Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte II

Documentos relacionados
Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte I

Teoria da Probabilidade e Processos Estocásticos Mestrado em Matemática Financeira

Demonstração. Ver demonstração em [1]. . Para que i j se tem µ i µ j? Determine a derivada no sentido de Radon-Nikodym em cada caso.

a) o time ganhe 25 jogos ou mais; b) o time ganhe mais jogos contra times da classe A do que da classe B.

Processos Estocásticos

(a) Se X Poisson(λ) e Y Poisson(µ), então X + Y Poisson(λ + µ). (b) Se X Binomial(n, p) e Y Binomial(m, p), então (X + Y ) Binomial(n + m, p).

Distribuições conjuntas de probabilidades e complementos

Cálculo das Probabilidades I - Sexta Lista - Rio, 13/09/2014

Lista de Exercícios 4

Modelos de Distribuição PARA COMPUTAÇÃO

EELT-7035 Processos Estocásticos em Engenharia. Variáveis Aleatórias. EELT-7035 Variáveis Aleatórias Discretas. Evelio M. G.

Módulo III: Processos de Poisson, Gaussiano e Wiener

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.

Probabilidade II Lista 1 - Vetores Aleatórios

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias.

Segunda Lista de Exercícios Cálculo de Probabilidades II Prof. Michel H. Montoril

Aula 11. Variáveis Aleatórias Contínuas Bidimensionais

Probabilidade e Estatística

Distribuições conjuntas de probabilidade e complementos

PROVA DE ESTATÍSTICA e PROBABILIDADES SELEÇÃO - MESTRADO/UFMG /2012

a) Considerando o lançamento de dois dados, o espaço amostral é Tabela 1: Tabela de distribuição de X. X P 11/36 9/36 7/36 5/36 3/36 1/36

Teoria Ergódica (9 a aula)

TE802 Processos Estocásticos em Engenharia. Processo Aleatório. TE802 Processos Aleatórios. Evelio M. G. Fernández. 18 de outubro de 2017

Par de Variáveis Aleatórias

3 a Lista de PE Solução

4.1. ESPERANÇA x =, x=1

Lista de Exercícios 3 Probabilidades Escola Politécnica, Ciclo Básico

3 NOÇÕES DE PROBABILIDADE

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório?

Probabilidades e Estatística LEE, LEIC-A, LEIC-T, LEMat, LERC, MEBiol, MEBiom, MEEC, MEFT, MEMec, MEQ

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes

Estatística Descritiva e Exploratória

Probabilidades e Estatística TODOS OS CURSOS

3 a Lista de PE. Universidade de Brasília Departamento de Estatística

PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES

MAE0219 Introdução à Probabilidade e Estatística I

Lista de Exercícios 1 Probabilidades Escola Politécnica, Ciclo Básico

Lista de Exercícios 1 Probabilidades Escola Politécnica, Ciclo Básico

{ C(1 x 2 ), se x ( 1, 1), f(x) = Cxe x/2, se x > 0, x + k, se 0 x 3; 0, c.c. k, se 1 < x 2; kx + 3k, se 2 < x 3;

4. Distribuições de probabilidade e

Lista de Exercícios 3 Probabilidades Escola Politécnica, Ciclo Básico

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES

Probabilidades e Estatística TODOS OS CURSOS

3 3. Variáveis Aleatórias

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PARTE I

Aula 3 - Revisão de Probabilidade e Estatística: Esclarecimento de Dúvidas

Variáveis Aleatórias. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva

Cap. 6 Variáveis aleatórias contínuas

Modelos para Séries Temporais Aula 1. Morettin e Toloi, 2006, Capítulo 2 Morettin, 2011, Capítulo 2 Bueno, 2011, Capítulo 2

O movimento Browniano

Revisão de Probabilidade

Processos Estocásticos. Luiz Affonso Guedes

Nome: N. o : f(u) du para todo o x (V) d) Se F (x) tiver pontos de descontinuidade, então X é discreta (F)

UNIVERSIDADE FEDERAL DO PARANÁ CE003 - ESTATÍSTICA II

PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE

Processos Estocásticos

Variáveis Aleatórias

Exercícios propostos:

Probabilidade. Experiências aleatórias

PRE29006 LISTA DE EXERCÍCIOS #

ME-310 Probabilidade II Lista 0

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS

PROBABILIDADE RESUMO E EXERCÍCIOS* P1

Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos

Exercícios Funções Multivariadas, Exponencial e Outras

ESTATÍSTICA I 2. o Ano/Gestão 1. o Semestre Época de Recurso Duração: 2 horas. 1. a Parte Teórica N. o de Exame: RESOLUÇÃO

Processos Estocásticos. Luiz Affonso Guedes

Distribuição de Probabilidade. Prof. Ademilson

Probabilidade Lista 6 - Variáveis Aleatórias Contínuas e Vetores Aleatórios

Sumário. 2 Índice Remissivo 11


Processos Estocásticos

Cap. 6 Variáveis aleatórias contínuas

Universidade Federal de Goiás Instituto de Matemática e Estatística

Lista de Exercícios #2 Assunto: Variáveis Aleatórias Discretas

3. Considere uma amostra aleatória de tamanho 7 de uma normal com média 18. Sejam X e S 2, a média e a variância amostral, respectivamente.

Transcrição:

Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte II 13 de Dezembro de 2013 Exercício 1. Descreva o espaço de probabilidade associado às seguintes experiências aleatórias: 1. Uma moeda imperfeita é lançada três vezes ao ar. 2. Duas bolas são retiradas de uma urna contendo duas bolas azuis e duas vermelhas. 3. Uma moeda imperfeita é lançada repetidamente ao ar até ocorrer a primeira cara. Exercício 2. Seja (Ω, F, P ) um espaço de probabilidade e A 1, A 2, A 3,... acontecimentos de F tais que P (A n ) = 1 para todo n = 1, 2, 3,.... Mostre que P ( n=1 A n) = 1. Exercício 3. Uma moeda perfeita é lançada repetidamente ao ar. Calcule a probabilidade de no n-ésimo lançamento ocorrer: 1. Uma cara pela primeira vez. 2. O número de caras e coroas observadas até ao momento ser igual. 3. Exactamente duas coroas terem sido observadas consecutivamente. 4. Pelo menos duas caras terem sido observadas até ao momento. Exercício 4. Mostre que a probabilidade de um e um só dos acontecimentos A e B ocorrer é P (A) + P (B) 2P (A B) 1

Exercício 5 (*). Uma moeda imperfeita é lançada repetidamente ao ar. A probabilidade de ocorrer cara em cada lançamento é p. Seja p n a probabilidade de até ao n-ésimo lançamento terem ocorrido um número par de caras. Mostre que p 0 = 1 e p n = p(1 p n 1 ) + (1 p)p n 1 se n 1. Determine p n. Exercício 6 (*). No século XVIII o conde de Buffon colocou o seguinte problema: uma agulha de comprimento l cm é lançada aleatoriamente numa folha de papel de linhas espaçadas entre si d cm. Qual é a probabilidade de a agulha intersectar uma linha. Exercício 7. Considere o espaço de probabilidade ([0, 1], B, m) e a variável aleatória X(ω) = min(ω, 1 ω). Determine F X. Exercício 8. Suponha que um comboio parte aleatoriamente do Porto entre as 8h e as 10h da manhã com destino a Lisboa, que fica a 300km de distância. Suponha também que o comboio viaja a uma velocidade constante de 100km/h. 1. Determine a variável aleatória que descreve a distância entre o comboio e Lisboa às 12h. 2. Calcule a distribuição de probabilidade dessa variável aleatória e a respectiva função de distribuição. a sua função de dis- Exercício 9. Seja X uma variável aleatória e F X tribuição. Mostre que: 1. P (a < X b) = F X (b) F X (a). 2. P (a X b) = F X (b) F X (a ). 3. P (a < X < b) = F X (b ) F X (a). 4. P (a X < b) = F X (b ) F X (a ). Exercício 10. Seja X uma variável aleatória com função de distribuição 0 x < 0 x F (x) = 0 x 2 2 1 x > 2 e seja Y = X 2. Calcule: 1. P ( 1 X 3). 2 2 2

2. P (X 2Y ). 3. a função de distribuição de Z = X. Exercício 11. Uma variável aleatória X tem função de distribuição de probabilidade F X. Determine a função de distribuição de Y = ax + b onde a, b R. Exercício 12. Quais das seguintes funções são funções de distribuição de probabilidade? Para cada caso, determine a respectiva função de densidade de probabilidade. 1 e x2 x 0, 1. F (x) = 0 caso contrário. e 1/x x > 0, 2. F (x) = 0 caso contrário. 3. F (x) = e x /(e x + e x ), x R. Exercício 13. Quais das seguintes funções são funções de densidade de probabilidade? Encontre c e respectiva função de distribuição de probabilidade. c x > 1, x 1. f(x) = d 0 caso contrário. 2. f(x) = ce x (1 + e x ) 2, x R. Exercício 14. Sejam X e Y variáveis aleatórias e α, β R. Mostre que E(αX + βy ) = αe(x) + βe(y ). Exercício 15. Seja X uma variável aleatória. Mostre que V (X) = E(X 2 ) (E(X)) 2. Exercício 16. Uma variável aleatória X : Ω R segue uma distribuição de Poisson se X(Ω) = 0, 1, 2,...} e onde λ > 0. Calcule E(X). P (X = k) = λk k! e λ, k = 0, 1, 2,... Exercício 17 (*). Seja X uma variável aleatória que segue uma distribuição Gaussiana com valor esperado µ e desvio padrão σ. Mostre que, 3

1. Para todo n N, E((X µ) n ) = σ n (n 1)(n 3) 1 se n é par 0 caso contrário. 2. E(e tx ) = e µt+ 1 2 σ2 t 2, t R. Exercício 18. Seja (Ω, F, P ) um espaço de probabilidade e B um acontecimento. Mostre que (B, F B, P ( B)) é um espaço de probabilidade, onde F B = A B : A F} e P (A B) = P (A B) P (B). Exercício 19. Mostre que, P (A B C) = 1 P (A c B c C c )P (B c C c )P (C c ) Exercício 20. Mostre que dois acontecimentos são independentes sse as σ- álgebras geradas por esses acontecimentos são independentes. Exercício 21. Seja (X 1, X 2 ) um vector aleatório bidimensional com a seguinte função de distribuição Determine: F (x 1, x 2 ) = (1 e x 1 )(1 e x 2 ), x 1, x 2 > 0. 1. P (1 < X 1 < 2, 1 < X 2 < 3) 2. A função de densidade de probabilidade conjunta f(x 1, x 2 ). 3. Cov(X 1, X 2 ) Exercício 22 (*). Sejam X e Y duas variáveis aleatórias independentes e absolutamente contínuas. Mostre que f X+Y (z) = f X (x)f Y (z x) dm(x). R Exercício 23. Sejam X, Y e Z variáveis aleatórias independentes com distribuição de probabilidade uniforme no intervalo [0, 1]. Determine a função de densidade conjunta de XY e Z 2. Mostre que P (XY < Z 2 ) = 5 9. Exercício 24. Sejam X e Y duas variáveis aleatórias independentes com distribuição de probabilidade uniforme no intervalo [0, 1]. Sejam U = minx, Y } e V = maxx, Y }. Calcule E(U) e Cov(U, V ). 4

Exercício 25 (*). Sejam X e Y duas variáveis aleatórias independentes com segundo momento finito. Quando é que as variáveis aleatórias X + Y e XY são não correlacionadas, ou seja, covariância nula. Exercício 26. Mostre que Cov(X 1, X 2 ) = E(X 1 X 2 ) E(X 1 )E(X 2 ). Exercício 27. Mostre que σ(x) é uma σ-álgebra e que a função X é mensurável no espaço mensurável (Ω, σ(x)). Exercício 28. Considere uma variável aleatória X que toma dois valores distintos a, b R. Calcule σ(x). Exercício 29. Mostre que a σ-álgebra σ(x) é a menor das σ-álgebras de partes de Ω que tornam X uma função mensurável. Exercício 30. Mostre que E(X Ω) = E(X). Exercício 31. Sejam X e Y variáveis aleatórias e suponha que Y é discreta. Mostre que E(X Y ) = E(X) se Y (ω) = c para todo ω Ω. Exercício 32. Mostre que se G =, Ω} então E(X G) = E(X) P-q.c. Exercício 33 (*). Sejam X e Y duas variáveis aleatórias discretas, isto é, X(Ω) = x 1, x 2,...} e Y (Ω) = y 1, y 2,...} onde P (Y = y j ) > 0, j = 1, 2,.... Mostre que E(X Y = y j ) = x i f X Y (x i, y j ), onde f X Y (x i, y j ) é a massa de probabilidade condicionada, i=1 f X Y (x i, y j ) = P (X = x i, Y = y j ) P (Y = y j ) Exercício 34. Uma empresa produz diariamente N componentes electrónicas, onde N é uma variável aleatória que segue uma distribuição de Poisson com parâmetro λ > 0. Cada componente pode ter um defeito, independentemente das restantes, com probabilidade p. Seja D o número diário de componentes electrónicas com defeito. Calcule E(D N), E(D) e E(N D). Exercício 35. Seja ([0, 1[, B([0, 1[), P ) o espaço de probabilidade onde P é a medida de Lebesgue restrita ao intervalo [0, 1[ e X, Y : [0, 1[ R as variáveis aleatórias, X(ω) = 2ω 2 2ω 0 ω < 1 2 e Y (ω) = 2 2ω 1 ω < 1. 2 Determine E(X Y ). 5.

Exercício 36 (*). Um ponto X é escolhido uniformemente ao acaso da superfície de uma esfera de raio 1. Sejam Θ e Φ a longitude e latitude do ponto X. Determine a função de densidade condicional de Θ dado Φ. Exercício 37. Sejam X e Y variáveis aleatórias com função de densidade conjunta f X,Y (x, y) = cx(y x)e y, 0 x y <. 1. Encontre o valor da constante c. 2. Mostre que f X Y (x, y) = 6x(y x)y 3, 0 x y, f Y X (x, y) = (y x)e x y, 0 x y <. 3. Determine E(X Y ) e E(Y X). Exercício 38. Seja X n, n = 1, 2,... uma martingala relativamente a uma filtração F n. Mostre que X n é uma martingala relativamente à filtração canónica σ(x 1,..., X n ). Exercício 39. Numa folha de papel quadriculado com quadrículas de l cm de lado, um jogador lança aleatoriamente uma moeda perfeita de diâmetro d cm onde d < l. O jogador ganha 1 euro se a moeda não intersectar as linhas da folha. Caso contrário, perde β euros. Após n jogadas independentes entre si, denote-se por S n o ganho acumulado. Determine β tal que o jogo é justo. Exercício 40. Seja S n o passeio aleatório simétrico, S n = X 1 + + X n onde X 1, X 2,... é uma sucessão de variáveis aleatórias IID tal que P (X n = 1) = P (X n = 1) = 1/2. Mostre que Z n = S 2 n n é uma martingala relativamente à filtração canónica σ(x 1,..., X n ). Exercício 41. Seja S n = X 1 +...+X n o passeio aleatório simétrico definido no exercício anterior. Mostre que Z n = ( 1) n cos(πs n ) é uma martingala relativamente à filtração canónica σ(x 1,..., X n ). 6

Exercício 42. Mostre que τ = n} F n sse τ n} F n. Exercício 43. Seja (X n ) n 1 uma sucessão de variáveis aleatórias adaptada a uma filtração F n e seja B R um Boreliano. Mostre que o tempo de primeira entrada de X n em B, τ(ω) = min n N: X n (ω) B}, é um tempo de paragem relativamente a F n. Exercício 44. Sejam X 1, X 2,... variáveis aleatórias IID tais que X n 1, 1} com probabilidade P (X i = 1) = p e P (X i = 1) = q onde p q. Considere o passeio aleatório, e o tempo de paragem onde a, b > 0. Mostre que: S n = X 1 + X 2 +... + X n, τ = min n 1 : S n a, b}}, 1. A sucessão Z n = (q/p) Sn, n = 1, 2,... é uma martingala relativamente à filtração σ(x 1,..., X n ). 2. P (S τ = b) = 1 (q/p) a (q/p) b (q/p) a Exercício 45. Seja (Ω, F, P ) um espaço de probabilidade. Uma variável aleatória ξ : Ω 0, 1, 2,...} tem uma distribuição de Poisson com valor esperado µ > 0 se Seja X 0 = 0 e P (ξ = k) = µk k! e µ, k = 0, 1, 2,... X n = X n 1 + ξ n 1, n = 1, 2,... onde (ξ n ) n 1 é uma sucessão de variáveis aleatórias IID que seguem uma distribuição de Poisson com valor esperado µ > 0. 1. Determine os valores de µ para os quais a sucessão (X n ) n 1 é uma martingala, submartingala ou supermartingala relativamente à filtração canónica F n = σ(ξ 1,..., ξ n ). 7

2. Suponha que µ > 1. Mostre que: (a) Existe um único ρ ]0, 1[ tal que E(ρ ξ ) = ρ. (b) A sucessão ρ Xn é uma martingala relativamente a F n e converge P -q.c. Exercício 46. Seja S n = X 1 + X 2 +... + X n o passeio aleatório onde X n 1, 1} é uma sucessão de variáveis aleatórias IID tais que P (X n = 1) = P (X n = 1) = 1, n = 1, 2,.... Supondo que k N: 2 1. Mostre que Z n = ( 1) n cos(π(s n + k)) é uma martingala relativamente à filtração σ(x 1,..., X n ). 2. Calcule E(( 1) τ ) onde τ é o tempo de paragem τ = min n 1 : S n = k}. Exercício 47. Sejam X 1, X 2,... variáveis aleatórias IID tais que X n 1, 1} para todo n = 1, 2,.... Considere o tempo de paragem τ = minn 1: X 1 + + X n = 1}. Determine E(τ). Exercício 48 (*). Sejam (Ω, F, P ) um espaço de probabilidade, (F n ) n 1 uma filtração e τ um tempo de paragem relativamente a F n tal que para algum k N e algum ɛ > 0, Mostre que τ < P -q.c. P (τ n + k F n ) > ɛ, n = 1, 2, 3,... Exercício 49. Mostre que um processo estocástico X t : t T } tal que X 0 = 0 tem incrementos estacionários sse para todo t s tal que t s T as variáveis aleatórias X t X s e X t s são identicamente distribuídas. Exercício 50. Seja X = X t : t T } um processo estocástico com incrementos independentes e estacionários tal que X 0 = 0 e E(X 2 t ) < para todo t T. Mostre que existe uma constante positiva σ tal que Var(X t X s ) = σ 2 t s. Exercício 51. Seja W = W t : t 0} um processo de Wiener. Mostre que 1. E(e Wt ) = e t/2 para todo t 0. 8

2. se c > 0 então } Wc 2 t : t 0 c é também um processo de Wiener. Exercício 52. Mostre que um processo de Wiener é estacionário em média, mas não tem covariâncias estacionárias. Exercício 53 (*). Seja W = W t : t 0} um processo de Wiener. Mostre que dados 0 s < t e A Boreliano de R então, P (W t A W s = w) = p t s (x w)dx, onde p t (x) = 1 2πt e x2 2t. A 9