Análise e Síntese de Algoritmos. Caminhos Mais Curtos para Todos os Pares CLRS, Cap. 25

Tamanho: px
Começar a partir da página:

Download "Análise e Síntese de Algoritmos. Caminhos Mais Curtos para Todos os Pares CLRS, Cap. 25"

Transcrição

1 Análise e Síntese de Algoritmos Caminhos Mais Curtos para Todos os Pares CLRS, Cap. 25

2 Contexto Algoritmos Elementares em Grafos (CLR, Cap. 22) BFS & DFS Ordenação Topológica & SCCs Árvores Abrangentes de Menor Custo (CLR, Cap. 23) Algoritmos de Borůvka, Kruskal e Prim Caminhos mais curtos com fonte única (CLR, Cap. 24) Algoritmos de Dkstra e Bellman-Ford Caminhos mais curtos entre todos os pares (CLR, Cap. 25) Solução Recursiva e Algoritmo de Floyd-Warshall 2005/2006 Análise e Síntese de Algoritmos 2

3 Resumo Caminhos Mais Curtos entre Todos os Pares (APSPs) Definições Soluções recursivas Algoritmo de Floyd-Warshall Fecho Transitivo Algoritmo de Johnson 2005/2006 Análise e Síntese de Algoritmos 3

4 Caminhos Mais Curtos entre Todos os Pares (APSPs) Observações Encontrar caminhos mais curtos entre todos os pares de vértices Se pesos não negativos Utilizar algoritmo de Dkstra, assumindo cada vértice como fonte: O(V E lg V) (que é O(V 3 lg V) se grafo é denso) Se pesos negativos Utilizar algoritmo de Bellman-Ford, assumindo cada vértice como fonte: O(V 2 E) (que é O(V 4 ) se grafo é denso) Objectivo: Encontrar algoritmos mais eficientes 2005/2006 Análise e Síntese de Algoritmos 4

5 APSPs Definições Representação: utilização de matriz de adjacências Pesos dos arcos: matriz (n x n) W = (w ) w = 0 peso do arco (i, j) se i se i se i = j j e j e ( i, j) ( i, j) E E Representação dos caminhos mais curtos: matriz (n x n) D = (d ) d é o peso do caminho mais curto entre os vértices i e j d = δ(v i,v j ) 2005/2006 Análise e Síntese de Algoritmos 5

6 APSPs Definições Representação de caminhos mais curtos Matriz de predecessores = (π ) π : NIL: se i = j ou não existe caminho de i para j Caso contrário: predecessor de j num caminho mais curto de i para j Sub-grafo de predecessores de G para i, G π, i = (V π, i, E π, i ) V { j V : π NIL} {} i π, i = E {( π, j) : j V {i}} π, i = π, i Sub-grafo induzido pela linha i de Exemplo 2005/2006 Análise e Síntese de Algoritmos 6

7 APSPs Solução Recursiva Sub-caminhos de caminhos mais curtos são também caminhos mais curtos Peso mínimo em caminho de vértice i para vértice j (m) que contém não mais do que m arcos: Com m = 0, existe caminho de i para j se e só se i = j ( ) 0 se i = j d 0 = se i j Para m 1, { { } ( m 1),min d + w = min{ d w } ( m) ( m 1) ( m 1) d = min d + 1 k n ik kj 1 k n ik d kj w jj = /2006 Análise e Síntese de Algoritmos 7

8 APSPs Solução Recursiva Calcular sequência de matrizes D (1),, D (n-1), onde D (n-1) contém os pesos dos caminhos mais curtos D (1) = W Extend-Shortest-Paths(D,W) n = rows[w] D : matriz (n x n) for i = 1 to n for j = 1 to n d' = for k = 1 to n ' ' d = min d,dik + return D ( w ) Complexidade: Θ(n 3 ) p/ cada matriz; Total: Θ(n 4 ) 2005/2006 Análise e Síntese de Algoritmos 8 kj

9 APSPs Solução Recursiva Genericamente: calcular D (i) em função de D (i-1) (e de W) Complexidade para cálculo de D (n) : Θ(n 4 ) OBS: é possível melhorar complexidade reduzindo número de matrizes calculadas: Θ(n 3 lg n) A cada iteração, calcular D (2i) em função de D (i) e de D (i) 2005/2006 Análise e Síntese de Algoritmos 9

10 APSPs Algoritmo de Floyd-Warshall Caracterização de um caminho mais curto Vértices intermédios de caminho p = v 1,v 2,,v k, {v 2,,v k-1 } Considerar todos os caminhos entre i e j com vértices intermédios retirados do conjunto {1,,k} e seja p um caminho mais curto (p é simples) Se k não é vértice intermédio de p, então todos os vértices intermédios de p estão em {1,,k-1} Se k é vértice intermédio de p, então existem caminhos p 1 e p 2, respectivamente de i para k e de k para j com vértices intermédios em {1,,k} k não é vértice intermédio de p 1 e de p 2 p 1 e p 2 com vértices intermédios em {1,,k-1} 2005/2006 Análise e Síntese de Algoritmos 10

11 APSPs Algoritmo de Floyd-Warshall k p 1 p 2 i j Formulação Vértices entre 1 e k-1 ( k ) w min d = 1 ik kj ( k 1) ( k 1) ( k ) ( d,d + d ) se k se k = 0 1 Vértices entre 1 e k 2005/2006 Análise e Síntese de Algoritmos 11

12 APSPs Algoritmo de Floyd-Warshall Floyd-Warshall(W) n = rows[w] D (0) = W for k = 1 to n for i = 1 to n for j = 1 to n k d return D (n) = min ( d,d + d ) ( ) ( k 1) ( k 1) ( k 1) ik kj Complexidade: Θ(n 3 ) Exemplo 2005/2006 Análise e Síntese de Algoritmos 12

13 Fecho Transitivo de um Grafo Dirigido Dado um grafo G = (V, E) dirigido, o fecho transitivo é definido por G* = (V, E*) tal que, E*={(i, j): existe caminho de i para j em G} Algoritmo: Atribuir a cada arco peso 1 e utilizar algoritmo de Floyd- Warshall Se d, então (i, j) E* Complexidade: Θ(n 3 ) 2005/2006 Análise e Síntese de Algoritmos 13

14 Fecho Transitivo de um Grafo Dirigido Outro algoritmo: Substituir operações min e + por e, respectivamente Se existe caminho de i para j com todos os vértices ( ) intermédios em {1,2,,k}, t k = 1 ( ) Caso contrário, t k 0 Formulação: = ( ) 0 se i j e ( i, j) = 1 se i = j ou ( i, j) t 0 E E t ( t t ) se k 1 ( k ) ( k 1) ( k 1) ( k 1) = t ik kj Complexidade: Θ(n 3 ) (mas constantes menores) Exemplo 2005/2006 Análise e Síntese de Algoritmos 14

15 Fecho Transitivo de um Grafo Dirigido Transitive-Closure(G) n = V[G] for i = 1 to n for j = 1 to n if i = j or (i, j) E ( ) t 0 = 1 else ( ) t 0 = 0 for k = 1 to n for i = 1 to n for j = 1 to n k k t return T (n) = t ( t t ) ( ) ( 1) ( k 1) ( k 1) ik kj 2005/2006 Análise e Síntese de Algoritmos 15

16 APSPs Algoritmo de Johnson Utiliza algoritmos de Dkstra e de Bellman-Ford Baseado em re-pesagem dos arcos Se arcos com pesos não negativos, utilizar Dkstra para cada vértice Caso contrário, calcular novo conjunto de pesos não negativos w, tal que Um caminho mais curto de u para v com função w é também caminho mais curto com função w Para cada arco (u, v) o peso w (u, v) é não negativo 2005/2006 Análise e Síntese de Algoritmos 16

17 APSPs Algoritmo de Johnson Dado G = (V, E), com função de pesos w e de repesagem h: V R, seja w (u, v) = w(u, v) + h(u) - h(v) Seja p = v 0,v 1,,v k. Então w(p) = δ(v 0, v k ) se e só se w (p) = δ (v 0, v k ) = δ(v 0, v k ) + h(v 0 ) - h(v k ) Existe ciclo negativo com w se e só se existe ciclo negativo com w w' ( p) = w( p) + h( v ) h( ) w' 0 v k k ( p) = w' ( v,v ) = = i= 1 k i= 1 k i= 1 i 1 ( w( v,v ) + h( v ) h( v )) w i 1 ( v,v ) + h( v ) h( v ) = w( p) + h( v ) h( v ) i 1 i i i 2005/2006 Análise e Síntese de Algoritmos 17 0 i 1 k i 0 k

18 APSPs Algoritmo de Johnson w ( p) = δ( v,v ) w' ( p) = δ' ( v, ) 0 k 0 v k Hipótese: existe p z, caminho mais curto de v 0 para v k com w w' p z < w' p Então: ( ) ( ) w ( p ) + h( v ) h( v ) = w' ( p ) < w' ( p) = w( p) + h( v ) h( v ) z 0 k z 0 k O que implica w( p z ) < w( p) Mas p é caminho mais curto com w; contradição! OBS: Para quaisquer caminhos p 1, p 2 entre v 0 e v k, verifica-se w(p 1 ) < w(p 2 ) w (p 1 ) < w (p 2 ) 2005/2006 Análise e Síntese de Algoritmos 18

19 APSPs Algoritmo de Johnson w ( p) = δ( v,v ) w' ( p) = δ' ( v, ) 0 k 0 v k Semelhante: Admitir p z como caminho mais curto de v 0 para v k com w (ou considerar observação anterior) Existe ciclo negativo com w se e só se existe com w c ( ) 0 = v 0,v1, K,v k ; v 0 = vk; w c < w' ( c) = w( c) + h( v ) h( v ) w( c) 0 k = Caminhos mais curtos e ciclos negativos inalteráveis com mudanças na função de pesos w (u, v) = w(u, v) + h(u) - h(v) 2005/2006 Análise e Síntese de Algoritmos 19

20 APSPs Algoritmo de Johnson Dado G = (V, E), criar G = (V,E ): V = V { s } E = E { (s, v) : v V } ( v V, atingível a partir de s) w(s, v) = 0 Com ciclos negativos: Detectados com algoritmo de Bellman-Ford aplicado a G! Sem ciclos negativos: Definir: h(v) = δ(s, v) Dado que: h(v) h(u) + w(u, v) Verifica-se: w (u, v) = w(u, v) + h(u) - h(v) 0! /2006 Análise e Síntese de Algoritmos 20

21 APSPs Algoritmo de Johnson Executar Dkstra para todo o u V Cálculo de δ (u,v), para u V Mas também, δ (u,v) = δ(u, v) + h(u) - h(v) δ(u,v) = δ (u, v) + h(v) - h(u) 2005/2006 Análise e Síntese de Algoritmos 21

22 APSPs Algoritmo de Johnson Johnson(G) Representar G if Bellman-Ford(G,w,s) = FALSE print Indicar ciclo negativo else atribuir h(v) = δ(s, v), calculado com Bellman-Ford calcular w (u,v) = w(u,v) + h(u) - h(v) para cada arco (u,v) foreach v V[G] executar Dkstra(G,w,v); calcular δ (u, v) d uv = δ (u, v) + h(v) - h(u) return D 2005/2006 Análise e Síntese de Algoritmos 22

23 APSPs Algoritmo de Johnson Complexidade: Bellman-Ford: O(V E) Executar Dkstra para cada vértice: O(V (V + E) lg V) Assumindo amontoado (heap) binário Total: O(V (V + E) lg V) Útil para grafos esparsos Exemplo 2005/2006 Análise e Síntese de Algoritmos 23

24 Revisão Caminhos Mais Curtos entre Todos os Pares (APSPs) Definições Solução recursiva Algoritmo de Floyd-Warshall Fecho Transitivo Algoritmo de Johnson A seguir: Fluxos máximos em grafos (CLR, Cap. 26) 2005/2006 Análise e Síntese de Algoritmos 24

2006/2007 Análise e Síntese de Algoritmos 2

2006/2007 Análise e Síntese de Algoritmos 2 Análise e Síntese de Algoritmos Árvores Abrangentes de Menor Custo CLRS, Cap. 23 Resumo Árvores Abrangentes de Menor Custo Minimum-Spanning Trees (MSTs) Algoritmo (greedy) genérico Prova de optimalidade

Leia mais

INSTITUTO SUPERIOR TÉCNICO Análise e Síntese de Algoritmos. RESOLUÇÃO DA REPESCAGEM DO 1 o TESTE

INSTITUTO SUPERIOR TÉCNICO Análise e Síntese de Algoritmos. RESOLUÇÃO DA REPESCAGEM DO 1 o TESTE INSTITUTO SUPERIOR TÉCNICO Análise e Síntese de Algoritmos Ano Lectivo de 00/006 o Semestre RESOLUÇÃO DA REPESCAGEM DO o TESTE I. (,+,+,0 =,0 val.) ) Considere o seguinte grafo. d f i l a c g h b e j k

Leia mais

Fluxo Máximo a Custo Mínimo

Fluxo Máximo a Custo Mínimo Universidade Federal de Campina Grande Centro de Engenharia Elétrica e Informática Departamento de Sistemas e Computação Programa de Educação Tutorial (PET) Demontiê Junior (demontie@dsc.ufcg.edu.br) Fluxo

Leia mais

Grafos Msc. Daniele Carvalho Oliveira. Doutoranda em Computação UFU Mestre em Computação - UFU Bacharel em Computação - UFJF 1

Grafos Msc. Daniele Carvalho Oliveira. Doutoranda em Computação UFU Mestre em Computação - UFU Bacharel em Computação - UFJF 1 Grafos Msc. Daniele Carvalho Oliveira Doutoranda em Computação UFU Mestre em Computação - UFU Bacharel em Computação - UFJF 1 Árvore Geradora Mínima 2 Porque é um problema interessante Suponha que queremos

Leia mais

Matemática Discreta. Leandro Colombi Resendo. Matemática Discreta Bacharel em Sistemas de Informações

Matemática Discreta. Leandro Colombi Resendo. Matemática Discreta Bacharel em Sistemas de Informações Matemática Discreta Leandro Colombi Resendo Algoritmos para Grafos Grafos Direcionados e Relações Binárias; o Algoritmo de Warshall Caminho de Euler e Circuito Hamiltoniano Caminho Mínimo e Árvore Geradora

Leia mais

Árvores Binárias e Busca. Jeane Melo

Árvores Binárias e Busca. Jeane Melo Árvores Binárias e Busca Jeane Melo Roteiro Parte 1 Árvores Relação hierárquica Definição Formal Terminologia Caminhamento em Árvores Binárias Exemplos Parte 2 Busca seqüencial Busca Binária Grafos Conjunto

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Grafos Cliques Maximais Para determinar os cliques maximais de um grafo G podemos usar o método de Maghout em Dado o grafo abaixo, calcule Determine os conjuntos independentes maximais em

Leia mais

BCC204 - Teoria dos Grafos

BCC204 - Teoria dos Grafos BCC204 - Teoria dos Grafos Marco Antonio M. Carvalho (baseado nas notas de aula do prof. Haroldo Gambini Santos) Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal

Leia mais

Aula 21: Roteamento em Redes de Dados

Aula 21: Roteamento em Redes de Dados Aula : Roteamento em Redes de Dados Slide Redes de Pacotes Comutados Mensagens dividas em Pacotes que são roteados ao seu destino PC PC PC Rede de Pacotes PC PC PC PC Buffer Pacote Comutado Slide Roteamento

Leia mais

Grafos Procura (1) AED (IST/DEEC) 44. Grafos Procura (2) Procurar em grafos é equivalente a percorrer labirintos

Grafos Procura (1) AED (IST/DEEC) 44. Grafos Procura (2) Procurar em grafos é equivalente a percorrer labirintos rafos Procura () Algumas propriedades simples em grafos são fáceis de determinar, independentemente da ordem pela qual se examinam as arestas. Ex: grau de todos os vértices. Outras propriedades estão associadas

Leia mais

Teoria da Complexidade

Teoria da Complexidade handout.pdf June 5, 0 Teoria da Complexidade Cid C. de Souza / IC UNICAMP Universidade Estadual de Campinas Instituto de Computação o semestre de 0 Revisado por Zanoni Dias Autor Prof. Cid Carvalho de

Leia mais

IES-300. Tecnologia em Análise e Desenvolvimento de Sistemas Prof. Me. Álvaro d Arce alvaro@darce.com.br

IES-300. Tecnologia em Análise e Desenvolvimento de Sistemas Prof. Me. Álvaro d Arce alvaro@darce.com.br IES-300 Tecnologia em Análise e Desenvolvimento de Sistemas Prof. Me. Álvaro d Arce alvaro@darce.com.br Teste de Caixa Branca 2 Teste de Componentes: Caixa Branca Teste de Caixa Branca Grafo de Fluxo de

Leia mais

A-Graph: Uma ferramenta computacional de suporte para o ensino-aprendizado da disciplina Teoria dos Grafos e seus Algoritmos

A-Graph: Uma ferramenta computacional de suporte para o ensino-aprendizado da disciplina Teoria dos Grafos e seus Algoritmos A-Graph: Uma ferramenta computacional de suporte para o ensino-aprendizado da disciplina Teoria dos Grafos e seus Algoritmos Luis Arturo Pérez Lozada 1 1 Centro de Matemática, Computação e Cognição Universidade

Leia mais

Percursos e Conectividade em Grafos Depth-First Search. DFS: Depth-First Search (pesquisa em profundidade)

Percursos e Conectividade em Grafos Depth-First Search. DFS: Depth-First Search (pesquisa em profundidade) Percursos e Conectividade em Grafos Depth-First Search Fernando Lobo Algoritmos e Estrutura de Dados II 1 / 23 DFS: Depth-First Search (pesquisa em profundidade) Assim que se descobre um nó, começa-se

Leia mais

BC-0506: Comunicação e Redes Algoritmos em Grafos

BC-0506: Comunicação e Redes Algoritmos em Grafos BC-0506: Comunicação e Redes Algoritmos em Grafos Santo André, 2Q2011 1 Parte 1: Algoritmos de Busca Rediscutindo: Representações em Grafos Matriz de Adjacências Matriz de Incidências Lista de Adjacências

Leia mais

Complexidade de Algoritmos. Edson Prestes

Complexidade de Algoritmos. Edson Prestes Edson Prestes Idéias básicas Um algoritmo guloso seleciona, a cada passo, o melhor elemento pertencente a entrada. Verifica se ele é viável - vindo a fazer parte da solução ou não. Após uma seqüência de

Leia mais

CAPÍTULO 2. Grafos e Redes

CAPÍTULO 2. Grafos e Redes CAPÍTULO 2 1. Introdução Um grafo é uma representação visual de um determinado conjunto de dados e da ligação existente entre alguns dos elementos desse conjunto. Desta forma, em muitos dos problemas que

Leia mais

Joaquim J. Júdice. Pedro C. Martins. Marta B. Pascoal. Jorge P. Santos OPTIMIZAÇÃO EM REDES. Departamento de Matemática Universidade de Coimbra

Joaquim J. Júdice. Pedro C. Martins. Marta B. Pascoal. Jorge P. Santos OPTIMIZAÇÃO EM REDES. Departamento de Matemática Universidade de Coimbra Joaquim J Júdice Pedro C Martins Marta B Pascoal Jorge P Santos OPTIMIZAÇÃO EM REDES Departamento de Matemática Universidade de Coimbra 006 Conteúdo Introdução Alguns Problemas de Optimização em Redes

Leia mais

Algoritmos e Estrutura de Dados. Aula 13 Estrutura de Dados: Árvores de Pesquisa Binária Prof. Tiago A. E. Ferreira

Algoritmos e Estrutura de Dados. Aula 13 Estrutura de Dados: Árvores de Pesquisa Binária Prof. Tiago A. E. Ferreira Algoritmos e Estrutura de Dados Aula 13 Estrutura de Dados: Árvores de Pesquisa Binária Prof. Tiago A. E. Ferreira Introdução Uma árvore de pesquisa binária são estruturas de dados que admitem operações

Leia mais

DEPARTAMENTO DE TELEMÁTICA

DEPARTAMENTO DE TELEMÁTICA DEPARTAMENTO DE TELEMÁTICA FACULDADE DE ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO UNIVERSIDADE ESTADUAL DE CAMPINAS OTIMIZAÇÃO LINEAR Teoria dos Grafos e Fluxos em Redes Autor: Tiago Agostinho de Almeida 1 I.

Leia mais

Redes de Computadores. Camada de Aplicação Teoria de Redes Complexas: Conceitos Básicos em Grafos

Redes de Computadores. Camada de Aplicação Teoria de Redes Complexas: Conceitos Básicos em Grafos Redes de Computadores Camada de Aplicação Teoria de Redes Complexas: Conceitos Básicos em Grafos Introdução Como as coisas estão conectadas? Redes! A network is a set of vertices or nodes provided with

Leia mais

Árvores. Seqüência de arcos, com origem na raiz e final em um determinado nó. Quantos caminhos existem para se atingir um determinado nó?

Árvores. Seqüência de arcos, com origem na raiz e final em um determinado nó. Quantos caminhos existem para se atingir um determinado nó? 39 Árvores Conceitue caminho. Seqüência de arcos, com origem na raiz e final em um determinado nó. Quantos caminhos existem para se atingir um determinado nó? Apenas um. O que determina o tamanho de um

Leia mais

Técnicas de Teste de Software

Técnicas de Teste de Software Técnicas de Teste de Software Fabrício Sousa fabricio@uesb.br Projeto de Caso de Teste Conjunto de técnicas para criação de casos de testes Série de casos de testes que tem grande probabilidade de encontrar

Leia mais

ESTRUTURAS DE DADOS II prof. Alexandre César Muniz de Oliveira

ESTRUTURAS DE DADOS II prof. Alexandre César Muniz de Oliveira ESTRUTURAS DE DADOS II prof. Alexandre César Muniz de Oliveira 1. Grafos 2. Ordenação 3. Busca Sugestão bibliográfica: E STRUTURAS DE DADOS USANDO C Aaron M. Tenenbaum, et alli DATA STRUCTURES AND ALGORITHMS

Leia mais

Árvores Binárias de Busca

Árvores Binárias de Busca Árvores Binárias de Busca Uma Árvore Binária de Busca T (ABB) ou Árvore Binária de Pesquisa é tal que ou T = 0 e a árvore é dita vazia ou seu nó contém uma chave e: 1. Todas as chaves da sub-árvore esquerda

Leia mais

Fluxo em Redes. http://www.ime.usp.br/~pf/flows/ Paulo Feofiloff

Fluxo em Redes. http://www.ime.usp.br/~pf/flows/ Paulo Feofiloff Fluxo em Redes http://www.ime.usp.br/~pf/flows/ Paulo Feofiloff Departamento de Ciência da Computação Instituto de Matemática e Estatística Universidade de São Paulo 15/11/2013 Prefácio Estas notas de

Leia mais

PERT Charts, para gestão de projectos

PERT Charts, para gestão de projectos PERT Charts, para gestão de projectos Projectos complexos são compostos por uma serie de tarefas, algumas das quais têm que ser executadas sequêncialmente, enquanto outras podem ser excutadas em paralelo

Leia mais

Algoritmos e Estruturas de Dados

Algoritmos e Estruturas de Dados Introdução aos Algoritmos e Estruturas de Dados 2 o Teste - A Ano lectivo: 2010/2011 2 o Semestre RESOLUÇÃO DO 2 o TESTE Grupo I (2.0 + 2.5 + 2.0 = 6.5 val.) I.a) Considere os tipos enum ocasiao e Presente

Leia mais

Testes Baseados na Implementação. (fluxo de controle) Baseado em notas de aula da profa. Eliane Martins

Testes Baseados na Implementação. (fluxo de controle) Baseado em notas de aula da profa. Eliane Martins Testes Baseados na Implementação (fluxo de controle) Baseado em notas de aula da profa. Eliane Martins 1 Tópicos O que é Grafo de fluxo de controle Critérios de cobertura 2 Referências B.Beizer R.Binder

Leia mais

Pesquisa Operacional Programação em Redes

Pesquisa Operacional Programação em Redes Pesquisa Operacional Programação em Redes Profa. Alessandra Martins Coelho outubro/2013 Modelagem em redes: Facilitar a visualização e a compreensão das características do sistema Problema de programação

Leia mais

2 Problema das p-medianas

2 Problema das p-medianas 2 Problema das p-medianas 2.1 Definição O PMNC é definido da seguinte forma: determinar quais p facilidades (p m, onde m é o número de pontos onde podem ser abertas facilidades) devem obrigatoriamente

Leia mais

Estruturas de Dados Árvores

Estruturas de Dados Árvores Estruturas de Dados Árvores Prof. Eduardo Alchieri Árvores (introdução) Importância de estruturas unidimensionais ou lineares (vetores e listas) é inegável Porém, estas estruturas não são adequadas para

Leia mais

Programação Dinâmica: Algoritmo de Bellman-Ford

Programação Dinâmica: Algoritmo de Bellman-Ford Programação Dinâmica: Algoritmo de Bellman-Ford César Garcia Daudt Caio Licks Pires de Miranda Instituto de Informática Universidade Federal do Rio Grande do Sul 22/11/2010 Resumo Este artigo se propõe

Leia mais

ESTRUTURAS DE DADOS II

ESTRUTURAS DE DADOS II ESTRUTURAS DE DADOS II Msc. Daniele Carvalho Oliveira Doutoranda em Ciência da Computação - UFU Mestre em Ciência da Computação UFU Bacharel em Ciência da Computação - UFJF Conteúdo Programático 1. Introdução

Leia mais

Análise de complexidade

Análise de complexidade Introdução Algoritmo: sequência de instruções necessárias para a resolução de um problema bem formulado (passíveis de implementação em computador) Estratégia: especificar (definir propriedades) arquitectura

Leia mais

Análise e Complexidade de Algoritmos

Análise e Complexidade de Algoritmos Análise e Complexidade de Algoritmos Uma visão de Intratabilidade, Classes P e NP - redução polinomial - NP-completos e NP-difíceis Prof. Rodrigo Rocha prof.rodrigorocha@yahoo.com http://www.bolinhabolinha.com

Leia mais

7 - Análise de redes Pesquisa Operacional CAPÍTULO 7 ANÁLISE DE REDES. 4 c. Figura 7.1 - Exemplo de um grafo linear.

7 - Análise de redes Pesquisa Operacional CAPÍTULO 7 ANÁLISE DE REDES. 4 c. Figura 7.1 - Exemplo de um grafo linear. CAPÍTULO 7 7 ANÁLISE DE REDES 7.1 Conceitos Básicos em Teoria dos Grafos Diversos problemas de programação linear, inclusive os problemas de transporte, podem ser modelados como problemas de fluxo de redes.

Leia mais

Amontoados Relaxados e Filas com Prioridade

Amontoados Relaxados e Filas com Prioridade Cátia Vaz Amontoados Relaxados e Filas com Prioridade 9 de Setembro de 2009 ISEL, Instituto Politécnico de Lisboa Conteúdo 1 Introdução........................................................... 1 1.1

Leia mais

UM TEOREMA QUE PODE SER USADO NA

UM TEOREMA QUE PODE SER USADO NA UM TEOREMA QUE PODE SER USADO NA PERCOLAÇÃO Hemílio Fernandes Campos Coêlho Andrei Toom PIBIC-UFPE-CNPq A percolação é uma parte importante da teoria da probabilidade moderna que tem atraído muita atenção

Leia mais

Análise de Redes de Transportes. Útil também para várias outras áreas além de Transportes!

Análise de Redes de Transportes. Útil também para várias outras áreas além de Transportes! Análise de Redes de Transportes Útil também para várias outras áreas além de Transportes! Roteiro da apresentação! Conceitos e definições! Caminho mínimo! Árvore de caminhos mínimos! Introdução ao problema

Leia mais

ALGORITMOS E ESTRUTURAS DE DADOS CES-11 CES-11 CES-11

ALGORITMOS E ESTRUTURAS DE DADOS CES-11 CES-11 CES-11 ALGORITMOS E ESTRUTURAS DE DADOS Prof. Paulo André Castro pauloac@ita.br Sala 110 Prédio da Computação www.comp.ita.br/~pauloac IECE - ITA Uma árvore binária é: uma árvore vazia; ou uma árvore onde qualquer

Leia mais

Roteamentos AULA ... META. Introduzir alguns problemas de roteamento. OBJETIVOS. Ao final da aula o aluno deverá ser capaz de:

Roteamentos AULA ... META. Introduzir alguns problemas de roteamento. OBJETIVOS. Ao final da aula o aluno deverá ser capaz de: Roteamentos AULA META Introduzir alguns problemas de roteamento. OBJETIVOS Ao final da aula o aluno deverá ser capaz de: Distinguir circuito euleriano e ciclo hamiltoniano; Obter um circuito euleriano

Leia mais

Pesquisa Sequencial e Binária

Pesquisa Sequencial e Binária Pesquisa Sequencial e Binária Prof. Túlio Toffolo http://www.toffolo.com.br BCC202 Aula 20 Algoritmos e Estruturas de Dados I Pesquisa em Memória Primária Introdução - Conceitos Básicos Pesquisa Sequencial

Leia mais

Pointer Jumping. odg(v) e idg(v): graus de saída e entrada do vértice v V. um vértice r tal que. O vértice r é dita raíz de T

Pointer Jumping. odg(v) e idg(v): graus de saída e entrada do vértice v V. um vértice r tal que. O vértice r é dita raíz de T Pointer Jumping T = (V,E) : árvore direcionada odg(v) e idg(v): graus de saída e entrada do vértice v V um vértice r tal que v V-{r}, odg(v) = 1, odg(r)=0 v V-{r}, um caminho de v a r O vértice r é dita

Leia mais

15.053 Quinta-feira, 14 de março. Introdução aos Fluxos de Rede Handouts: Notas de Aula

15.053 Quinta-feira, 14 de março. Introdução aos Fluxos de Rede Handouts: Notas de Aula 15.053 Quinta-feira, 14 de março Introdução aos Fluxos de Rede Handouts: Notas de Aula 1 Modelos de Rede Modelos de programação linear que exibem uma estrutura muito especial. Podem utilizar essa estrutura

Leia mais

Árvores UFES. Teoria dos Grafos. CC/EC/Mestrado

Árvores UFES. Teoria dos Grafos. CC/EC/Mestrado Árvores Árvores Grafo Acíclico: não possui ciclos Árvores Grafo Acíclico: não possui ciclos Uma árvore é um grafo conexo acíclico Árvores Grafo Acíclico: não possui ciclos Uma árvore é um grafo conexo

Leia mais

01/05/2016. Danillo Tourinho Sancho da Silva, MSc ROTEIRIZAÇÃO TEORIA DOS GRAFOS MOTIVAÇÃO

01/05/2016. Danillo Tourinho Sancho da Silva, MSc ROTEIRIZAÇÃO TEORIA DOS GRAFOS MOTIVAÇÃO ROTEIRIZAÇÃO Danillo Tourinho Sancho da Silva, MSc TEORIA DOS GRAFOS MOTIVAÇÃO 1 MOTIVAÇÃO Por que estudar grafos? Importante ferramenta matemática com aplicação em diversas áreas do conhecimento Utilizados

Leia mais

5. Generics, Iterators e Comparable em Java. Tipos de Dados Abstractos Generics em Java

5. Generics, Iterators e Comparable em Java. Tipos de Dados Abstractos Generics em Java 5. Generics, Iterators e Comparable em Java Fernando Silva DCC-FCUP Estruturas de Dados Fernando Silva (DCC-FCUP) 5. Generics, Iterators e Comparable em Java Estruturas de Dados 1 / 12 Tipos de Dados Abstractos

Leia mais

Métodos de Pesquisa 472

Métodos de Pesquisa 472 472 Métodos de Pesquisa 473 Objetivos e Caracterizações Para que se possa falar em algoritmos de pesquisa, é necessário inicialmente introduzir a noção de mapeamento que é uma das mais primitivas em programação.

Leia mais

Limitada Uma Pesquisa Algorítmica

Limitada Uma Pesquisa Algorítmica Decomposição em Árvore de Grafos com Largura Limitada Uma Pesquisa Algorítmica Luis Eduardo Ximenes Carvalho Departamento de Ciência da Computação - DC/UFC Universidade Federal do Ceará Fortaleza, CE,

Leia mais

CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES

CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES 3.1 - IDENTIFICADORES Os objetos que usamos no nosso algoritmo são uma representação simbólica de um valor de dado. Assim, quando executamos a seguinte instrução:

Leia mais

Colectânea de Problemas Análise e Síntese de Algoritmos

Colectânea de Problemas Análise e Síntese de Algoritmos Colectânea de Problemas Análise e Síntese de Algoritmos João Marques Silva Departamento de Engenharia Informática Instituto Superior Técnico (IST)/INESC-ID e-mail: joao.marques.silva@dei.ist.utl.pt Vers~ao

Leia mais

EAD Árvore árvore binária

EAD Árvore árvore binária EAD Árvore árvore binária - Uma árvore binária é um conjunto finito de elementos (nodos) que pode ser vazio ou particionado em três subconjuntos: - raiz da árvore (elemento inicial, que é único); - subárvore

Leia mais

IA: Busca Competitiva. Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br

IA: Busca Competitiva. Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br IA: Busca Competitiva Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br Sumário Introdução Árvores de Jogos Minimax Antecipação Limitada Poda Alfa-beta Introdução Jogos têm sido continuamente uma importante

Leia mais

Complexidade de Algoritmos. Edson Prestes

Complexidade de Algoritmos. Edson Prestes Edson Prestes Caminhos de custo mínimo em grafo orientado Este problema consiste em determinar um caminho de custo mínimo a partir de um vértice fonte a cada vértice do grafo. Considere um grafo orientado

Leia mais

PROBLEMA DO CARTEIRO CHINÊS

PROBLEMA DO CARTEIRO CHINÊS Introdução à Teoria dos Grafos Bacharelado em Ciência da Computação UFMS, 005 PROBLEMA DO CARTEIRO CHINÊS Resumo A teoria dos grafos teve seu início há cerca de 50 anos e aplicações datadas daquela época

Leia mais

Resolução de Problemas Com Procura. Capítulo 3

Resolução de Problemas Com Procura. Capítulo 3 Resolução de Problemas Com Procura Capítulo 3 Sumário Agentes que resolvem problemas Tipos de problemas Formulação de problemas Exemplos de problemas Algoritmos de procura básicos Eliminação de estados

Leia mais

Separação de fluxos TCP e UDP

Separação de fluxos TCP e UDP Separação de fluxos TCP e UDP Utilizando controlador POX e OpenFlow Francisco Carlos Baddini Reinaldo do Valle Júnior Descrição do problema Separar o tráfego de dois protocolos diferentes Os fluxos desses

Leia mais

- UNIVERSIDADE DO VALE DO RIO DOS SINOS CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS (C6/6) Curso: Informática

- UNIVERSIDADE DO VALE DO RIO DOS SINOS CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS (C6/6) Curso: Informática Laboratório I Prof. Osório Balanceamento de Árvores Binárias Pag.: - UNIVERSIDADE DO VALE DO RIO DOS SINOS CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS (C6/6) Curso: Informática LABORATÓRIO II AULA : Balanceamento

Leia mais

Pesquisa digital. Algoritmos e Estruturas de Dados II

Pesquisa digital. Algoritmos e Estruturas de Dados II Pesquisa digital Algoritmos e Estruturas de Dados II Pesquisa digital A pesquisa digital usa a representação das chaves para estruturar os dados na memória Por exemplo, a representação de um número em

Leia mais

26/08/2013. Árvore. Árvore. Árvore. Floresta :: Exemplo. Floresta ÁRVORES

26/08/2013. Árvore. Árvore. Árvore. Floresta :: Exemplo. Floresta ÁRVORES 2 ÁRVORES Dado um grafo G G é chamado de árvore caso seja não direcionado, conectado e não possua circuitos simples Matemática Discreta Prof. João Paulo Lima Universidade Federal Rural de Pernambuco Departamento

Leia mais

Aula 20. Roteamento em Redes de Dados. Eytan Modiano MIT

Aula 20. Roteamento em Redes de Dados. Eytan Modiano MIT Aula 20 Roteamento em Redes de Dados Eytan Modiano MIT 1 Roteamento Deve escolher rotas para vários pares origem, destino (pares O/D) ou para várias sessões. Roteamento datagrama: a rota é escolhida para

Leia mais

EAD Árvore - representação usando listas ligadas

EAD Árvore - representação usando listas ligadas 4.1. Definição É uma árvore binária em que os seus nodos têm associado uma chave, que - determina a sua posição de colocação na árvore e - obedece às seguintes regras: a chave de um nodo é - maior do que

Leia mais

Espaços vectoriais com produto interno. ALGA 2007/2008 Mest. Int. Eng. Biomédica Espaços vectoriais com produto interno 1 / 15

Espaços vectoriais com produto interno. ALGA 2007/2008 Mest. Int. Eng. Biomédica Espaços vectoriais com produto interno 1 / 15 Capítulo 6 Espaços vectoriais com produto interno ALGA 2007/2008 Mest. Int. Eng. Biomédica Espaços vectoriais com produto interno 1 / 15 Definição e propriedades Seja V um espaço vectorial real. Chama-se

Leia mais

Introdução ao Estudo sobre Árvore Geradora Mínima em Grafos com Parâmetros Fuzzy

Introdução ao Estudo sobre Árvore Geradora Mínima em Grafos com Parâmetros Fuzzy UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO PROJETO DE CONCLUSÃO DE CURSO Introdução ao Estudo sobre Árvore Geradora Mínima em Grafos com Parâmetros Fuzzy Disciplina:

Leia mais

Índice. Capítulo 2 Estrutura de Dados sequencial com armazenamento sequencial

Índice. Capítulo 2 Estrutura de Dados sequencial com armazenamento sequencial Índice i Índice Capítulo 2 Estrutura de Dados sequencial com armazenamento sequencial 1. A Estrutura Abstrata de Dados Lista... 1 1.1. Definição... 1 1.2. Implementação de Listas utilizando armazenamento

Leia mais

Técnicas de Otimização Combinando Alocação de Banco de Capacitores e Reconfiguração de Rede Visando Minimização de Perdas Técnicas

Técnicas de Otimização Combinando Alocação de Banco de Capacitores e Reconfiguração de Rede Visando Minimização de Perdas Técnicas Universidade Estadual de Campinas - Unicamp Faculdade de Engenharia Elétrica e de Computação - FEEC Comissão de Pós-graduação - CPG IA342 Tópicos em Otimização de Sistemas Aluno: Antonio César Polo Matricula:

Leia mais

Pesquisa em Memória Primária. Algoritmos e Estruturas de Dados II

Pesquisa em Memória Primária. Algoritmos e Estruturas de Dados II Pesquisa em Memória Primária Algoritmos e Estruturas de Dados II Pesquisa em Memória Primária Pesquisa: Recuperação de informação em um grande volume de dados Informação é dividida em registros e cada

Leia mais

BCC202 - Estrutura de Dados I

BCC202 - Estrutura de Dados I BCC202 - Estrutura de Dados I Aula 04: Análise de Algoritmos (Parte 1) Reinaldo Fortes Universidade Federal de Ouro Preto, UFOP Departamento de Ciência da Computação, DECOM Website: www.decom.ufop.br/reifortes

Leia mais

ANÁLISE DE ALGORITMOS

ANÁLISE DE ALGORITMOS Universidade Estadual de Campinas UNICAMP Centro Superior de Educação Tecnológica CESET ANÁLISE DE ALGORITMOS ST067 TÓPICOS ESPECIAIS EM INFORMÁTICA Prof.: Marco Antonio Garcia de Carvalho Fevereiro 2004

Leia mais

Métodos de Pesquisa em Memória Primária

Métodos de Pesquisa em Memória Primária Algoritmos e Estrutura de Dados II Métodos de Pesquisa em Memória Primária Prof Márcio Bueno ed2tarde@marciobueno.com / ed2noite@marciobueno.com Pesquisa Por pesquisa (procura ou busca) entende-se o ato

Leia mais

Algoritmos de Busca em Tabelas

Algoritmos de Busca em Tabelas Dentre os vários algoritmos fundamentais, os algoritmos de busca em tabelas estão entre os mais usados. Considere por exemplo um sistema de banco de dados. As operações de busca e recuperação dos dados

Leia mais

FACULDADE CAMPO LIMPO PAULISTA MESTRADO EM CIÊNCIA DA COMPUTAÇÃO. Projeto e Análise de Algoritmos II Lista de Exercícios 2

FACULDADE CAMPO LIMPO PAULISTA MESTRADO EM CIÊNCIA DA COMPUTAÇÃO. Projeto e Análise de Algoritmos II Lista de Exercícios 2 FACULDADE CAMPO LIMPO PAULISTA MESTRADO EM CIÊNCIA DA COMPUTAÇÃO Projeto e Análise de Algoritmos II Lista de Exercícios 2 Prof. Osvaldo. 1. Desenvolva algoritmos para as operações abaixo e calcule a complexidade

Leia mais

LaSiD/UFBA. Raimundo J. de A. Macêdo

LaSiD/UFBA. Raimundo J. de A. Macêdo Fundamentos de Sistemas Distribuídos Terminação Distribuída LaSiD/UFBA Raimundo J. de A. Macêdo 1 Todos os processos envolvidos numa computação distribuída encerraram suas atividades. Ou seja, estão num

Leia mais

BUSCA EM LISTAS LISTAS SEQÜENCIAIS, LISTAS SIMPLESMENTE E DUPLAMENTE ENCADEADAS E LISTAS CIRCULARES

BUSCA EM LISTAS LISTAS SEQÜENCIAIS, LISTAS SIMPLESMENTE E DUPLAMENTE ENCADEADAS E LISTAS CIRCULARES BUSCA EM LISTAS LISTAS SEQÜENCIAIS, LISTAS SIMPLESMENTE E DUPLAMENTE ENCADEADAS E LISTAS CIRCULARES ALGORITMOS DE BUSCA EM LISTAS COM ALOCAÇÃO SEQÜENCIAL Busca em Listas Lineares A operação de busca é

Leia mais

Complexidade de Algoritmos

Complexidade de Algoritmos Complexidade de Algoritmos Classes de Complexidades de Problemas Prof. Osvaldo Luiz de Oliveira Estas anotações devem ser complementadas por apontamentos em aula. Tempo polinomial Um algoritmo A, com entrada

Leia mais

4 Estudo de caso: Problema de seqüenciamento de carros

4 Estudo de caso: Problema de seqüenciamento de carros 4 Estudo de caso: Problema de seqüenciamento de carros O problema de seqüenciamento de carros em linhas de produção das indústrias automobilísticas é um tipo particular de problema de escalonamento que

Leia mais

Árvore Binária de Busca

Árvore Binária de Busca Árvore Binária de Busca 319 Árvore Binária de Busca! construída de tal forma que, para cada nó:! nós com chaves menores estão na sub-árvore esquerda! nós com chaves maiores (ou iguais) estão na subárvore

Leia mais

O Problema do Fluxo Máximo de Custo Mínimo e suas Aplicações no Transporte de Recursos em Sistemas Distribuídos

O Problema do Fluxo Máximo de Custo Mínimo e suas Aplicações no Transporte de Recursos em Sistemas Distribuídos O Problema do Fluxo Máximo de Custo Mínimo e suas Aplicações no Transporte de Recursos em Sistemas Distribuídos Luís Fernando Schultz Xavier da Silveira Filipe Hoss Lellis 27 de Novembro de 2008 Resumo

Leia mais

Pragmática das Linguagens de Programação 2004/2005

Pragmática das Linguagens de Programação 2004/2005 Instituto Superior Técnico Pragmática das Linguagens de Programação 2004/2005 Segundo Exame 11/2/2005 Número: Turma: Nome: Escreva o seu número em todas as folhas do teste. O tamanho das respostas deve

Leia mais

Técnicas de Computação Paralela Capítulo III Design de Algoritmos Paralelos

Técnicas de Computação Paralela Capítulo III Design de Algoritmos Paralelos Técnicas de Computação Paralela Capítulo III Design de Algoritmos Paralelos José Rogado jose.rogado@ulusofona.pt Universidade Lusófona Mestrado Eng.ª Informática e Sistemas de Informação 2013/14 Resumo

Leia mais

Analise o código abaixo:

Analise o código abaixo: Recursão - introdução Analise o código abaixo: 1 # include 2 # include 3 int Fatorial ( int x) 4 int k, s =1; for (k =0;k

Leia mais

Satisfação de Restrições. Capítulo 5 (disponível online)

Satisfação de Restrições. Capítulo 5 (disponível online) Satisfação de Restrições Capítulo 5 (disponível online) Sumário Problemas de Satisfação de Restrições (CSPs) Procura com Retrocesso para CSPs Procura Local para CSPs Estrutura dos CSPs Problemas de Satisfação

Leia mais

Teoria dos Números. A Teoria dos Números é a área da matemática que lida com os números inteiros, isto é, com o conjunto

Teoria dos Números. A Teoria dos Números é a área da matemática que lida com os números inteiros, isto é, com o conjunto Teoria dos Números 1 Noções Básicas A Teoria dos Números é a área da matemática que lida com os números inteiros, isto é, com o conjunto Z = {..., 4, 3, 2, 1, 0, 1, 2, 3, 4...}. Ela permite resolver de

Leia mais

Lista de Exercícios Fluxograma, Estruturas de Sequência e Decisão Prof: Yuri Frota

Lista de Exercícios Fluxograma, Estruturas de Sequência e Decisão Prof: Yuri Frota Lista de Exercícios Fluxograma, Estruturas de Sequência e Decisão Prof: Yuri Frota 1) Indique Verdadeiro ou Falso a) Uma variável é uma posição na memória do computador que pode receber diversos valores

Leia mais

Problema do Carteiro Chinês

Problema do Carteiro Chinês CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE COMPUTAÇÃO TEORIA DA COMPUTAÇÃO Problema do Carteiro Chinês Alunos: André Ricardo Gonçalves Luiz Gustavo Andrade dos Santos Paulo Roberto Silla Profa. Linnyer

Leia mais

Projeto e Análise de Algoritmos

Projeto e Análise de Algoritmos Projeto e Análise de Algoritmos Aula 10 Distâncias Mínimas Edirlei Soares de Lima Distâncias Mínimas Dado um grafo ponderado G = (V, E), um vértice s e um vértice g, obter o caminho

Leia mais

CÁLCULO EFICIENTE DE DERIVADAS VIA

CÁLCULO EFICIENTE DE DERIVADAS VIA RELATÓRIO DE INICIAÇÃO CIENTÍFICA CÁLCULO EFICIENTE DE DERIVADAS VIA COLORAÇÃO DE GRAFOS Profa. Dra. Margarida P. Mello Orientadora Robert Mansel Gower Aluno Departamento de Matemática Aplicada IMECC UNICAMP

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Dígrafos Dado um dígrafo G, podemos definir uma função multívoca vértices de G entre os Se G possui os arcos (x,y) e (x,w), então sabemos que G possui duas arestas que saem de x e alcançam

Leia mais

Module Introduction. Programação. Cap. 4 Algoritmos e Programação Estruturada

Module Introduction. Programação. Cap. 4 Algoritmos e Programação Estruturada 5374 : Engenharia Informática 6638 : Tecnologias e Sistemas de Informação 9099 : Bioengenharia 10135 : Ciências Biomédicas Cap. 4 Algoritmos e Estruturada Module Introduction Algoritmos e Estruturada Objectivos:

Leia mais

Apostila de CIC373 Fluxo em Redes

Apostila de CIC373 Fluxo em Redes Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Computação Apostila de CIC7 Fluxo em Redes Aluno: Diego Faria Lemes Professor: Gustavo Peixoto Silva Programa

Leia mais

Estrutura de Dados Básica

Estrutura de Dados Básica Estrutura de Dados Básica Professor: Osvaldo Kotaro Takai. Aula 7: Recursividade O objetivo desta aula é apresentar o conceito de recursão para solução de problemas. A recursão é uma técnica de programação

Leia mais

FERRAMENTA PARA REPRESENTAÇÃO GRÁFICA DO FUNCIONAMENTO DE ALGORITMOS APLICADOS EM GRAFOS

FERRAMENTA PARA REPRESENTAÇÃO GRÁFICA DO FUNCIONAMENTO DE ALGORITMOS APLICADOS EM GRAFOS UNIVERSIDADE REGIONAL DE BLUMENAU CENTRO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE CIÊNCIAS DA COMPUTAÇÃO BACHARELADO FERRAMENTA PARA REPRESENTAÇÃO GRÁFICA DO FUNCIONAMENTO DE ALGORITMOS APLICADOS EM GRAFOS

Leia mais

Bacharelado em Ciência da Computação Matemática Discreta

Bacharelado em Ciência da Computação Matemática Discreta Bacharelado em Ciência da Computação Matemática Discreta Prof. Diego Mello da Silva Instituto Federal de Minas Gerais - Campus Formiga 19 de fevereiro de 2013 diego.silva@ifmg.edu.br (IFMG) Matemática

Leia mais

Sistemas Operativos: Deadlocks

Sistemas Operativos: Deadlocks Sistemas Operativos: Deadlocks Pedro F. Souto (pfs@fe.up.pt) March 30, 2012 Deadlocks Um deadlock é uma situação em que 2 ou mais processos ficam bloqueados indefinidamente pode ser uma race condition

Leia mais

Compiladores. A seção das regras. Especificação (F)lex. Plano da aula. Escolha das regras. Compilação típica com FLEX

Compiladores. A seção das regras. Especificação (F)lex. Plano da aula. Escolha das regras. Compilação típica com FLEX Compilação típica com FLX Compiladores Análise sintática (1) Noções sobre Gramáticas Livres de conteto dição do teto de especificação No arquivo minhas_regras.l 3 partes: Declarações Regras (Rs -> Ação)

Leia mais

Projeto de Redes Neurais e MATLAB

Projeto de Redes Neurais e MATLAB Projeto de Redes Neurais e MATLAB Centro de Informática Universidade Federal de Pernambuco Sistemas Inteligentes IF684 Arley Ristar arrr2@cin.ufpe.br Thiago Miotto tma@cin.ufpe.br Baseado na apresentação

Leia mais

Respostas dos Exercícios Cap. 2 Russell & Norvig

Respostas dos Exercícios Cap. 2 Russell & Norvig Respostas dos Exercícios Cap. 2 Russell & Norvig 1. (2.2) Uma medida de desempenho e utilizada por um observador externo para avaliar o sucesso de um agente. Uma função de utilidade e utilizada por um

Leia mais

Trabalho Computacional

Trabalho Computacional Universidade Federal do Espírito Santo Departamento de Informática Profª Claudia Boeres Teoria dos Grafos - 2014/2 Trabalho Computacional 1. Objetivo Estudo e implementação de algoritmos para resolução

Leia mais