Álgebra Linear I - Aula 20

Documentos relacionados
Álgebra Linear I - Aula 19

Álgebra Linear I - Aula Forma diagonal de uma matriz diagonalizável

Álgebra Linear I - Lista 12. Matrizes semelhantes. Diagonalização. Respostas

Álgebra Linear I - Aula 22

Álgebra Linear I - Lista 11. Autovalores e autovetores. Respostas. 1) Calcule os autovalores e autovetores das matrizes abaixo.

Álgebra Linear I - Aula Bases Ortonormais e Matrizes Ortogonais

G4 de Álgebra Linear I

G3 de Álgebra Linear I

Álgebra Linear I - Aula Matriz de uma transformação linear em uma base. Exemplo e motivação

5. Seja A uma matriz qualquer. Assinale a afirmativa

1 Matrizes Ortogonais

Álgebra Linear I - Aula Matrizes simultaneamente ortogonais e simétricas

P3 de Álgebra Linear I

P4 de Álgebra Linear I de junho de 2005 Gabarito

G3 de Álgebra Linear I

Álgebra Linear I - Aula 18

Álgebra Linear I - Aula Propriedades dos autovetores e autovalores

G4 de Álgebra Linear I

Álgebra Linear I - Aula 21

Álgebra Linear I - Aula Autovetores e autovalores de uma transformação

1. Entre as funções dadas abaixo, verifique quais são transformações lineares: x y z

Autovalores e Autovetores Determinante de. Motivando com Geometria Definição Calculando Diagonalização Teorema Espectral:

GAAL - Terceira Prova - 15/junho/2013. Questão 1: Analise se a afirmação abaixo é falsa ou verdadeira:

(d) p(λ) = λ(λ + 1) (b) 4 (c) 1 (d) Seja A uma matriz n n. Assinale a alternativa FALSA:

G4 de Álgebra Linear I

MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de T ( p(x) ) = p(x + 1) p(x), (a) 8, (b) 5, (c) 0, (d) 3, (e) 4.

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática

Exercício: Identifique e faça um esboço do conjunto solução da. 3x xy + y 2 + 2x 2 3y = 0

G3 de Álgebra Linear I

Álgebra Linear I - Aula 11. Roteiro. 1 Dependência e independência linear de vetores

Provas. As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor.

P4 de Álgebra Linear I

Tópicos de Álgebra Linear Verão 2019 Lista 4: Formas de Jordan

5. Seja R : R 3 R 3 uma rotação em torno do eixo gerado por (0, 0, 1). Suponha que R mande o vetor

G2 de Álgebra Linear I

Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia

Universidade Federal da Paraíba Departamento de Matemática. Álgebra Linear e Geometria Analítica

Prova tipo A. Gabarito. Data: 8 de outubro de ) Decida se cada afirmação a seguir é verdadeira ou falsa. 1.a) Considere os vetores de R 3

(a) (1,5) Obtenha os autovalores e autovetores de L. (b) (1,0) A matriz de L em relação à base canônica de M 2 2 é diagonalizável? Explique.

P3 de Álgebra Linear I

Matrizes Semelhantes e Matrizes Diagonalizáveis

MAT3458 ÁLGEBRA LINEAR II 2 a Lista de Exercícios 2 o semestre de 2018

Legenda. Questões. Lista de Exercícios - Autovalores e autovetores. Cálculos Teoria Geometria

ÁLGEBRA LINEAR - MAT0024

P2 de Álgebra Linear I Data: 10 de outubro de Gabarito

AUTOVALORES E AUTOVETORES

CM005 Álgebra Linear Lista 2

FORMA CANÔNICA DE JORDAN

3 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão e B =

Aula 19 Operadores ortogonais

1 Autovetor e Autovalor 9. 2 Matrizes Ortogonais e Transformações Lineares Planas e Espaciais 55

6 Valores e Vectores Próprios de Transformações Lineares

MAT-27 Lista-09 Outubro/2011

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

(b) A não será diagonalizável sobre C e A será diagonalizável sobre R se, e

Diagonalização de Operadores. Teorema Autovetores associados a autovalores distintos de um operador linear T : V V são linearmente independentes.

Universidade Federal da Paraíba - UFPB Centro de Ciências Exatas e da Natureza - CCEN Departamento de Matemática - DM

Gabarito P2. Álgebra Linear I ) Decida se cada afirmação a seguir é verdadeira ou falsa.

ÁLGEBRA LINEAR I - MAT0032

MAE125 Álgebra Linear /1 Turmas EQN/QIN

ficha 4 valores próprios e vectores próprios

Parte 3 - Produto Interno e Diagonalização

MAT 138 Noções de Àlgebra Linear

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1

(c) apenas as afirmações (II) e (III) são necessariamente verdadeiras;

Aula 1 Autovetores e Autovalores de Matrizes Aula 2 Autovetores e Autovalores de Matrizes Casos Especiais 17

Álgebra Linear II - Poli - Gabarito Prova SUB-tipo 00

Resolução das objetivas 3ª Prova de Álgebra Linear II da UFRJ, período

GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1).

MAE125 Álgebra Linear /2 Turmas EQN/QIN

Álgebra Linear I - Aula 5. Roteiro

Álgebra Linear /2 Turma 11852

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 2015

7. Sejam U, W subespaços vetoriais de um espaço vetorial V sobre um corpo K. Prove que U W é um subespaço vetorial de V se e somente se U W ou W U.

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017

Álgebra Linear I - Aula 20

5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão Encontre os autovalores, os autovetores e a exponencial e At para

CM005 Álgebra Linear Lista 3

5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 2009

Álgebra Linear I - Lista 10. Matrizes e Transformações lineares. Respostas

Álgebra Linear /2 Turma EM1 (unificada)

Dou Mó Valor aos Autovalores

Forma Canônica de Matrizes 2 2

Algebra Linear. 1. Revisitando autovalores e autovetores. 2. Forma Diagonal e Forma de Jordan. 2.1 Autovalores distintos. 2.2 Autovalores complexos

2 Álgebra Linear (revisão)

MAT Álgebra Linear para Engenharia II

Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá. 21 de outubro de 2011

G2 de Álgebra Linear I

Lista 8 de Álgebra Linear /01 Produto Interno

(d) v é um autovetor de T se, e somente se, T 2 = T ; (e) v é um autovetor de T se, e somente se, T (v) = v.

0 1. Assinale a alternativa verdadeira Q1. Seja A = (d) Os autovalores de A 101 são i e i. (c) Os autovalores de A 101 são 1 e 1.

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017

Álgebra Linear I - Lista 10. Transfromações inversas. Matriz inversa. Respostas. c d a c. c d A = g h. e C = a c

(I) T tem pelo menos um autovalor real; (II) T é diagonalizável; (III) no espaço vetorial real R n, o conjunto {u, v} é linearmente independente.

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

Data: 8 de outubro de Questão Valor Nota Revis a 1.0 2b 1.0 2c 1.0 3a 1.0 3b 0.5 3c 0.5 4a 1.0 4b 0.5 5a 1.0 5b 0.5 Total 10.

Em todas as questões, está fixado um sistema ortogonal (O, i, j, k) com base ( i, j, k) positiva.

Equação Geral do Segundo Grau em R 2

Transcrição:

Álgebra Linear I - Aula 20 1 Matrizes diagonalizáveis Exemplos 2 Forma diagonal de uma matriz diagonalizável 1 Matrizes diagonalizáveis Exemplos Lembramos que matriz quadrada a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a n,1 a n,2 a n,n é diagonal quando a i,j = 0 para todo i j Observe que os autovalores de uma matriz diagonal são os elementos da sua diagonal Uma transformação linear T é diagonalizável quando existe uma base formada por autovetores Vimos que neste caso a matriz de T é semelhante a uma matriz diagonal De fato, as duas propriedades seguintes são equivalentes: possuir base de autovetores, ser semelhante a uma matriz diagonal Sejam A uma transformação linear diagonalizável, β = {v 1, v 2,, v n } uma base de autovetores de A e {λ 1, λ 2,, λ n } os autovalores associados a v 1,, v n Uma forma diagonal de A é λ 1 0 0 0 λ 2 0 D A = 0 0 λ n Observe que A pode ter diferentes formas diagonais (é suficiente mudar a ordem dos vetores da base de autovetores!) 1

Exemplos 1 Espelhamentos e projeções (ortogonais ou não) são transformações lineares diagonalizáveis Prova: Para provar a afirmação devemos encontrar uma base de autovetores Por exemplo, em R 3 e considerando projeções P e espelhamentos E no plano π: ax + b y + cz = 0, podemos considerar dois vetores não nulos v e w não paralelos do plano e o vetor l correspondente à direção de projeção ou de espelhamento Obtemos assim a base β = {v, w, l} Trata-se de uma base de autovetores de P e de E: Também temos P(v) = v, P(w) = w, e P(l) = 0 E(v) = v, E(w) = w, e E(l) = l No caso de projeções e espelhamentos em retas o raciocínio é similar Exemplos 2 A transformações lineares A, B, C : R 3 R 3 cujas matrizes na base canônica são [A] = 0 1 2, [B] = 0 1 2, [C] = 0 1 1 0 0 1 0 0 2 0 1 1 não são diagonalizáveis Prova: Por exemplo, a matriz A possui um único autovalor igual a 1 de multiplicidade 3 Faça os cálculos e veja que os autovetores de A são os vetores não nulos da forma (t, 0, 0) Portanto, no máximo é possível um autovetor li de A Logo A não possui uma base de autovetores No caso da matriz B, os autovalores são 2 (simples ou de multiplicidade um) e 1 de multiplicidade 2 Associados a 2 obtemos autovetores da forma (0, 0, t) Os autovetores associados a 1 são da forma (t, 0, 0) Portanto, somente é possível obter dois autovetores li de B Logo B não possui uma base de autovetores 2

Nos dois casos anteriores o fato de não ser possível obter uma base de autovetores é devido a que há um autovalor de multiplicidade k (3 no caso da matriz A e 2 no caso de B) que possui um número de autovetores li menor do que k (em ambos os casos 1) O fato da matriz C não ser diagonalizável é devido a outros motivos: tem um autovalor complexo (não real) Exemplos 3 As formas diagonais das projeções (ortogonais ou não) P e espelhamentos R em R 2 são, respectivamente, ( ) ( ) 1 0 1 0 D P =, D 0 0 R = 0 1 As formas diagonais das projeções (ortogonais ou não) P 1 em uma reta e P 2 em um plano de R 3 são, respectivamente, D P1 = 0 0 0, D P2 = 0 1 0 0 0 0 0 0 0 As formas diagonais dos espelhamentos E 1 em torno de uma reta e E 2 em torno de um plano em R 3 são, respectivamente, D E1 = 0 1 0, D E2 = 0 1 0 0 0 1 0 0 1 Exemplos 4 A transformação linear T : R 3 R 3 definida por T(1, 1, 2) = 2(1, 1, 2), T(1, 0, 1) = 2(1, 0, 1), T(1, 1, 1) = 3(1, 1, 1) é diagonalizável: {(1, 1, 2), (1, 0, 1),(1, 1, 1)} formam uma base de autovetores cuja forma diagonal é 2 0 0 D T = 0 2 0 0 0 3 Uma condição suficiente, porém não necessária, para uma transformação linear T : R n R n ser diagonalizável é ter n autovalores reais distintos Para ver isto, sejam λ 1,, λ n os autovalores e v 1,, v n os autovetores associados a estes autovalores Por resultados já vistos, como λ 1,, λ n são diferentes, os vetores v 1,, v n são li Portanto, formam uma base (de autovetores) de R n (n vetores li de R n formam uma base) 3

Exemplo 1 Suponha que A é uma transformação linear de R 3 cujo polinômio característico é p(λ) = (λ 1)(λ 2)(λ 3) Estude se A é diagonalizável e calcule sua forma diagonal Prova: A transformação é diagonalizável: tem três autovalores distintos: 1,2,3 Sua forma diagonal é 0 2 0 0 0 3 Exemplo 2 Estude se a afirmação a seguir é verdadeira: Suponha que A é transformação linear de R 3 cujo polinômio característico é p(λ) = (λ 1) 2 (λ 2), então A não é diagonalizável Prova: A afirmação é falsa Da afirmação deduzimos que A tem um autovalor 1 (de multiplicidade 2) e um autovalor 2 simples Por exemplo, 0 1 0 0 0 2 tem polinômio característico p(λ) = (λ 1) 2 (λ 2) e é diagonalizável (de fato, já é diagonal!) Porém, a matriz 1 1 0 0 0 2 tem o mesmo polinômio característico e não é diagonalizável Ou seja, no caso em que existem raízes repetidas não é possível deduzir se é diagonalizável ou não somente com a análise do polinômio característico (é necessário estudar os autovetores) 4

Exemplo 3 Sabendo que a matriz P, 5/6 2/6 1/6 P = 2/6 2/6 2/6 1/6 2/6 5/6 representa um espelhamento ou uma projeção ortogonal em um plano determine a opção válida Determine o plano de projeção ou de espelhamento Resposta: A matriz tem traço 2 Logo não pode ser um espelhamento Será, portanto, uma projeção Para determinar o plano de projeção há três opções Determinar os autovetores associados a 1 (obtendo assim o plano), determinar os autovetores de 0 (obtendo a direção normal do plano) ou como segue Observe que P(1, 0, 0) e P(0, 1, 0) são vetores do plano Logo (5, 2, 1) e ( 1, 1, 1) são vetores paralelos do plano Logo o vetor normal do plano é (1, 2, 1) Verifique que P(1, 2, 1) = 0 Exemplo 4 Considere a transformação linear T, T = Estude se T é diagonalizável Em caso afirmativo, determine sua forma diagonal Determine seu significado geométrico Resposta: Uma projeção ortogonal na reta (1, 1, 1) seguida de uma multiplicação por 3 É diagonalizável e sua forma diagonal é 3 0 0 T = 0 0 0 0 0 0 Veja que os autovalores são 3 (simples) e 0 (multiplicidade 2) Os autovetores são (t, t, t), t R, t 0, e os vetores não nulos de x + y + z = 0 Observe que existe uma base ortogonal de autovetores {(1, 1, 1), (1, 1,0),(1,1, 2)} de T 5

Exemplo 5 Mostre que λ é um autovalor de uma matriz inversível A se, e somente se, λ 1 é um autovalor de A 1 Os autovetores associados são os mesmos? Prova: Seja v um autovetor de A e σ 0 seu autovalor (pelo exercício anterior sabemos que σ é não nulo) Temos, Portanto, v = A 1 A(v) = A 1 (σv) = σa 1 (v) A 1 (v) = (1/σ) v Logo v é um autovetor de A 1 com autovalor associado σ 1 Observe que o argumento anterior prova que se A é inversível, então A é diagonalizável se, e somente se, A 1 é diagonalizável Outra forma de provar esta propriedade é a seguinte: suponha que A é inversível e diagonalizável, então A = P 1 D, P, onde D é diagonal Como o determinante do produto é o produto dos determinantes, D tem determinante não nulo e portanto é inversível De fato, a inversa de uma matriz diagonal é outra matriz diagonal, mais precisamente: λ 1 0 0 λ 1 1 0 0 0 λ 2 0 D =, 0 λ 1 D 1 2 0 =, 0 0 λ n 0 0 λ 1 n observe que det(d) 0 implica que λ 1,, λ n são todos diferentes de 0 Finalmente, como (C E) 1 = E 1 C 1, temos A 1 = (P 1 D P) 1 = P D 1 P 1, e A 1 é semelhante a D 1 que é diagonal Portanto, A 1 é diagonalizável 6