicina Profa. Dra. Nereide Magalhães Recife, 2004 Interação

Leia mais

Tema 07: Propriedades Elétricas das Membranas

Tema 07: Propriedades Elétricas das Membranas Universidade Federal do Amazonas ICB Dep. Morfologia Disciplina: Biologia Celular Aulas Teóricas Tema 07: Propriedades Elétricas das Membranas Prof: Dr. Cleverson Agner Ramos Permeabilidade da Membrana

Leia mais

Aspectos moleculares

Aspectos moleculares FARMACOLOGIA I DOCENTE: Msc. ROSALINA COELHO JÁCOME Aspectos moleculares FARMACOLOGIA O que o organismo faz com o fármaco? O que o fármaco faz no organismo? FARMACOCINÉTICA FARMACODINÂMICA CORRELAÇÃO FARMACOCINÉTICA/FARMACODINÂMICA

Leia mais

FARMACODINÂMICA. da droga. Componente da célula c. (ou organismo) que interage com a droga e

FARMACODINÂMICA. da droga. Componente da célula c. (ou organismo) que interage com a droga e FARMACODINÂMICA Prof. Carlos Cezar I. S. Ovalle Princípio básicob A droga deve se ligar a um constituinte celular (proteína - alvo) para produzir uma resposta farmacológica. Proteínas alvos para ligação

Leia mais

Substâncias de origem natural. * Produzir substâncias químicas que irão produzir efeitos terapêuticos específicos. Estudos farmacológicos

Substâncias de origem natural. * Produzir substâncias químicas que irão produzir efeitos terapêuticos específicos. Estudos farmacológicos FARMACODINÂMICA Mecanismo de ação de fármacos AÇÃO DAS DROGAS Substâncias de origem natural 1920 Estudos farmacológicos * Produzir substâncias químicas que irão produzir efeitos terapêuticos específicos

Leia mais

Papel das Sinapses no processamento de informações

Papel das Sinapses no processamento de informações Papel das Sinapses no processamento de informações Impulsos Nervosos Pequenas correntes elétricas passando ao longo dos neurônios Resultam do movimento de íons (partículas carregadas eletricamente) para

Leia mais

Drogas que atuam no Sistema Nervoso Autônomo. Astria Dias Ferrão Gonzales 2017

Drogas que atuam no Sistema Nervoso Autônomo. Astria Dias Ferrão Gonzales 2017 Drogas que atuam no Sistema Nervoso Autônomo Astria Dias Ferrão Gonzales 2017 SNC Todos os estímulos do nosso ambiente causam, nos seres humanos, sensações como dor e calor. Todos os sentimentos, pensamentos,

Leia mais

ORGANIZAÇÃO FUNCIONAL DO SISTEMA NERVOSO

ORGANIZAÇÃO FUNCIONAL DO SISTEMA NERVOSO Ciências Morfofuncionais II ORGANIZAÇÃO FUNCIONAL DO SISTEMA NERVOSO Professora: Ms. Grazielle V. P. Coutinho Qual a importância de tantos estudos sobre o Sistema Nervoso? DIVISÕES PARA O ESTUDO DO SN

Leia mais

PRINCIPAIS COMPONENTES DO SISTEMA NERVOSO

PRINCIPAIS COMPONENTES DO SISTEMA NERVOSO Neurotransmissores PRINCIPAIS COMPONENTES DO SISTEMA NERVOSO Divisão aferente ou sensorial transmite p.a. dos receptores sensoriais para o SNC Interneurónios (neurónios de associação) confinados ao SNC

Leia mais

1) Neurônios: Geram impulsos nervosos quando estimulados;

1) Neurônios: Geram impulsos nervosos quando estimulados; 1) Neurônios: Geram impulsos nervosos quando estimulados; Partes de um neurônio: Dendritos (captam estímulos do meio ambiente); Corpo celular (centro metabólico); Axônio (conduz impulsos nervosos). Estrato

Leia mais

Tecido Nervoso. 1) Introdução

Tecido Nervoso. 1) Introdução 1) Introdução O sistema nervoso é responsável pelo ajustamento do organismo ao ambiente. Sua função é perceber e identificar as condições ambientais externas, bem como as condições reinantes dentro do

Leia mais

Eletrofisiologia 13/03/2012. Canais Iônicos. Proteínas Integrais: abertas permitem a passagem de íons

Eletrofisiologia 13/03/2012. Canais Iônicos. Proteínas Integrais: abertas permitem a passagem de íons Eletrofisiologia Proteínas Integrais: abertas permitem a passagem de íons Seletividade Alguns íons podem passar outros não Tamanho do canal Distribuição de cargas Aberto ou fechado Proteínas Integrais:

Leia mais

Fundamentos de Reabilitação. Neuro-anatomia

Fundamentos de Reabilitação. Neuro-anatomia Neuro-anatomia Objectivos 1. As duas linhagens celulares do sistema nervoso e as suas funções; tipos de neurónios 2. Importância da bainha de mielina e as células responsáveis pela sua produção 3. Iões

Leia mais

Sistema Nervoso Aula Programada Biologia

Sistema Nervoso Aula Programada Biologia Aula Programada Biologia Tema: Sistema Nervoso Tecido Nervoso Corpo Celular/Pericário Núcleo Nódulo de Ranvier Dendritos Bainha de Mielina (Células de Schwann) Axônio Telodendros Tecido Nervoso Oligodendrócito

Leia mais

Classificação e Características do Tecido Nervoso

Classificação e Características do Tecido Nervoso Classificação e Características do Tecido Nervoso CARACTERÍSTICAS GERAIS TRANSMISSÃO DE IMPULSOS NERVOSOS RELAÇÃO DIRETA COM O SISTEMA ENDÓCRINO Organização do Sistema Nervoso Humano Divisão Partes Funções

Leia mais

Mecanismos bio-moleculares responsáveis pela captação e interpretação dos sinais do meio externo e interno comunicação celular

Mecanismos bio-moleculares responsáveis pela captação e interpretação dos sinais do meio externo e interno comunicação celular Mecanismos bio-moleculares responsáveis pela captação e interpretação dos sinais do meio externo e interno comunicação celular Transferência citoplasmática direta de sinais elétricos e químicos Como as

Leia mais

Mecanismos bio-moleculares responsáveis pela captação e interpretação dos sinais do meio externo e interno comunicação celular

Mecanismos bio-moleculares responsáveis pela captação e interpretação dos sinais do meio externo e interno comunicação celular Mecanismos bio-moleculares responsáveis pela captação e interpretação dos sinais do meio externo e interno comunicação celular Transferência citoplasmática direta de sinais elétricos e químicos Como as

Leia mais

Tema 07: Propriedades Elétricas das Membranas

Tema 07: Propriedades Elétricas das Membranas Universidade Federal do Amazonas ICB Dep. Morfologia Disciplina: Biologia Celular Aulas Teóricas Tema 07: Propriedades Elétricas das Membranas Prof: Dr. Cleverson Agner Ramos Permeabilidade da Membrana

Leia mais

Importância dos processos de sinalização. Moléculas sinalizadoras (proteínas, peptídeos, aminoácidos, hormônios, gases)

Importância dos processos de sinalização. Moléculas sinalizadoras (proteínas, peptídeos, aminoácidos, hormônios, gases) Sinalização celular Importância dos processos de sinalização Seres unicelulares Seres multicelulares Moléculas sinalizadoras (proteínas, peptídeos, aminoácidos, hormônios, gases) Receptores Proteínas -

Leia mais

Condução nervosa e Sinapses do SNC

Condução nervosa e Sinapses do SNC Condução nervosa e Sinapses do SNC Unidade básica - SNC 100 bilhões - Rede sináptica extensa Células Gliais Prof Lucindo (DFS/UFS) 1 Divisão Sensorial - Órgãos e sentidos (Tato, visão, etc...) - MEMÓRIA

Leia mais

5.COMUNICAÇÃO CELULAR

5.COMUNICAÇÃO CELULAR DEPARTAMENTO DE CIÊNCIAS FISIOLÓGICAS-DFS CURSO DE ESPECIALIZAÇÃO EM FISIOLOGIA HUMANA 5.COMUNICAÇÃO CELULAR PROF. DRA. MARIA IDA B.R. SPEZIALI UNIVERSIDADE ESTADUAL DE MARINGÁ-UEM Comunicação célula-célula

Leia mais

A comunicação celular permite a integração e harmonização de funcionamento entre células do mesmo tecido e de tecidos/órgãos diferentes.

A comunicação celular permite a integração e harmonização de funcionamento entre células do mesmo tecido e de tecidos/órgãos diferentes. Comunicação celular é o processo pelo qual as células de um organismo influenciam umas às outras por meio de moléculas, conhecidas como sinalizadores. A comunicação celular permite a integração e harmonização

Leia mais

29/03/2015 LOCAL DE AÇÃO MECANISMO DE AÇÃO EFEITOS. Fármaco Princípio Ativo. Receptor: componente de uma célula

29/03/2015 LOCAL DE AÇÃO MECANISMO DE AÇÃO EFEITOS. Fármaco Princípio Ativo. Receptor: componente de uma célula LOCAL DE AÇÃO MECANISMO DE AÇÃO Prof. Herval de Lacerda Bonfante Departamento de Farmacologia EFEITOS Fármaco Princípio Ativo Receptor: componente de uma célula interação com um fármaco início de uma cadeia

Leia mais

Bioeletricidade. Bioeletrogênese. Atividade elétrica na célula animal

Bioeletricidade. Bioeletrogênese. Atividade elétrica na célula animal Bioeletricidade Bioeletrogênese Atividade elétrica na célula animal Papel fisiológico dos eventos elétricos Células excitáveis: neurônios células musculares células sensoriais Importância na área biológica:

Leia mais

O POTENCIAL DE AÇÃO 21/03/2017. Por serem muito evidentes nos neurônios, os potenciais de ação são também denominados IMPULSOS NERVOSOS.

O POTENCIAL DE AÇÃO 21/03/2017. Por serem muito evidentes nos neurônios, os potenciais de ação são também denominados IMPULSOS NERVOSOS. O POTENCIAL DE AÇÃO 1 2 0 amplitude duração tempo 0 repouso 1 2 Por serem muito evidentes nos neurônios, os potenciais de ação são também denominados IMPULSOS NERVOSOS. O potencial de ação é causado pela

Leia mais

Neurônio. Neurônio 15/08/2017 TECIDO NERVOSO. corpo celular, dendrito e axônio

Neurônio. Neurônio 15/08/2017 TECIDO NERVOSO. corpo celular, dendrito e axônio TECIDO NERVOSO Neurônio corpo celular, dendrito e axônio Neurônio Corpos celulares (pericário) se concentram no Sistema Nervoso Central (encéfalo e medula) e em pequenas concentrações ao longo do corpo

Leia mais

Tecido nervoso. Ø A função do tecido nervoso é fazer as comunicações entre os órgãos do corpo e o meio externo.

Tecido nervoso. Ø A função do tecido nervoso é fazer as comunicações entre os órgãos do corpo e o meio externo. Tecido nervoso Tecido nervoso Ø A função do tecido nervoso é fazer as comunicações entre os órgãos do corpo e o meio externo. Ø Encéfalo, medula espinhal, gânglios nervosos e nervos Ø Céls nervosas: neurônios

Leia mais

ANTI - INFLAMATÓRIOS Farmacologia Prof. Dr. José Edilson Gomes Júnior Enfermagem Parnamirim-RN Outubro/2016

ANTI - INFLAMATÓRIOS Farmacologia Prof. Dr. José Edilson Gomes Júnior Enfermagem Parnamirim-RN Outubro/2016 ANTI - INFLAMATÓRIOS 1 Farmacologia Prof. Dr. José Edilson Gomes Júnior Enfermagem Parnamirim-RN Outubro/2016 2 FARMACOLOGIA DO SISTEMA NERVOSO CENTRAL 3 INTRODUÇÃO Fármacos que atual no sistema nervoso

Leia mais

SISTEMA NERVOSO AUTÔNOMO

SISTEMA NERVOSO AUTÔNOMO SISTEMA NERVOSO AUTÔNOMO ORGANIZAÇÃO GERAL DO SISTEMA NERVOSO AUTÔNOMO Sistema Nervoso Central Periférico Autônomo Somático Simpático Parassimpático Ação integradora sobre a homeostase corporal. Respiração

Leia mais

Regulação nervosa e hormonal nos animais

Regulação nervosa e hormonal nos animais HOMEOSTASIA Todos os seres vivos são sistemas abertos As trocas que os organismos estabelecem com o meio conduzem a mudanças constantes nos deus componentes No entanto, os seres vivos possuem mecanismos

Leia mais

Fisiologia do Sistema Nervoso

Fisiologia do Sistema Nervoso Fisiologia do Sistema Nervoso Profa. Componentes do Sistema Nervoso Neurônios (células Nervosas) Comunicam por sinais Químicos Elétricos e químicos Excitáveis eletricamente As membranas transmitem sinais

Leia mais

Cada célula é programada para responder a combinações específicas de moléculas sinalizadoras

Cada célula é programada para responder a combinações específicas de moléculas sinalizadoras Sinalização celular Cada célula é programada para responder a combinações específicas de moléculas sinalizadoras Etapas da Sinalização 1) Síntese e liberação da molécula sinalizadora pela célula sinalizadora

Leia mais

Bioeletricidade. Bioeletrogênese. Atividade elétrica na célula animal

Bioeletricidade. Bioeletrogênese. Atividade elétrica na célula animal Bioeletricidade Bioeletrogênese Atividade elétrica na célula animal Existência da eletricidade em tecido animal histórico 2600 anos a.c. Século XVIII Luigi Galvani (rã/eletricidade animal) Século XIX Koelliker

Leia mais

TECIDO NERVOSO (parte 2)

TECIDO NERVOSO (parte 2) TECIDO NERVOSO (parte 2) Profª Patrícia Mendes Disciplina: Histologia Geral e Embriologia Curso: Medicina Veterinária www.faculdadevertice.com.br Propagação do impulso nervoso A membrana do axônio permite

Leia mais

Neurotransmissão e Neurotransmissores do Sistema Nervoso Central. Liberação do neurotransmissor

Neurotransmissão e Neurotransmissores do Sistema Nervoso Central. Liberação do neurotransmissor Neurotransmissão e Neurotransmissores do Sistema Nervoso Central Liberação do neurotransmissor Fonte: Silverthorn, 2002 1 Exocitose Fonte: Golan et al., 2009 Término da ação do neurotransmissor 1 2 3 Fonte:

Leia mais

Anatomia e Fisiologia Humana NEURÔNIOS E SINAPSES. DEMONSTRAÇÃO (páginas iniciais)

Anatomia e Fisiologia Humana NEURÔNIOS E SINAPSES. DEMONSTRAÇÃO (páginas iniciais) Anatomia e Fisiologia Humana NEURÔNIOS E SINAPSES DEMONSTRAÇÃO (páginas iniciais) 1ª edição novembro/2006 NEURÔNIOS E SINAPSES SUMÁRIO Neurônios... 04 O neurônio conduzindo informação... 05 Impulso nervoso:

Leia mais

TECIDO NERVOSO - Neurônios

TECIDO NERVOSO - Neurônios TECIDO NERVOSO - Neurônios São células que se comunicam entre si ou com células musculares e secretoras através de linguagem elétrica (impulsos nervosos). A maioria dos neurônios possui três regiões: corpo

Leia mais

Células da Glia Funções das células da Glia

Células da Glia Funções das células da Glia Estrutura e Função do Sistema Nervoso Controle Nervoso do Movimento Células do Sistema Nervoso Células da glia (gliais ou neuróglias) Células neurais (neurônios) 2 Células da Glia Funções das células da

Leia mais

FISIOLOGIA DA CONTRAÇÃO MUSCULAR DISCIPLINA: FISIOLOGIA I

FISIOLOGIA DA CONTRAÇÃO MUSCULAR DISCIPLINA: FISIOLOGIA I FISIOLOGIA DA CONTRAÇÃO MUSCULAR DISCIPLINA: FISIOLOGIA I PROFESSOR RESPONSÁVEL: FLÁVIA SANTOS Musculatura corporal Músculo Liso Fibras menores Revestimento de órgãos: Trato gastrointestinal Vasos sanguíneos

Leia mais

NEUROTRANSMISSORES MÓDULO 401/2012. Maria Dilma Teodoro

NEUROTRANSMISSORES MÓDULO 401/2012. Maria Dilma Teodoro NEUROTRANSMISSORES MÓDULO 401/2012 Maria Dilma Teodoro NEUROTRANSMISSORES São rapidamente liberados pelos neurônio présináptico, difundem-se através da fenda, e têm um efeito de inibição ou de excitação

Leia mais

14/08/2012. Continuação

14/08/2012. Continuação As informações são transmitidas no SN principalmente sob a forma de POTENCIAIS de AÇÃO NERVOSOS chamados de "IMPULSOS NERVOSOS" através de sucessões de neurônios. Continuação Os sinais nervosos são transmitidos

Leia mais

O que é uma lesão neurológica???????

O que é uma lesão neurológica??????? PLASTICIDADE NEURAL O que é uma lesão neurológica??????? Sistema Nervoso Central (SNC) Sistema Nervoso Periférico (SNP) Estruturas cerebrais Recuperação funcional? Como ocorre? Quais são as bases fisiológicas?

Leia mais

BIOELETROGÊNESE. Propriedade de certas células (neurônios e células musculares) gerar e alterar a diferença de potencial elétrico através da membrana.

BIOELETROGÊNESE. Propriedade de certas células (neurônios e células musculares) gerar e alterar a diferença de potencial elétrico através da membrana. Profa Silvia Mitiko Nishida Depto de Fisiologia BIOELETROGÊNESE Propriedade de certas células (neurônios e células musculares) gerar e alterar a diferença de potencial elétrico através da membrana. Afinal

Leia mais

Potencial de Repouso e Potencial de Ação. Profa. Dra. Eliane Comoli Depto de Fisiologia da FMRP-USP

Potencial de Repouso e Potencial de Ação. Profa. Dra. Eliane Comoli Depto de Fisiologia da FMRP-USP Potencial de Repouso e Potencial de Ação Profa. Dra. Eliane Comoli Depto de Fisiologia da FMRP-USP ROTEIRO: POTENCIAL DE REPOUSO E POTENCIAL DE AÇÃO 1. Potencial de Membrana de Repouso Papel da bomba de

Leia mais

EXCITABILIDADE I POTENCIAL DE MEMBRANA EM REPOUSO POTENCIAL DE MEMBRANA EM REPOUSO POTENCIAL DE MEMBRANA EM REPOUSO POTENCIAL DE MEMBRANA EM REPOUSO

EXCITABILIDADE I POTENCIAL DE MEMBRANA EM REPOUSO POTENCIAL DE MEMBRANA EM REPOUSO POTENCIAL DE MEMBRANA EM REPOUSO POTENCIAL DE MEMBRANA EM REPOUSO EXCITABILIDADE I 1 - Introdução 1.1 Objetivo da aula: Estudar os mecanismos fisiológicos responsáveis pelos potenciais elétricos através das membranas celulares 1.2 Roteiro da aula: 1.2.1- Estudar o potencial

Leia mais

FISIOLOGIA MUSCULAR. Mecanismos de controle da força. Enquanto é dada a AP Profa Silvia Mitiko Nishida. Miron, 450 a.c

FISIOLOGIA MUSCULAR. Mecanismos de controle da força. Enquanto é dada a AP Profa Silvia Mitiko Nishida. Miron, 450 a.c FISIOLOGIA MUSCULAR Mecanismos de controle da força Enquanto é dada a AP Profa Silvia Mitiko Nishida Miron, 450 a.c Cérebro SNC Medula Unidade Motora 1 Unidade Motora 2 Neurônio motor Nervo Músculo Fibras

Leia mais

Profa. Cláudia Herrera Tambeli

Profa. Cláudia Herrera Tambeli Profa. Cláudia Herrera Tambeli Tipos de Músculos Estriado Liso Cardíaco Involuntário Esquelético Voluntário Involuntário Funções do músculo esquelético Relação Movimento/Força O músculo se contrai e encurta.

Leia mais

Bioeletrogênese 21/03/2017. Potencial de membrana de repouso. Profa. Rosângela Batista de Vasconcelos

Bioeletrogênese 21/03/2017. Potencial de membrana de repouso. Profa. Rosângela Batista de Vasconcelos Bioeletrogênese CONCEITO: É o estudo dos mecanismos de transporte dos eletrólitos e de outras substâncias nos líquidos intra e extracelular através das membranas celulares dos organismos vivos. Profa.

Leia mais

BLOCO SISTEMA NERVOSO (SN)

BLOCO SISTEMA NERVOSO (SN) FACULDADE de MOTRICIDADE HUMANA ANATOMOFISIOLOGIA I 2008-2009 Prof. SISTEMA NERVOSO Noções Fundamentais BLOCO SISTEMA NERVOSO (SN) TEMAS 1. Organização funcional do SN 2. Noções Fundamentais: unidade básica

Leia mais

SISTEMA NERVOSO TECIDO NERVOSO IMPULSO NERVOSO SINAPSE

SISTEMA NERVOSO TECIDO NERVOSO IMPULSO NERVOSO SINAPSE SISTEMA NERVOSO TECIDO NERVOSO IMPULSO NERVOSO SINAPSE DIVISÕES DO SISTEMA NERVOSO: Processamento e integração de informações O ENCEFALO ESTÁ LIGADO À MEDULA ESPINAL. Condução de informações entre órgãos

Leia mais

Sistema Nervoso Central - SNC Sistema Nervoso Central Quem é o nosso SNC?

Sistema Nervoso Central - SNC Sistema Nervoso Central Quem é o nosso SNC? Sistema Nervoso Central - SNC Sistema Nervoso Central Quem é o nosso SNC? 1 Divisão funcional do SN SNC Encéfalo Medula espinhal 2 Composição do sistema nervoso central HEMISFÉRIOS CEREBRAIS O Encéfalo

Leia mais

SISTEMA MOTOR VISCERAL

SISTEMA MOTOR VISCERAL SISTEMA MOTOR VISCERAL SOMÁTICO Aferente ou Sensorial Sistema Nervoso VISCERAL Eferente ou Motora Sistema Nervoso Autônomo Divisão Simpática Divisão Parassimpática Divisão Entérica Órgãos Viscerais Gerais

Leia mais

Embriologia (BMH120) - Biologia Noturno. Aula 1

Embriologia (BMH120) - Biologia Noturno. Aula 1 Embriologia (BMH120) - Biologia Noturno Aula 1 Introdução das Bases Moleculares e Celulares: Sinalização Intracelular Prof. Rodrigo A. P. Martins ICB - LaNCE - HUCFF - UFRJ Objetivos Ao final desta aula

Leia mais

TRANSMISSÃO DE INFORMAÇÃO

TRANSMISSÃO DE INFORMAÇÃO Capítulo 3: Parte 2 1 TRANSMISSÃO DE INFORMAÇÃO Quando um neurônio recebe um estímulo, se este é forte o suficiente, leva a produção de um impulso nervoso. O impulso nervoso corresponde a uma corrente

Leia mais

SINAPSE: PONTO DE CONTATO ENTRE DOIS NEURONIOS SINAPSE QUIMICA COM A FENDA SINAPTICA SINAPSE ELETRICA COM GAP JUNCTIONS

SINAPSE: PONTO DE CONTATO ENTRE DOIS NEURONIOS SINAPSE QUIMICA COM A FENDA SINAPTICA SINAPSE ELETRICA COM GAP JUNCTIONS SINAPSE: PONTO DE CONTATO ENTRE DOIS NEURONIOS SINAPSE QUIMICA COM A FENDA SINAPTICA POTENCIAL DE REPOUSO E SUAS ALTERAÇÕES DESPOLARIZAÇÃO REPOLARIZAÇÃO HIPERPOLARIZAÇÃO POTENCIAL DE ACAO SINAPSE ELETRICA

Leia mais

Origens do potencial de membrana Excitabilidade celular

Origens do potencial de membrana Excitabilidade celular Origens do potencial de membrana Excitabilidade celular Algumas medidas elétricas Potencial (E,V) V (volt) Carga C (coulomb) Corrente (I) A (ampere = C/s) Resistência (R) W (ohm = V/A) Condutância (G)

Leia mais

Prof. João Ronaldo Tavares de Vasconcellos Neto

Prof. João Ronaldo Tavares de Vasconcellos Neto Prof. João Ronaldo Tavares de Vasconcellos Neto Compreende basicamente dois tipos de células Neurônios Unidade fundamental função básica de receber, processar e enviar informações Células gliais ou neuroglia

Leia mais

Fisiologia da motilidade

Fisiologia da motilidade Fisiologia da motilidade Acoplamento excitação-contração Pedro Augusto CM Fernandes 2017 Dep. Fisiologia. Sala 317 E-mail:pacmf@usp.br Junção neuromuscular Junção neuromuscular Neurônio induz contração

Leia mais

O surgimento do sistema nervoso está associado ao aumento da complexidade e do tamanho dos animais.

O surgimento do sistema nervoso está associado ao aumento da complexidade e do tamanho dos animais. INTRODUÇÃO O surgimento do sistema nervoso está associado ao aumento da complexidade e do tamanho dos animais. Atua na coordenação das múltiplas atividades do organismo, na integração das diversas partes

Leia mais

ENSINO MÉDIO SISTEMA NERVOSO

ENSINO MÉDIO SISTEMA NERVOSO ENSINO MÉDIO SISTEMA NERVOSO O sistema nervoso é responsável pelo ajustamento do organismo ao ambiente. Sua função é perceber e identificar as condições ambientais externas, bem como as condições reinantes

Leia mais

AGMATINE SULFATE. Ergogênico, cardioprotetor e neuroprotetor

AGMATINE SULFATE. Ergogênico, cardioprotetor e neuroprotetor AGMATINE SULFATE Ergogênico, cardioprotetor e neuroprotetor Introdução Agmatine foi descoberto em 1910, por Albrecht Kossel, ganhador do prêmio Nobel, que iniciou uma pesquisa, que levou mais de 100 anos

Leia mais

BIOELETROGÊNESE. Capacidade de gerar e alterar a diferença de potencial elétrico através da membrana. - Neurônios. esqueléticas lisas cardíacas

BIOELETROGÊNESE. Capacidade de gerar e alterar a diferença de potencial elétrico através da membrana. - Neurônios. esqueléticas lisas cardíacas BIOELETROGÊNESE Capacidade de gerar e alterar a diferença de potencial elétrico através da membrana - Neurônios - células musculares esqueléticas lisas cardíacas Membrana citoplasmática Os neurônios geram

Leia mais

Fisiologia celular I. Fisiologia Prof. Msc Brunno Macedo

Fisiologia celular I. Fisiologia Prof. Msc Brunno Macedo celular I celular I Objetivo Conhecer os aspectos relacionados a manutenção da homeostasia e sinalização celular Conteúdo Ambiente interno da célula Os meios de comunicação e sinalização As bases moleculares

Leia mais

Bioeletricidade. Bioeletrogênese. Atividade elétrica na célula animal

Bioeletricidade. Bioeletrogênese. Atividade elétrica na célula animal Bioeletricidade Bioeletrogênese Atividade elétrica na célula animal Biofísica Vet. 2019 - FCAV/UNESP Papel fisiológico dos eventos elétricos Células excitáveis: neurônios células musculares células sensoriais

Leia mais

Integração. Sistema Nervoso. Glândula Endócrina. Hormônio. Órgão ou Tecido alvo

Integração. Sistema Nervoso. Glândula Endócrina. Hormônio. Órgão ou Tecido alvo Integração Sistema Nervoso Sinal Nervosa Sinal Química Glândula Endócrina Hormônio Órgão ou Tecido alvo Nível Corporal Regulação e integração de: -Balanço de íons e líquidos -Balanço de energia (metabolismo)

Leia mais

BIOLOGIA. Identidade do Seres Vivos. Sistema Nervoso Humano Parte 2. Prof. ª Daniele Duó

BIOLOGIA. Identidade do Seres Vivos. Sistema Nervoso Humano Parte 2. Prof. ª Daniele Duó BIOLOGIA Identidade do Seres Vivos Parte 2 Prof. ª Daniele Duó Função: ajustar o organismo animal ao ambiente. Perceber e identificar as condições ambientais externas e as condições internas do organismo.

Leia mais

Neurotransmissão e neuromodulação

Neurotransmissão e neuromodulação Neurotransmissão e neuromodulação Sistema Nervoso Central Sistema Nervoso Periférico Sistema Nervoso Autónomo Nervos eferentes somáticos/nervos aferentes somáticos e viscerais Impulsos nervosos músculo

Leia mais

Fisiologia do Sistema Nervoso 1B

Fisiologia do Sistema Nervoso 1B Fisiologia do Sistema Nervoso 1B Células da Glia Neuroglia Células da Glia / Neuroglia Diversos tipos celulares: 1. Oligodendrócitos 2. Células de Schwann 3. Astrócitos 4. Células ependimárias 5. Microglia

Leia mais

Origens do potencial de membrana Excitabilidade celular

Origens do potencial de membrana Excitabilidade celular Origens do potencial de membrana Excitabilidade celular Origens do potencial de repouso Todas as células apresentam uma diferença de potencial elétrico (voltagem) através da membrana. Alterações na permeabilidade

Leia mais