Fatec ELETRICIDADE APLICADA II PROF. EDSON G. PEREIRA. PROF a. TANIA G. PEREIRA. Revisão Técnica. Prof. Armando Lapa Júnior.

Documentos relacionados
ENUNCIADO DOS EXERCÍCIOS ESTÃO NAS ULTIMAS PÁGINAS

Corrente alternada em Circuitos monofásicos

Eletricidade II. Aula 1. Resolução de circuitos série de corrente contínua

Eletrotécnica Geral. Lista de Exercícios 1

Circuitos Elétricos II

16 x PROFESSOR DOCENTE I - ELETRICIDADE CONHECIMENTOS ESPECÍFICOS

SISTEMAS TRIFÁSICOS CONCEITO

POTÊNCIA EM CIRCUITOS SENOIDAIS.

Potência em Corrente Alternada

Eletricidade Geral. Guia de Estudos P1

CORREÇÃO DO FATOR DE POTÊNCIA (FP) Prof. Marcos Fergütz Fev/2016

A Circuitos trifásicos

UTFPR DAELN CORRENTE ALTERNADA, REATÂNCIAS, IMPEDÂNCIA & FASE

Lista de exercícios ENG04042 Tópicos 3.1 a 5.3. a corrente se atrasa em relação a v.

Análise de Circuitos 2. de Fator de Potência

UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7040 Circuitos Elétricos I - Laboratório

5 a Aula de Exercícios

Exemplo-) Determinar a potência aparente do circuito a seguir. Figura 68 Cálculo da potência aparente.

LABORATÓRIO INTEGRADO III

Disciplina: Instalações Elétricas Prediais

Exercícios: Eletromagnetismo, circuitos CC e aplicações

INTRODUÇÃO AOS SISTEMAS DE ENERGIA ELÉTRICA

ELETROTÉCNICA ELM ROTEIRO DA AULA PRÁTICA 04 Correção de Fator de Potência

ET720 Sistemas de Energia Elétrica I. Capítulo 4: Transformadores de potência. Exercícios


Vamos considerar um gerador de tensão alternada ε(t) = ε m sen ωt ligado a um resistor de resistência R. A tensão no resistor é igual à fem do gerador

Corrente Alternada. Circuitos Monofásicos (Parte 2)

Questão 1. Gabarito. Considere P a potência ativa da carga e Q a potência reativa.

CORREÇÃO DO FATOR DE POTÊNCIA (FP) Prof. Marcos Fergütz Maio/2016

Circuitos em Corrente Alternada contendo R, L e C. R = Resistor; L = Indutor; C = Capacitor

PROVA DE CONHECIMENTOS ESPECÍFICOS. É característica que determina a um transformador operação com regulação máxima:

Aquino, Josué Alexandre.

Correção do Fator de Potência

Em corrente alternada existem três tipos de potência

RELAÇÕES ENTRE TENSÃO E CORRENTE ALTERNADAS NOS ELEMENTOS PASSIVOS DE CIRCUITOS

Circuitos polifásicos 2/2008 Lista de Exercícios 1 LISTA 1

Circuitos Elétricos II

Capítulo 12. Potência em Regime Permanente C.A.

Eletricidade Aula 09. Resistência, Indutância e Capacitância em Circuitos de Corrente Alternada

Aula 3 Corrente alternada circuitos básicos

6. POTÊNCIA EM CORRENTE ALTERNADA 6.1. POTÊNCIA ATIVA, REATIVA E APARENTE. Potência em Corrente Alternada 62


Máquina de Indução - Lista Comentada

IMPEDÂNCIA Impedância

AULA 1 PU E MODELAGEM DE SISTEMAS TRIFÁSICOS RAFAEL DE OLIVEIRA RIBEIRO 1

Potência em CA AULA II. Vitória-ES

Centro Federal de Educação Tecnológica de Santa Catarina Departamento Acadêmico de Eletrônica Retificadores. Prof. Clóvis Antônio Petry.

ENGC25 - ANÁLISE DE CIRCUITOS ELÉTRICOS II

Aula 5 Análise de circuitos indutivos em CA circuitos RL

Avisos. Entrega do Trabalho: 8/3/13 - sexta. P2: 11/3/13 - segunda

Eletricidade Geral. Resumo do Curso Fórmulas e Conceitos

Circuitos Elétricos II

Determinação da Reatância Síncrona Campos Girantes Máquina Síncrona ligada ao Sistema de Potência Gerador e Motor Síncrono

Lista de exercícios de: Circuitos Elétricos de Corrente Alternada Prof.: Luís Fernando Pagotti

2) Em qual frequência, uma bobina de indutância 20mH terá uma reatância com módulo de 100Ω? E com módulo de 0Ω?

TRANSFORMADORES. Fonte: itu.olx.com.br

FIS1053 Projeto de Apoio Eletromagnetismo 23-Maio Lista de Problemas 12 -Circuito RL, LC Corrente Alternada.

Sumário CIRCUITOS DE CORRENTE ALTERNADA. Prof. Fábio da Conceição Cruz 21/10/ Introdução. 2. Formas de ondas alternadas senoidais

Transformadores elétricos (trafos)

CONVERSÃO ELETROMECÂNICA DE ENERGIA

Lista de Exercícios 3 Conversão de Energia

Análise de circuitos em regime permanente sinusoidal

Circuitos Elétricos. Circuitos Contendo Resistência, Indutância e Capacitância. Prof.: Welbert Rodrigues

Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores. Prof. Clóvis Antônio Petry.

Revisão de Eletricidade

EN2705: Circuitos Elétricos II UFABC Lista 01 (Carlos Eduardo Capovilla) v3

A) 15,9 A; B) 25,8 A; C) 27,9 A; D) 30,2 A; E) 35,6 A.

LABORATÓRIO INTEGRADO II

QUALIDADE DA ENERGIA ELÉTRICA HARMÔNICA NO SISTEMA ELÉTRICO DE POTÊNCIA

TE 158 Operação de sistemas elétricos de potência Lista de exercícios. Fator de Potência

` Prof. Antonio Sergio 1

COMANDO DA AERONÁUTICA DEPARTAMENTO DE ENSINO CENTRO DE INSTRUÇÃO E ADAPTAÇÃO DA AERONÁUTICA CONCURSO DE ADMISSÃO AO EAOT 2002

MÁQUINAS ELÉTRICAS ROTATIVAS. Fonte: logismarket.ind.br

Transformadores trifásicos

PÓS-GRADUAÇÃO PRESENCIAL MARINGÁ

Revisão de Eletricidade

Eletrônica de Potência. Centro de Formação Profissional Orlando Chiarini - CFP / OC Pouso Alegre MG Prof.: Anderson

CIRCUITOS ELÉTRICOS EM CA. Fonte: profezequias.net

UNIVERSIDADE FEDERAL DE SANTA CATARINA Departamento de Engenharia Elétrica EEL7040 Circuitos Elétricos I - Laboratório

Conversão de Energia II

Conversão de Energia I

Oscilações Eletromagnéticas e Corrente Alternada

Valor por unidade. Mudança de escala Normalização Volts, A, VA,... -> p.u.

PROVA DE CONHECIMENTOS ESPECÍFICOS. O tipo de dispositivo mais adequado para proteger um motor elétrico contra correntes de curto circuito é:

ELETROTÉCNICA (ENE078)

3 CIRCUITO EQUIVALENTE PARA TRANSFORMADORES MONOFÁSICOS E TESTE DE POLARIDADE

Lista de Exercícios 4 - Circuitos Elétricos II

FATOR DE POTÊNCIA PARA ONDAS SENOIDAIS

Verificando a parte imaginária da impedância equivalente na forma complexa

Eletrotecnia Aplicada Transformadores (parte 1) Engenharia Eletrotécnica e de Computadores ( )

EXP 05 Motores Trifásicos de Indução - MTI

SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 09

Instalações Elétricas Prediais A ENG04482

Eletricidade Aplicada. Aulas Teóricas Professor: Jorge Andrés Cormane Angarita

Fundamentos de Eletrônica

Transcrição:

2013 Fatec São Paulo PROF. EDSON G. PEREIRA PROF a. TANIA G. PEREIRA ELETRICIDADE APLICADA II Revisão Técnica Prof. Armando Lapa Júnior Colaboradores Prof. Norberto Nery Prof. Nelson Kanashiro Prof. Salvador Sampaio

SUMÁRIO 1. POTÊNCIA EM CORRENTE ALTERNADA... 3 1.1 Potência instantânea... 3 1.2 Potencia ativa... 5 1.3 Potencia reativa... 5 1.4 Potência aparente... 6 1.5 Potência complexa... 7 1.6 Triângulo de potências... 9 1.7 Fator de potência... 10 1.8 Potência de um conjunto de cargas em paralelo... 10 2. CORREÇÃO DO FATOR DE POTENCIA... 18 2.1 Introdução... 18 2.2 Desvantagens de um baixo fator de potência... 19 2.3 Elaboração da correção do fator de potência... 20 2.4 Vantagens da correção do fator de potência... 22 2.5 Dimensionamento do capacitor para correção do Fator de Potência... 24 2.6 Exercícios de correção do fator de potência... 26 3. TRANSFORMADOR MONOFÁSICO... 32 3.1 Introdução... 32 3.2 Configuração básica de um transformador... 32 3.3 Funcionamento do transformador sem carga (em vazio)... 33 3.4 Funcionamento do transformador com carga... 35 3.5 Exercícios de transformador... 38 4. CIRCUITOS TRIFÁSICOS... 41 4.1 Introdução... 41 4.2 Vantagens do Sistema Trifásico... 41 4.4 Gerador Trifásico... 41 4.5 Carga Trifásica... 44 4.6 Ligações estrela e triangulo... 45 4.7 Valores de Fase e de Linha... 46 4.8. Relações entre valores de fase e linha... 49 4.9 Exercícios de circuito trifásico... 53 5.POTÊNCIA EM CIRCUITOS TRIFÁSICOS... 57 5. 1 Exercícios de Potência Trifásica... 59 2

1. POTÊNCIA EM CORRENTE ALTERNADA 1.1 1 Potência instantânea Seja uma carga passiva, representada por sua impedância complexa: = Z φ alimentada por um gerador que fornece uma tensão v (t) = V sen (ωt + ). A corrente resposta será do tipo i (t) = I sen (ωt + φ). i (t) v (t) A potência instantânea consumida pela carga é: p(t) = v (t) x i (t), ou seja: p(t) = V sen (ωt + ) x I sen (ωt + φ) p(t) = 2 VI sen (ωt + ) x sen (ωt + φ) Chamando: A = ωt + B= ωt + φ e lembrando que: sen A x sen B = 1/2 [ cos (A B) cos (A + B) teremos : p(t) = 2VI (sen A x sen B) p(t) = 2 VI x 1/2 [cos(ωt + ωt + φ) cos (ωt + + ωt + φ)] p(t) = VI cos φ VI cos (2 ωt t + 2 φ) onde: a) VI cos φ, é constante no tempo; 3

b) VI cos (2 ωt + 2 φ), é uma cossenoide com o dobro da frequência da tensão e da corrente. Podemos também obter a potência instantânea graficamente, multiplicando-se o valor de v (t) por i (t) ponto a ponto. p(t) p(t) v (t) i (t) 0 π/2 π 3π/2 2π ωt Podemos observar pela figura que, em p(t) existem trechos positivos onde a área definida pela função significa absorção de energia pela carga e trechos negativos onde a área significa quantidade de energia devolvida para a linha de alimentação. Portanto, note que: Se o ângulo φ for igual a zero, tensão em fase com a corrente, nenhuma energia é devolvida a linha, toda ela será convertida em trabalho pela carga. Característica esta inerente a todos os bipolos puramente resistivos. Se o ângulo φ for igual a 90 ou -90, a quantidade de energia absorvida pela carga no semiciclo positivo da potencia será totalmente devolvida à linha de alimentação no seu semiciclo negativo, não havendo, portanto nenhuma realização de trabalho em um período completo da potência. Característica esta inerente a todos os bipolos puramente indutivos e capacitivos respectivamente. Se o ângulo φ for maior que zero e diferente de ± 90, uma parcela da energia absorvida pela carga será devolvida para linha e a restante será utilizada na realização de trabalho. 4

1.2 Potência ativa (P) Parcela de potência que efetivamente realiza trabalho, ou seja, transforma energia elétrica em outra forma de energia, por exemplo, térmica, luminosa, mecânica etc. Correspondendo, portanto ao valor médio da potencia instantânea. Para calcular a potência média deveríamos, aplicando a definição, calcular a integral: P = Por ser essa integração muito trabalhosa lançaremos mão do Teorema das Médias, onde: Portanto: p(t) médio = p1(t) médio + p2(t) médio p(t) médio = (VI cos φ) médio VI [cos(2 ωt + 2 φ)]médio Observamos que VI cos φ é constante no tempo, consequentemente seu valor médio coincide com seu valor numérico e o termo VI cos (2 ωt + 2 φ) é uma função cossenoidal cujo valor médio é nulo. Teremos então que: P = VI cos φ Unidades de P Como esta potência será responsável pela realização de trabalho, sua unidade será a mesma utilizada em tensão contínua. No sistema SI: U (P) = watt (W), bem como seus múltiplos (kw, MW respectivamente 10 3 e 10 6 W). 1.3 Potência reativa (Q) Parcela de potência devolvida à linha de alimentação. Essa parcela pode ser calculada por: Q = VI sen φ 5

No caso das máquinas indutivas tais como motores, geradores, transformadores, essa parcela é utilizada para manter os campos eletromagnéticos necessários para o funcionamento destes equipamentos. Este campo eletromagnético é formado pela passagem da corrente nos enrolamentos. Quando os equipamentos são alimentados em corrente alternada, a energia armazenada em forma de campo magnético tende a se opor à variação da intensidade da corrente, causando um atraso da corrente em relação à tensão. Como consequência uma parcela da corrente não realiza trabalho útil, produzindo o que se chama de energia reativa. M Campo Magnético do Motor No caso de cargas capacitivas é a quantidade de energia que fica armazenada sob a forma de campo elétrico nos capacitores e é trocada com a linha de alimentação. Unidade de Q Como a potência reativa não é responsável pela realização de trabalho, não poderíamos conferir a unidade watt, mas podemos indicar sua unidade como sendo o volt. ampère reativo. No sistema SI: U (Q) = Var, bem como seus múltiplos (kvar, MVAr, respectivamente 10 3 e 10 6 VAr) Em particular: para cargas indutivas Vari (volt ampère reativo indutivo) para cargas capacitivas Varc (volt ampère reativo capacitivo) 1.4 Potência aparente (Pap ou S) Potência fornecida pela concessionária de energia elétrica. A potência aparente é a soma fasorial das potências ativa e reativa, ou seja, é a potencia total absorvida pela instalação. 6

Essa potencia é dada pelo produto dos valores eficazes da tensão e da corrente aplicada na carga, ou seja: S= V x I Tendo em vista que este produto não é responsável pelo trabalho realizado, a exceção de cargas puramente resistivas onde a potencia reativa é nula, razão pela qual é denominada de Potência Aparente. Unidade de S Indica-se a unidade de Potencia Aparente ao produto das unidades das grandezas envolvidas, ou seja, o volt. ampère. No sistema SI: U (S) = VA, bem como seus múltiplos (kva, MVA, respectivamente 10 3 e 10 6 VA). Para uma melhor visualização dessas três potencias, tomemos como exemplo um motor elétrico conforme figura a seguir: I Potência Reativa - Q (Campo eletromagnético) V Potência Aparente - S Potência Ativa - P (saída de energia sob a forma de movimento Energia mecânica) 1.5 Potência complexa ( ou ) A potência complexa é apenas uma forma simbólica de nos permitir agrupar, em uma só expressão, as potências ativa e reativa. 7

Define-se nas condições do item 1.4 que: = x * Onde: - Potência complexa; - Tensão complexa aplicada ao bipolo; *- Conjugado da corrente complexa. Considerando o circuito abaixo = I α φ = V α = Z φ e substituindo e * pelos seus valores na forma polar temos: = (V α ) x (I α φ )* = V α = V I α = S α x I φ α Transformando em notação cartesiana (ou retangular), obtemos: = V I cos + j V I sen = P + j Q Convém observar que o ângulo de fase da potência complexa será sempre igual ao ângulo da fase da impedância envolvida no circuito o que representa a defasagem entre a tensão e a corrente. 8

Unidade de Por ser um número complexo, não apresenta unidade de medida. Porém seu módulo e suas partes constituintes, por serem grandezas físicas, serão acompanhados pelas unidades de medidas correspondentes: VA, bem como seus múltiplos (kva, MVA, respectivamente 10 3 e 10 6 VA). 1.6 Triângulo de d potências As equações que exprimem as potências ativa, reativa e aparente podem ser representadas geometricamente por um triângulo retângulo, onde a hipotenusa representa a potência aparente e os catetos representam as potências ativa (cateto adjacente) e reativa(cateto oposto). P Q S Q > 0 Q S Q < 0 P Das relações trigonométricas do triangulo retângulo, podemos obter: P = S. cos φ Q = S. sen φ S = Q/P = tg φ 9

1.7 Fator de pot otência (FP) Define-se o Fator de Potência como sendo a relação entre a potência ativa e a potência aparente. Ele indica a eficiência do uso da energia. Um alto fator de potência indica uma eficiência alta e inversamente, um fator de potência baixo indica baixa eficiência. Sendo o fator de potência, um conceito parecido com rendimento, procura-se trabalhar com um FP próximo de um, o que significa que toda potência colocada em jogo no circuito é potência ativa. O FP pode ser obtido por: FP = P/S = cos Lembre-se que quando a carga for indutiva, φ e Q serão positivos e quando a carga for capacitiva, implica que φ e Q serão negativos. Pelo exposto, verifica-se que não é possível especificar o fator de potência unicamente pelo cosseno do ângulo, isto porque, da trigonometria tem-se: cos (φ) = cos (-φ). Para contornar esta ambiguidade, adota-se dizer que: quando φ é positivo : fator de potência atrasado, lagging ou indutivo; quando φ é negativo; fator de potência adiantado, leading ou capacitivo; Em outras palavras, fator de potência atrasado significa que a corrente está atrasada em relação à tensão, são, portanto, os circuitos indutivos, e, fator de potência adiantado significa que a corrente está adiantada em relação à tensão, indicando, portanto, os circuitos capacitivos. 1.8 Potência de um conjunto de cargas em paralelo Consideremos um conjunto de cargas ligadas em paralelo conforme esquema a seguir: t 1 1 2 N 2 N 10

Nessas condições temos: t = x ( i * ) t = ( 1 * + 2 * +...+ N * ) t = 1 * + 2 * +... + N * t = 1 + 2 +...+ N Como = P + j Q temos: t = (P1 + j Q1) + (P2 + j Q2) +... + (PN + j QN) t = St t Pt = P1 + P2 +...... + PN N = i Qt = Q1 + Q2 +...... + QN N = i St = = St = Vg V x I x It É importante lembrar que: St S1 + S2 +...+ SN t 1+ 2+...+ N 11

1.9 Exercícios 1. Para o circuito abaixo são conhecidos: I I2 I3 I1 L1 L1 R2 40 V 35 Hz R1 C1 C2 Capacitâncias µf C1 200 C2 350 Indutâncias mh L1 31 L2 25 Resistências Ω R1 12 R2 60 Determine: a) as impedâncias nos ramais 1, 2 e 3; b) as potências: ativa, reativa e aparente nos ramais 1, 2 e 3; c) as potências: ativa, reativa e aparente do circuito; d) o fator de potência do circuito; 12

2. Para o circuito mostrado abaixo, determinar: a) o fator de potencia visto pelo gerador; b) a potencia complexa total; c) o fasor da tensão do gerador; d) o fasor da corrente do gerador. Dados: Vab = 230V; 1 = 2 = 4 + J2 Carga A: 10 kw; FP=0,7 (atrasado); Carga B: 10 kva; FP=0,9 (adiantado); Carga C: 18 kw; FP= 0,6 (atrasado). Z1 a Vg I A B C Z2 b 3. Numa instalação elétrica alimentada por rede de 220/127V existem 3 motores especificados na tabela que se segue: Motor P (CV) FP Rendimento (%) 1 20 0,9 atrasado 85 2 10 0,87 atrasado 85 3 15 0,78 avançado 90 13

Supondo que os motores estão operando simultaneamente e a plena carga, determinar: (a) a corrente de linha total da instalação; (b) as potencias ativa, reativa, aparente e complexa; (c) o FP total da instalação. Dado 1CV = 735 W 4. Um consumidor possui as seguintes cargas, alimentadas em 220 V: Carga 1: cinco lâmpadas incandescentes, cada uma de 100 W, FP = 1; Carga 2: dez lâmpadas fluorescentes, cada uma consumindo 50 W (já incluído o reator), FP= 0,5 (atrasado). I 220 V 1 2 Determine: a) as potências: ativa, reativa e aparente de cada uma das cargas; b) o fator de potência do circuito; c) o valor eficaz da corrente I absorvida pelo circuito. 5. Um gerador de 100 V eficazes e 60 Hz alimenta o seguinte conjunto de cargas: Um motor de indução de 1,5 kva e 1,2 kw; Dez lâmpadas fluorescentes de 60 W cada uma, FP = 0,6 atrasado. Determine: a) as potências: ativa, reativa e aparente de cada carga e da instalação; b) o fator de potência da instalação. 14

6. Um gerador de 100 V eficazes e 60 Hz alimenta as seguintes cargas em paralelo: 1- Dez lâmpadas fluorescentes de 60 W cada uma, FP = 0,6 atrasado; 2- Uma carga de impedância Z = (12 + j6) Ω; 3- Um motor de indução de 1,2 kw e 2 kva. Determine: a) As potências: ativa, reativa e aparente do conjunto de cargas; b) O fator de potência da instalação; c) o valor eficaz da corrente da instalação. 7. Uma instalação elétrica monofásica com tensão de 440 V possui as seguintes cargas ligadas em paralelo: Carga 1: P = 45 kw e FP = 0,8 atrasado; Carga 2: I = 40 A e Q = 10 kvar (capacitivo); Carga 3: S = 35 kva (indutivo) e P = 28 kw; Carga 4: I = 25 A, carga puramente resistiva. Determinar: a) o esquema elétrico da ligação dessas cargas; b) as potências: ativa, reativa e aparente da instalação; c) admitindo-se a tensão de linha com ângulo de fase = 0 (zero), determinar a corrente (fasor) total na linha; d) o fator de potência total da instalação. 8. Uma propriedade rural possui as seguintes cargas monofásicas, alimentadas por 220V e funcionando simultaneamente: Carga 1 Iluminação: 6 lâmpadas incandescentes de 100W/220V cada; Carga 2 Picadeira de cana: 5 cv, FP = 0,8 em atraso; Carga 3 Debulhadeira: 3 cv, FP = 0,7 em atraso. 15

Se os transformadores disponíveis no comércio têm potência nominal de 5, 10, 15, 25 ou 37,5 kva, determinar: a) qual o mais adequado para a alimentação das cargas; b) o FP da instalação. 9. Os dados relativos às cargas que funcionam simultaneamente em uma instalação alimentada por rede de 220V são dados no quadro que se segue. Pede-se: a) preencher o quadro com os dados que faltam; b) determinar a potência aparente total das cargas; c) achar a corrente total solicitada; d) determinar o FP total da instalação. Carga P (kw) S (kva) Q (kvar) FP I(A) 1 3,0 0,5 atrasado 2 12 8,0 indutivo 3 4,5 5,0 capacitivo 10. Numa indústria, alimentada por rede monofásica de 220 V, operam as cargas dadas no quadro que se segue: Carga Potencia (kw) FP 1 5,0 1,00 2 8,0 0,75 atrasado 3 6,0 0,60 atrasado 4 6,0 0,85 atrasado Os processos de fabricação usados exigem que o funcionamento dessas cargas num dia típico de operação se dê nos horários apresentados no quadro abaixo: 16

CARGA HORA 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 1 2 3 4 Determinar: a) a mínima potência aparente que deve ter um transformador para alimentar a instalação; b) o maior valor de corrente solicitado pelas cargas; c) o menor FP obtido ao longo do dia; d) quantos kvar capacitivos são necessários para que o FP da instalação não seja nunca inferior a 0,92 em atraso. 11. Um transformador de 10kVA está operando a 85% da plena carga para alimentar, com 127V, uma carga monofásica cujo FP = 0,6 em atraso. Será possível acrescentar uma segunda carga de 3kW e FP = 0,8 em atraso? 12. Determinar a corrente fornecida por um transformador de 5kVA que alimenta uma carga com 220V, utilizando 80% de sua potência nominal e operando com um FP = 0,6 em atraso. 13. Dado um gerador monofásico de 15kVA, 220V/60Hz, pergunta-se: a) qual a máxima corrente que pode fornecer? b) poderá este gerador alimentar uma carga de 8kW e FP = 0,8 em atraso? 17

2. CORREÇÃO DO FATOR DE POTÊNCIA 2.1 Introdução A maioria das cargas dos modernos sistemas de distribuição de energia elétrica são indutivas. Exemplos incluem motores, transformadores, reatores de iluminação e fornos de indução, dentre inúmeros outros. A principal característica destas cargas é que necessitam de dois tipos de energia para funcionar: a ativa que será transformada em trabalho e a reativa que será utilizada somente na formação e manutenção dos seus campos eletromagnéticos. Apesar de necessária, a utilização de energia reativa indutiva deve ser limitada ao mínimo possível, por não realizar trabalho efetivo. A ocorrência de energia reativa em circuitos elétricos sobrecarrega as instalações, ocupando uma capacidade de condução de corrente que poderia ser mais bem aproveitada para realizar trabalho útil. Isto é válido tanto para a concessionária que entrega energia elétrica ao consumidor como também para o próprio consumidor em seus circuitos de distribuição. A concessionária protege-se contra a ocorrência de energia reativa elevada em suas linhas impondo ao consumidor um fator de potência mínimo (na legislação brasileira, o fator de potência mínimo é de 0,92). Quando o consumidor apresenta um fator de potência abaixo do mínimo é cobrado o excedente de energia reativa, a título de ajuste. Assim sendo, a correção do fator de potência de uma instalação representa não apenas uma melhor utilização dos circuitos de 18

distribuição de uma empresa, como também uma forma de reduzir as despesas com o fornecimento de energia caso ele esteja abaixo do mínimo regulamentado. 2.2 Desvantagens de um baixo fator de potência Para melhor exemplificar as desvantagens de um baixo fator de potência, tomemos o exemplo de uma instalação industrial que apresenta o seguinte quadro representado pelo seu triângulo de potências, conforme figuras a seguir: Q M M M S M - Motor P Fazendo uma análise da situação atual verificam-se as seguintes ocorrências: Baixo FP; Potencia Reativa alta; Potencia Aparente alta; Como S = V x I e sendo V de valor constante por ser a tensão da rede, a medida que a potência aparente aumenta, a corrente se torna mais alta. As principais consequências desse baixo fator de potencia são: Acréscimo na conta de energia elétrica por se estar operando com baixo fator de potência; Limitação da capacidade dos transformadores de alimentação; Quedas e flutuações de tensão nos circuitos de distribuição; Sobrecarga nos equipamentos de manobra, limitando sua vida útil; Aumento das perdas elétricas na linha de distribuição pelo efeito Joule; Necessidade de aumento da seção nominal dos condutores; 19

Necessidade de aumento da capacidade dos equipamentos de manobra e proteção. Portanto para melhoria dessa situação, somos levados a efetuar a correção do fator de potência. 2.3 Elaboração da correção do fator de potência Uma forma econômica e racional de se obter energia reativa necessária para a operação dos equipamentos consiste na instalação de bancos de capacitores próximos a esses equipamentos. A instalação de capacitores, porém, deve ser precedida de medidas operacionais que levem à diminuição da necessidade de energia reativa, como o desligamento de motores e outras cargas indutivas ociosas ou superdimensionadas. Com os capacitores funcionando como fontes de energia reativa, a circulação dessa energia fica limitada aos pontos onde ela é efetivamente necessária, reduzindo perdas, melhorando condições operacionais e liberando capacidade em transformadores e condutores para atendimento a novas cargas, tanto nas instalações consumidoras como nos sistemas elétricos da concessionária. 20

Os bancos de capacitores devem ser total ou parcialmente desligados em conformidade com o uso dos motores e transformadores para não haver excesso de energia reativa capacitiva, causando efeitos adversos ao sistema elétrico da concessionária. Onde corrigir o baixo fator de potência? A correção pode ser feita instalando os capacitores de cinco maneiras diferentes, tendo como objetivo a conservação de energia e a relação custo/beneficio: a) Correção na entrada da energia de alta tensão: corrige o fator de potência visto pela concessionária, permanecendo internamente todos os inconvenientes citados pelo baixo fator de potência. b) Correção na entrada de energia de baixa tensão: Permite uma correção bastante significativa, normalmente com bancos automáticos de capacitores. Utiliza-se este tipo de correção em instalações elétricas com elevado numero de cargas com potências diferentes e regimes de utilização pouco uniformes. A principal desvantagem consiste em não haver alívio sensível dos alimentadores de cada equipamento. c) Correção por grupos de cargas: o capacitor é instalado de forma a corrigir um setor ou um conjunto de pequenas máquinas (<10CV). É instalado junto ao quadro de distribuição que alimenta esses equipamentos. Tem como desvantagem não diminuir a corrente nos alimentadores de cada equipamento. d) Corrente localizada: é obtida instalando-se os capacitores junto ao equipamento para o qual se pretende corrigir o fator de potência. Representa do ponto de vista técnico, a melhor solução, apresentando as seguintes vantagens: 21

Reduz as perdas energéticas em toda a instalação; Diminui a carga nos circuitos de alimentação dos equipamentos; Pode-se utilizar em sistema único de acionamento para a carga e o capacitor, economizando-se um equipamento de manobra; Gera potência reativa somente onde é necessário. e) Correção Mista: no ponto de vista "Conservação de Energia", considerando aspectos técnicos, práticos e financeiros, torna-se a melhor solução. Usa-se o seguinte critério para correção mista: Instala-se um capacitor fixo diretamente no lado secundário do transformador; Motores de aproximadamente 10 CV ou mais, corrige-se localmente (cuidado com motores de alta inércia, pois não se deve dispensar o uso de corrente para manobra dos capacitores sempre que a corrente nominal dos mesmos for superior a 90% da corrente de excitação do motor); Motores com menos de 10 CV, corrige-se por grupos; Redes próprias para iluminação com lâmpadas de descarga, usando-se reatores de baixo fator de potência, corrige-se na entrada da rede; Na entrada instala-se um banco automático de pequena potência para equalização final. 2.4 Vantagens da correção do fator de potência Retomando o exemplo anterior da instalação industrial só que agora com o fator de potência corrigido. Q M M M C S Q cap Q S P 22

Observando o novo triângulo de potência, após a colocação do capacitor, pode se verificar as seguintes alterações: Fator de Potencia aumentou; Potencia Reativa diminuiu; Potencia Aparente diminuiu; Corrente diminuiu. As principais consequências após essa correção são: Diminuição na conta de energia elétrica por estar operando com fator de potência de acordo com as normas da concessionária; Liberação da capacidade dos transformadores de alimentação; Diminuição de flutuações de tensão nos circuitos der distribuição; Eliminação de sobrecarga nos equipamentos de manobra limitando sua vida útil; Diminuição das perdas elétricas na linha de distribuição pelo efeito Joule; Uso de condutores de menor diâmetro; Diminuição da capacidade dos equipamentos de manobra e proteção. É importante lembrar que: A potência ativa não se altera; A corrente na carga não se altera, somente a corrente nos condutores de alimentação do circuito, agora constituído pela carga e capacitor. Cuidado! É preciso dimensionar corretamente os capacitores que serão utilizados na correção para que não se ultrapasse a necessidade de fornecimento de energia reativa, pois se isso acontecer, a instalação que inicialmente apresentava características indutivas, passará a ter característica capacitiva, fazendo com que a potencia aparente e a corrente voltem a aumentar. O triângulo abaixo demonstra a ocorrência: 23

Q S Q1 cap Q P Q2 cap S 2.5 Dimensionamento do capacitor para correção do Fator de Potência Para dimensionamento correto do capacitor devemos: a) calcular a quantidade de Potência Reativa que precisaremos fornecer para atingir a situação desejada, isto é, a alteração de φ para φ. Observando o triangulo de potências após a colocação do capacitor, teremos que: Qcap = Q Q Qcap = P. tg P. tg Portanto: Qcap = P (tg φ tg φ ) ap b) calcular a capacitância do capacitor Para a determinação da capacitância, deve-se lembrar que para cargas puramente capacitivas, a potência reativa é igual a potencia aparente, uma vez que a potência ativa é nula (P=0). Assim: Qcap = Scap Sendo Scap = V. Icap 24

e como pela Lei de Ohm: Ic = V/ = V/Xc como Xc = 1/ωC, temos: Ic = V/1/ω C = ω C V Portanto C = Scap/ V 2 ou P (tg φ tg φ ) )/ V 2 25

2.6 Exercícios 1. A instalação de uma pequena empresa alimentada com tensão de 220V/60 Hz é composta de uma associação de um motor M1 que consome 10kVA com fator de potencia 0,7 (atrasado); outro motor M2 que consome 1kVAR com fator de potencia de 0,6 (adiantado) e por uma estufa E que consome 1,5 kw com fator de potencia 0,9 (atrasado). Determinar: a) as potencias totais, ativa, reativa e aparente consumidas pelo conjunto e o fator de potencia do mesmo; b) a corrente da linha de alimentação; c) o capacitor a ser ligado em paralelo com o conjunto para que o fator de potencia do mesmo seja 0,95 (atrasado); d) a nova corrente da linha de alimentação após colocação do capacitor. g = 220 0 g = M M E 2. Ua instalação industrial alimentada por uma tensão de 220V/50Hz é constituída por uma associação em paralelo das seguintes cargas: 1 motor de indução que consome 10 kva com FP= 0,6 atrasado; 1 motor síncrono que consome 2kW com FP= 0,8 adiantado; 1 motor síncrono que consome 2kVA com FP= 0,6 adiantado; 1 estufa resistiva que consome 1kW. Determinar: a) o fator de potencia do conjunto e a corrente na linha de alimentação; b) as potencias ativa e aparente consumidas pelo conjunto; 26

c) a nova corrente na linha de alimentação quando um capacitor é ligado em paralelo com o conjunto a fim de aumentar o seu fator de potencia para 0,92 atrasado; d) a capacitância do capacitor. g = 220 0 M M M E 3. Em um circuito tem-se uma potencia instalada de 15 kva, com fator de potencia 0,6 atrasado, em 200V. A este circuito será acrescentado um motor de 2,5HP com rendimento de 62,17% e fator de potencia 0,7 atrasado. Para que não seja necessário trocar os condutores de alimentação do circuito devido ao aumento da corrente, pode corrigir o FP do conjunto de modo que o valor eficaz da corrente nos condutores do alimentador não se altere. Nestas condições pede-se: a) valor eficaz da corrente do circuito inicial e atual; b) valor eficaz da corrente com o motor acrescentado ao circuito; c) dimensionar o capacitor de modo a manter o mesmo valor da corrente inicial (adotar ω = 500 rd/s); d) potencia aparente e fator de potencia visto pelo gerador após instalação do motor e do capacitor. 4. Uma instalação alimentada com uma tensão de 220V é constituída pelas seguintes cargas: um motor de indução de 10 HP com fator de potencia de 0,71 atrasado e rendimento de 0,746 e um formo de indução de 10kVA e 5kW. Determinar: a) potencia ativa, reativa, aparente e corrente total da instalação; b) determinar o capacitor a ser instalado para corrigir o fator de potencia para 0,92; c) refazer o item a após a instalação do capacitor. 27

220 V M F 5. No circuito abaixo, sabendo-se que o fator de potencia da carga 2 é igual a zero, determinar a) o valor eficaz da corrente total; b) o fator de potência do circuito; c) o capacitor a ser instalado em paralelo com as cargas para corrigir o fator de potencia do circuito para 0,92; d) o valor eficaz da corrente após instalação do capacitor. Dados do Motor (M): 3CV, rendimento de 80% e fator de potencia de 0,707. 1CV = 735W It 5 A 440 V M 2 6. Um transformador com capacidade para fornecer a potencia aparente máxima de 25 kva está alimentando a seguinte carga: um motor (A) que consome 4,8 kw com fator de potencia 0,8 atrasado, um motor (B) que consome 6kW com fator de potencia 0,6 atrasado e por um motor (C). Determinar: a) a parcela de potencia (em %) de plena carga que o transformador esta fornecendo quando a chave K esta aberta e o fator de potencia da carga que esta sendo alimentada; 28

b) a potencia ativa consumida pelo motor C e o seu fator de potencia quando a chave K esta fechada, sabendo que nessa situação o transformador passa a funcionar em regime de plena carga, sendo agora o fator de potência do conjunto igual a 0,75; c) a diferença entre a corrente na linha após fechar a chave K e a corrente antes do fechamento da mesma. K 220 V 6 0 H Hz A B C 7. Um transformador tem capacidade para fornecer 50 kva sob tensão eficaz de 440V. Quando o transformador estiver fornecendo 30 kw com fator de potencia 0,8 para uma carga indutiva, qual a porcentagem de sua potencia de plena carga que ele estará fornecendo? Que carga resistiva deverá ser adicionada à carga existente do sistema para ele entrar em plena carga e qual o fator de potencia do sistema nesta nova situação? 8. Um motor de indução que consome uma potencia de 2kW, com fator de potencia 0,6 atrasado, está associado em paralelo com um motor síncrono de 0,5 kva com fator de potencia 0,8 adiantado. O conjunto é alimentado com tensão de 220V/60Hz. Determinar: a) o fator de potencia do conjunto; b) o valor do capacitor a ser ligado em paralelo com o conjunto para corrigir o fator de potencia para 0,92; c) a corrente na linha de alimentação após a colocação do capacitor; g = 220 0 g = M M 29

9. Uma carga, alimentada com tensão de 220V/60Hz, é constituída por uma associação em paralelo de um motor de indução de 15 kva com fator de potencia 0,7 atrasado, um motor síncrono de 2kW com fator de potencia de 0,8 adiantado e um forno resistivo de 1kVA. Determinar: a) o fator de potencia do conjunto; b) as potencias ativa, reativa e aparente consumidas pelo conjunto; c) o capacitor a ser ligado em paralelo com o conjunto para que seu fator de potencia seja 0,92. g = 220 0 M M E 10. Deseja-se corrigir o fator de potência de uma planta industrial de 2.400 kva em um fator de potencia de 0,67 para 0,92 atrasado. Determine: a) a potencia reativa do capacitor em kvar necessária para a correção; b) o valor do capacitor (em µf) necessário para a correção; c) a nova potencia em kva após a correção. 11. Uma fábrica possui três máquinas indutivas ligadas em paralelo e alimentadas por uma fonte de tensão alternada de valor eficaz 100 V e frequência 60 Hz. Sabe-se que a máquina 1 absorve 600 W e 10 A, a máquina 2 absorve 1600 W e 20 A e a máquina 3 absorve potência reativa de 1732 VAr e 20 A. Pede-se determinar: a) o valor dos capacitores que ligados em paralelo com cada máquina torna o fator de potência de cada uma delas unitário; b) o valor do capacitor que ligado em paralelo com a fonte torna unitário o fator de potência da instalação; c) o valor da corrente fornecida pela fonte antes e depois da correção do fator de potência. 30

12. Um gerador de 100 V eficazes e 60 Hz alimenta as seguintes cargas em paralelo: Dez lâmpadas fluorescentes de 60 W cada uma, FP = 0,6 atrasado. Uma carga de impedância Z = (6 + 12 j)ω; Um motor de indução de 1,2 kw e 2 kva. Determine: a) as potências: ativa, reativa e aparente fornecidas pelo gerador; b) o fator de potência da instalação elétrica (isto é, do conjunto de cargas); c) o valor do capacitor que conectado em paralelo com as cargas transformam o fator de potência em 0,92; d) a redução porcentual da corrente fornecida pelo gerador após a correção do fator de potência. 13. Uma linha de 100V/60Hz (tensão eficaz) alimenta duas cargas em paralelo: um motor de 1,2 kw e 1,5 kva e lâmpadas fluorescentes com 2000W, FP = 0,6 atrasado Determine: a) o fator de potência do conjunto de cargas; b) o capacitor que conectado em paralelo ao conjunto corrige o fator de potência. 31

3. TRANSFORMADOR MONOFÁSICO 3.1 Introdução A Terminologia Brasileira da Associação Brasileira de Normas Técnicas (ABNT) define o transformador como: Um dispositivo que por meio da indução eletromagnética, transfere energia elétrica de um ou mais circuitos (primário) para outro ou outros circuitos (secundário), usando a mesma frequência, mas, geralmente, com tensões e intensidades de correntes diferentes. Os transformadores são equipamentos eletromagnéticos que apresentam rendimento elevado (baixas perdas), principalmente aqueles de grande porte utilizados em sistema de potência. Assim, para muitas análises podemos admiti-los como sendo ideal (sem perdas), o que será objeto de nosso estudo. Isso implica em algumas simplificações no modelo, ou seja: não há fluxo de dispersão: o fluxo está todo contido no núcleo e se concatena totalmente com as espiras do primário e do secundário; as resistência ôhmicas dos enrolamentos não são consideradas; as perdas no ferro (núcleo) são consideradas desprezíveis; a permeabilidade do núcleo é considerada elevada. A figura a seguir mostra uma representação de um transformador ideal Enrolamento Enrolamento Núcleo 3.2 Configuração básica de um transformador Um transformador é constituído basicamente por um núcleo de chapas laminadas (material ferromagnético) empacotadas de tal maneira a formar um bloco único e enrolamentos disposto em cada uma das pernas desse núcleo. (Esses enrolamentos 32

recebem o nome de: primário (entrada de energia) por ele circula a corrente de magnetização ou excitação) e secundário. Entretanto qual dos dois deva ser excitado é uma questão puramente de conveniência e qualquer dos dois pode ser primário ou secundário. Núcleo Laminado Enrolamento Primário Enrolamento Secundário Para transformadores projetados para a frequência da rede elétrica CA (60Hz, 50Hz), o núcleo é obrigatoriamente laminado (chapa em geral de ferro-silicio) de modo a se minimizar as perdas de energia, que ocorrem pela indução de correntes parasitas na massa do núcleo (correntes de Foulcaut) 3.3 Princípio de Funcionamento 3.3.1 Funcionamento do transformador sem carga (em vazio) i m(t) im(t) v 1 (t) N1 N2 v 2 (t) Ao aplicarmos uma tensão v 1 (t) na bobina primária do transformador irá aparecer uma corrente im(t) que recebe o nome de corrente de magnetização. Essa corrente dará 33

origem a um campo magnético que promoverá a circulação de fluxo im (t) que induzirá em qualquer enrolamento por ele atravessado uma tensão v (t) dada por: v (t) = N (Lei de Faraday) Considerando a tensão no enrolamento primário v 1 (t) = V sen (ωt + ), representada pelo seu fasor = V α Para que o sistema entre em equilíbrio dinâmico a corrente im(t) que se estabelece deve ser tal que o fluxo por ela criado cause o aparecimento de uma força eletromotriz no enrolamento primário igual a v 1 (t), ou seja: N1 = V1 sen (ωt + ) Ou seja: N1 = v 1 (t) (1) Observando a expressão podemos concluir que: Fixada a geometria do transformador, o fluxo depende exclusivamente da tensão aplicada. O fluxo varia senoidalmente no tempo, assumindo o valor máximo de V1 Levando-se em conta que o enrolamento secundário é percorrido pelo mesmo fluxo, a tensão no secundário será dada por: v 2 (t) = N2 (2) dividindo membro a membro (1) e (2) temos: 34

v 1 (t) v 2 (t) = N1 N2 Portanto v 1 (t) v 2 (t) = N1 N2 Sendo válida a relação entre os valores instantâneos, também será valida entre seus fasores representativos. = N1 N2 3.4.2.2 Funcionamento do transformador com carga i m(t) +ia(t) im(t) + a(t) i2(t) i2(t) v 1 (t) N1 N2 v 2 (t) Consideremos agora um transformador monofásico em cujo secundário ligamos uma carga qualquer representada por sua impedância. A tensão v 2 (t) aplicada a fará 35

aparecer uma corrente i2(t). Pela Lei de Lenz 1, podemos afirmar que a corrente i2(t) irá causar o aparecimento de um fluxo oposto ao que lhe deu origem im(t). Portanto, se o fluxo total diminuir, a força contraeletromotriz por ele produzida, no primário, tornar-se-á menor que v 1 (t), aparecendo então uma corrente adicional ia(t). Essa corrente adicional irá aumentar até que seja reconstituído o fluxo original, ou seja: im(t).= im(t). i2(t) + a(t) Nessas condições podemos afirmar que: a) O fluxo no núcleo quer o transformador esteja em vazio ou em carga, é o mesmo. Portanto, lembrando que as tensões dependem apenas do número de espiras e do fluxo, serão válidas as expressões deduzidas no estudo do transformador em vazio. = N1 N2 b) Como o transformador é um equipamento que altera os níveis de tensão e ou corrente nos elementos secundários mantendo sua potência constante, podemos afirmar que a potencia do primário, para um transformador ideal, será sempre igual a potencia do secundário. Com isso temos que: 1 = 2 sendo: = x * temos : x * = x * (1) 1 Lei de Lenz diz que a tensão induzida em um enrolamento é dada por: e(t) = - N 36

como: N1 =. (2) N2 Substituindo (2) em (1), temos: N1. * = N = N2. * Sendo válida a relação entre os valores fasoriais, também será valida entre seus valores eficazes. N1 1. I1 = N2 2. I2 c) A potência absorvida por uma carga não se altera quando sua alimentação for feita por meio de um transformador, portanto, todos os estudos feitos nos capítulos anteriores (1 e 2) são os mesmos para instalações alimentadas por transformadores. 37

3.4 Exercícios de transformador 1. Considerando a tensão do gerador, v 1 (t) = 220 sen (377t + 45 ), determinar os valores indicados nos circuitos abaixo: 2 : 4 20 : 10 2. Considerando a tensão primária dos transformadores abaixo igual v 1 (t) = 282,84 sen 377t determinar as relações de transformação indicadas abaixo. N1 : N2 N1 : N2 400 V 100 V 3. Considerando a tensão dos secundários dos transformadores abaixo igual a v 1 (t) = 622,25 sen 377t, determinar suas tensões primárias. 50 : 100 12 : 4 4. Para o circuito abaixo determinar o valor da corrente do gerador, dados: v1 (t) = 622,25 sen 377t ; R1 = 20Ω; R2 = 40Ω 2 : 1 10 : 20 R1 R2 38

5. Um transformador é constituído por N1 espiras no primário, N2 espiras no secundário e um núcleo (usualmente de material ferromagnético). Se V1 é a tensão aplicada no primário, qual será a tensão de saída, admitindo-se o caso ideal? b) Suponha que N1 = 500, N2 = 10 e que a tensão eficaz aplicada seja de 120 V. Qual é a tensão no secundário (sem carga)? c) Se o secundário for ligado a uma carga resistiva de 15 Ω, obtenha o valor eficaz da corrente no enrolamento primário e no secundário. 6. No conjunto abaixo, calcular: a) O capacitor (C) e a Potência aparente do capacitor (Sc), para corrigir o fator potência (FP) para 0,92 na freqüência f = 60 Hz; b) Onde deverá ser instalado esse capacitor para que a capacitância seja máxima; c) Idem para a capacitância mínima. Dados: Carga1: 10 kva; FP = 0,5 Carga2: 20 kva; FP = 0, 707 1:5 2:1 500 1 2 7. Para o circuito abaixo, determine: a) Os triângulos de potências das cargas 1, 2, 3 e do gerador; b) As correntes das cargas 1, 2, 3 e do gerador. 39

g 2 3 2:3 3:4 5 6 g = 100 0 1 1 2 3 4 Z1 = 10 3 0 Z2 = 45-6 0 Z3 = 80 60 8. Para o circuito abaixo pede-se: a) A corrente eficaz do gerador; b) A potência aparente do gerador; c) Corrigir o fator de potência para 0,92; d) O S após a correção e) A nova corrente após a correção Dados Carga 1-10HP, rendimento 80%, FP=0,85 Carga 2 potencia complexa 20kVA fase 0º 1:20 10:1 1 g = 200 0 1 2 3 4 2 40

4. CIRCUITOS TRIFÁSICOS 4.1 Introdução Circuitos trifásicos constituem um caso particular de circuitos de corrente alternada. Das máquinas que funcionam em corrente alternada as mais simples construtivamente são as que funcionam em regime trifásico. Em função disto no Brasil, todos os sistemas de geração, transmissão e distribuição de energia elétrica trabalham em regime trifásico. Daí a necessidade deste estudo. 4.2 Vantagens do Sistema Trifásico As máquinas girantes trifásicas (motores e geradores) são de construção mais simples, menores e mais econômicas que as máquinas monofásicas, bifásicas ou de corrente contínua; A manutenção das máquinas trifásicas é geralmente mais simples e menos dispendiosa do que outras; O fluxo de energia que chega ao consumidor é mais estável, pois enquanto nos sistemas monofásicos passa pelo valor máximo 60 vezes por segundo, em sistemas trifásicos, isto acontece 180 vezes por segundo; Para transmissão de uma mesma potência, os sistemas trifásicos utilizam uma menor quantidade de cobre (ou outro condutor) que outros sistemas; De um sistema trifásico pode, utilizando transformadores especiais, obter um maior número de fases (sistema hexafasico, por exemplo) o que é conveniente para circuitos retificadores de alta potência. 4.3 Gerador Trifásico Associação de três geradores monofásicos de tensão alternada com as seguintes características: a) mesma frequência angular; b) mesmo valor eficaz; c) defasados entre si de 120. 41

v 1 (t) + v 2 (t) + v 3 (t) + onde: v 1 (t) = V sen ( ωt + ) v 2 (t) = V sen( ωt + 120 ) v 3 (t) = V sen ( ωt + 240 ) Utilizando a representação fasorial temos: 1 = V 2 = V 120 3 = V 240 3 120 120 1 120 2 Convêm observar que se as tensões forem definidas desta forma, em função do tempo passarão pelo ponto de máximo positivo (inicio da função senoidal) na sequência V1, V2 e V3, esta sequência é denominada sequência positiva ou direta. 42

v (t) V v 1 (t) v 2(t) v 3 (t) v 1 ( t ) 60 120 180 240 300 360 ωt V A sequência negativa ou inversa seria V1, V3 e V2. 3 120 1 120 2 v (t) V v 1 (t) v 3 (t) v 2 (t) v 1 ( t ) 60 120 180 240 300 360 ωt V 43

Em nosso estudo trabalharemos com a sequência positiva ou direta. Na pratica, normalmente as tensões são obtidas a partir de um gerador trifásico, que pode ser entendido pela montagem abaixo. v 1 ( t ) N v 2 ( t ) s v 3 ( t ) As defasagens de 120 0 entre si são obtidas no espaço entre as bobinas que as produzem 120 120 120 4.4 Carga Trifásica Associação de três cargas monofásicas interligadas. 1 2 3 44

Quando as três impedâncias forem iguais a carga é dita equilibrada: = = = 4.5 Ligações estrela e triangulo 4.5.1.1 Ligação estrela ou ípsilon Os geradores e/ou cargas monofásicas são interligados entre si de forma a constituir um ponto comum chamado de neutro. Os outros terminais são denominados fase. F1 V 1 V 240 V 120 N 3 2 F2 F3 F terminal fase N terminal Neutro Observe que o sistema apresenta 04 terminais acessíveis. A ligação estrela também pode ser representada da seguinte forma: F1 F2 F3 N F1 F2 F3 N 1 + 2 + 3 + 1 2 3 45

4.5.2 Ligação Triângulo ou Delta Os geradores são interligados entre si de maneira a formar um triângulo. F1 V 240 V 3 1 V 120 F2 2 F3 F terminal fase Observe que o sistema não possui o neutro e apresenta 3 terminais acessíveis A ligação estrela também pode ser representada da seguinte forma: F1 F2 F3 F1 F2 F3 1 + 2 + 3 + 1 2 3 4.6 Valores de Fase e de Linha 4.6.1 Tensão de fase Valor de tensão medido entre os terminais de cada gerador e/ou carga monofásica. 4.6.2.2 Corrente de Fase Valor de corrente medido entre os terminais de cada gerador e/ou carga monofásica. 46

Montagem Estrela fg1 fg1 fc1 fc1 fg3 fg2 fc3 fc2 fg3 fg2 fc3 fc2 Gerador Linha Carga Montagem Triângulo fg3 fg3 fg1 fg1 fc3 fc3 fc1 fc1 fg2 fc2 fg2 fc2 Gerador Linha Carga 4.6.3.3 Tensão de Linha Valor de tensão medido entre duas fases quaisquer 47

4.6.4 Corrente de Linha Valor de corrente medido nas linhas de alimentação Montagem Estrela L1 Lg3 Lg1 Lc3 Lc1 L3 Lg2 Gerador L2 Linha Lc2 Carga Montagem Triângulo L1 Lg3 Lg1 Lc3 Lc1 L3 Lg2 Gerador L2 Linha Lc2 Carga 48

4.7 Relações entre valores de fase e linha 4.7.1.1 Na ligação estrela L1 fg1 fg1 fc1 fc1 Lg3 Lg1 N fg3 fg2 fc3 fc2 fg3 fg2 fc3 fc2 L3 Lg2 L2 Gerador Linha Carga Relação de Corrente Convém observar que na ligação estrela a corrente que sai do gerador é a mesma que circula na linha e na carga, não existindo nenhum nó para derivação das mesmas, portanto podemos concluir que na estrela: L = f Corrente de Neutro N = f1 + f2 + f3 Para um sistema equilibrado a corrente de neutro é igual a zero. Relação de Tens ensão Podemos observar que a tensão de linha na estrela é diferente da tensão de fase estabelecendo entre si a seguinte relação: 49

Lg1 = fg1 fg2 Lg2 = fg2 fg3 Lg3 = fg3 fg1 Se adotarmos fg1 = V 0 teremos por conta da defasagem de 120º entre as fases fg2 = V 120 Portanto: Lg1 = V 0 V 120 Lg1 = V ( V/2 j /2 V) Lg1 = V + V/2 + j /2 V Lg1 = 3/2 V + j /2 V Lg1 = 30 Utilizando o mesmo raciocínio pode se demonstrar as mesmas relações entre as outras tensões de fase e de linha correspondentes. Generalizando, na ligação estrela temos que: L = f 30 50

4.7.2.2 Na ligação Triângulo L1 Lg3 fg3 fg3 fg1 fg1 Lg1 fc3 fc3 fc1 fc1 fg2 fc2 fg2 L3 fc2 Lg2 L2 Relação de Tensão Como se pode observar a ligação triângulo possui apenas 3 terminais e não apresenta a linha de neutro, portanto a tensão de fase e a de linha são medidas nos mesmos pontos, onde se conclui que no sistema triângulo: L = f Relação de Corrente Podemos observar pela figura que tanto os terminais de cada gerador monofásico como os de entrada da carga monofásica apresentam nós de corrente, portanto as correntes de fase e de linha não são as mesmas guardando a seguinte relação: Lg1 = fg1 fg3 Lg2 = fg2 fg1 Lg3 = fg3 fg2 51

Se adotarmos fg1 = I 0 teremos por conta da defasagem de 120 entre as fases fg3 = I 240 Portanto: Lg1 = I 0 I 240 Lg1 = I ( I/2 + j /2 I) Lg1 = I + I/2 j /2 I Lg1 = 3/2 I j /2 I Lg1 = I 30 Utilizando o mesmo raciocínio pode se demonstrar as mesmas relações entre as outras correntes de fase e de linha correspondentes. Generalizando, na ligação estrela temos que: L = f 30 52

4.8 Exercícios de circuito trifásico 1. Para o circuito abaixo determinar todas as tensões e correntes complexas indicadas, dados: fg1 =100 60 e = 10 45 L1 fg1 fg1 fc1 fc1 L3 L1 N fg3 fg2 fc3 fc2 fg3 fg2 fc3 fc2 L3 L2 L2 2. Para o circuito abaixo determinar todas as tensões e correntes complexas indicadas, dados: fg1 =200 60 e =40 60 L1 L3 fg3 fg3 fg1 fg1 L1 fc3 fc3 fc1 fc1 fg2 fc2 fg2 L3 fc2 L2 L2 53

3. Para o circuito abaixo determinar todas as tensões e correntes complexas indicadas, dados: L1 =173,21 0 e =17,32 30 L1 fg1 fg1 L3 L1 fg3 fg2 fc3 fc3 fc1 fc1 fg3 fg2 fc2 L2 L3 L2 fc2 4. Para o circuito abaixo determinar todas as tensões e correntes complexas indicadas, dados: L1 =381,5 45 e =22 60 L1 fc1 fc1 L3 fg3 fg1 L1 fg3 fg1 fc3 fc2 fg2 fc3 fc2 fg2 L3 L2 L2 54

5. Para o circuito abaixo determinar todas as tensões e correntes complexas indicadas, dados: fg1 = 127 0 =10 45 = 10 45 L1 L4 fg1 fg1 fc4 fc4 fc3 fc3 fc1 fc1 fc6 fc5 fc2 fc6 fc5 L3 fc2 L6 L2 L5 6. Para o circuito abaixo determinar todas as tensões e correntes complexas indicadas, dados: fg1=173,21 0 = 10 60 = 17,32 30 L1 L4 fc1 fc1 fg1 fg1 fc3 fc2 fc6 fc6 fc4 fc4 fc3 fc2 fc5 L1 L6 fc5 L2 L5 55

7. Para o circuito abaixo determinar todas as tensões e correntes complexas indicadas, dados: fg1=127 0 = 10 45 = 10 45 L1 L4 fg1 fg1 fc1 fc1 fc3 fc2 fc6 fc6 fc4 fc4 fc3 fc2 fc5 L3 L6 fc5 L2 L5 8. Para o circuito abaixo determinar todas as tensões e correntes complexas indicadas, dados: fg1=173,21 0 = 17,32 30 = 10 60 L1 L4 fc4 fc4 fg1 fg1 fc3 fc3 fc1 fc1 fc6 fc5 fc2 fc6 fc5 L3 fc2 L6 L2 L5 56

5.POT POTÊNCIA EM CIRCUITOS TRIFÁSICOS Considerando que cada fase de um circuito trifásico, equilibrado ou não, constitui-se um circuito monofásico independente, podemos afirmar que a potencia total do sistema é dada pela soma das potencias monofásicas das respectivas fases, isto é: Pt = P1 + P2 + P3 Onde P1; P2 e P3 são as respectivas potencias de cada uma das fases. Nas condições de equilíbrio onde: P1 = P2 = P3 temos que Pt = 3 Pf onde Pf é a potência por fase dada pela expressão de potencia monofásica: Pf = Vf x If x cos φ Convém lembrar que Vf é a tensão por fase, If a corrente de fase e φ é o ângulo entre a tensão e a corrente (ângulo da impedância). Assim, para o sistema trifásico: = 3 x Vf V x If I x cos φ P3 = Adotando um raciocínio análogo para as potencias reativa e aparente, temos: Q3 = 3 x Vf V x If I x sen φ S3 = 3 x Vf V x I x If Observando o triângulo das potencia podemos concluir: 57

Q3 3 P3 = 3 x Vf x If x cos φ Q3 = 3 x Vf x If x sen φ S3 = 3 x Vf x If S3 Q3 P3 3 = P3 + j Q3 3 = S3 3 = 3 x f x f* FP3 = cos φ φ Ainda podemos calcular a potencia a partir dos valores de linha. Como P3 = 3 x Vf x If x cos φ, Para a conexão estrela onde, VL = Vf e IL = If temos: P3 = 3 x (VL/ ) x IL x cos φ = VL x IL I x cos φ Para a conexão triângulo onde, VL = Vf e IL = If temos: P3 = 3 x VL x (IL/ ) x cos = VL x IL I x cos φ P3 = De forma similar podemos determinar as outras potencias: Q3 = VL x IL I x sen φ x IL S3 = VL x I 3 = x f x f* 58

5. 1 Exercícios de Potência Trifásica 1. O secundário de um transformador trifásico ligado em estrela apresenta um sistema de quatro fios com tensão de linha de 208 V conforme figura. Deverão ser ligadas em cada fase 10 lâmpadas, cada uma de 120 V e 2 A. Determine a potência consumida por fase e a potência consumida pelo sistema. (suponha que as lâmpadas sejam resistivas). 10 lâmpadas 10 lâmpadas 10 lâmpadas 2. O Edifício Happy Tower de três andares conta com seis apartamentos, dois por andar. Cada apartamento tem uma potência instalada de 4,8k VA com fator de potência de 0,8 (capacitivo). A rede trifásica que alimenta o prédio tem por característica 220/127V e freqüência de 60 Hz. Considerando o esquema abaixo Determine: a) a corrente de linha; b) a corrente de fase; c) a corrente de fase para cada apartamento; d) as potencias ativas, reativa e aparente do edifício. 101 102 201 202 301 302 N F 1 F 2 F 3 59

3. Considere os dados do exercício 2 e suponha que por erro do eletricista o apartamento 301 foi ligado na fase B. Para esta situação determine: a) as correntes de linha; b) as correntes de fase; c) a corrente fase neutro (IN). 101 102 201 202 301 302 N F 1 F 2 F 3 4. O secundário de um transformador alimenta um sistema trifásico de quatro fios com tensão de linha de 208 V. A carga do sistema é formada por um motor trifásico de 72 kw com FP=1, e tensão de 208 V; três circuitos de iluminação monofásicos de 12 kw com tensão de 120 V e três motores monofásicos de 10 kva, FP=0,8 indutivo com tensão de 208 V. Calcule: a) a carga total do circuito em kva; b) a corrente de linha do secundário do transformador; c) o FP do conjunto. M M M M Iluminação Iluminação Iluminação 60

5. Uma instalação industrial é constituída pelas seguintes cargas: um motor trifásico de 10 HP, rendimento igual a 0,8 e FP=0,8 e um conjunto de motores monofásicos de 4,5 kw cada e FP=0,9. Calcular: a) a corrente de linha da instalação; b) a potencia ativa da instalação; c) a potencia reativa da instalação; d) a potência aparente da instalação; e) o FP da instalação. IL M M M M 120 V 6. Para a instalação abaixo pede-se determinar: a) a corrente de linha da instalação; b) a potencia ativa da instalação; c) a potencia reativa da instalação; d) a potência aparente da instalação; e) o FP da instalação. 61

Motor de 70 kw FP=0,7 atrasado 4 Motores de 5 HP FP=0,8 atrasado, η = 0,85 M M 208 V Iluminação Iluminação Iluminação 7. Para a instalação abaixo pede-se determinar: a) a corrente de linha da instalação; b) a potencia ativa da instalação; c) a potencia reativa da instalação; d) a potência aparente da instalação; e) o FP da instalação. Lâmpadas incandescentes, 20 kw cada, FP = 1 Motor de 8HP FP=0,7 atrasado, η=0,90 3 Motores monofásicos de 2,5 kw cada, FP=0,80 Motor de 6 kw FP=0,7 atrasado M M M M M IL 120 V 62