!"#$%&'()*+,-'#&*'!-./0+-+*'11! 234252346'728'9/:/*.0/;! <=+#-#/'>$00+,$%-0'?<@!1>A'B' (@91>A'CD9'!AEBF1A19'11! Programa! "#!$%&'()*+,-.!&()!/012&()!!3.10.)!4567!!!!!!! 8'9)):(!! ;9&%<:(!&.!='9)):(>!1?%&.&9)!&9!='9)):(! 8'%?-2=%(!@1?&.A9?*.0!&.!B%&'()*+,-.! 8'%?-2=%(!&9!8.)-.0!! CA=10):(! 8'%?-2=%(!&9!D'E1%A9&9)!
1 Pa = 1N/m 2 3 Pressão F! Força exercida perpendicularmente sobre a superfície A! Área sobre a qual se exerce a força F - Grandeza escalar - Unidade SI : Pascal (Pa) Pressão de um fluido "! A força exercida por um fluido sobre um corpo imerso é perpendicular à superfície em todos os pontos 4
Força e Pressão em acção (video) 5 "! A pressão da atmosfera terrestre junto ao nível do mar: ~1.013 x 10 5 Pa = 1 atm "! Força exercida pela atmosfera sobre uma folha de papel com 500 cm 2 = 0.05 m 2 : "! F=p atm A= 1.01x10 5 x 0.05=5000 N "! É uma força muito considerável, equivalente ao peso somado de várias pessoas!!!!! "! Explicação:!F=0 "! O mesmo se passa com o nosso corpo à superfície da Terra (e no espaço?) F=p atm A F=p atm A 6
1654 - Hemisférios de Magdeburg (video) p=0 F=patmA 7 Medindo a pressão manómetros e barómetros #! #! Mola calibrada A força exercida no pistão pode então ser medida 8
Variação da pressão com a profundidade #! Num fluido em repouso, todas as porções do fluido devem estar em equilíbrio. #! Todos os pontos à mesma profundidade devem estar à mesma pressão. #! Caso contrário o fluido não estaria em equilíbrio, moverse-ia da zona de pressão alta para a zona de pressão baixa. 9 Pressão e profundidade #! A zona de água mais escura tem: #! Secção recta: A #! Altura: h #! Volume: #! Massa: #! Peso: #! Forças que actuam nas superfícies de: #! cima: #! baixo: V = A h M = " V = " A h P = M g = " A h g F 1 = p 1 A F 2 = p 2 A 10 h
Pressão e profundidade #! Para que a região esteja em repouso as três forças que nela actuam têm de se anular: F 2 " F 1 " P = 0 substituindo valores temos: p 2 A " p 1 A " # A h g = 0 logo: p 2 " p 1 = #Ahg p 2 " p 1 = #gh 11 A = #gh $ Lei fundamental da hidrostática h Lei fundamental da hidrostática "! A diferença de pressão entre dois pontos no interior de um líquido ideal e homogéneo é igual ao produto da densidade do líquido pela diferença de nível entre os dois pontos (! ): g p 1 0 h "! A pressão cresce linearmente com a profundidade (enquanto g for constante) 12
Sistema de vasos comunicantes (líquidos miscíveis) #! p o! pressão atmosférica #! p o =1.013 x 10 5 Pa = 760 mmhg = 1 atm p 0 #! A altura do líquido não depende da forma do contentor. 13 Princípio dos vasos comunicantes Quando se tem um único líquido em equilíbrio contido no recipiente, a altura alcançada por esse líquido em equilíbrio, em diversos vasos comunicantes é a mesma, qualquer que seja a forma da secção do vaso. 14
Aplicações do principio dos vasos comunicantes Vazar água entre recipientes (a níveis diferentes) 15 Aplicações do principio dos vasos comunicantes Redes de distribuição de água as redes publicas de água são sistemas de vasos comunicantes com torneiras! 16
Aplicações do principio dos vasos comunicantes Sanitários: prevenção de odores provenientes da rede de esgotos! 17 Paradoxo Hidrostático Porque razão, num sistema de vasos comunicantes, os volumes com maior capacidade (logo maior massa de água) não fazem o liquido subir nos outros recipientes de menor volume (com menor massa de agua)? 18
Paradoxo Hidrostático Como explicar que, segundo a lei fundamental da hidrostática, a pressão no fundo de volumes de diferentes formas é igual? Decompondo a força de reacção das paredes do vaso V2 nas direcções horizontal e vertical temos: -!componentes horizontais anulam-se duas a duas. -!componentes verticais compensam o peso da água na sua vertical. 19 Experiência de Pascal Em 1648, Pascal surpreendeu os seus contemporâneos com uma experiência:! Inseriu um tubo estreito num barril cuidadosamente fechado e cheio de água, como mostra a figura.! da varanda de um 2º andar derramou no tubo uma caneca de água. A pressão sobre as paredes do barril cresceu tanto que as suas aduelas não suportaram e começou a verter água 20
Princípio de Pascal Uma modificação da pressão aplicada a um fluído incompressível é transmitida de forma inalterada a todos os pontos do fluído e às paredes do contentor. Blaise Pascal (1623-1662) 21 Princípio de Pascal h P A P B P' A = P A +!p P' B = P B +!p #! Uma modificação da pressão aplicada a um fluido incompressível é transmitida de forma inalterada a todos os pontos do fluido e às paredes do contentor. 22
Aplicação do princípio de Pascal #! Prensa hidráulica! Como o aumento de pressão é o mesmo de ambos os lados, uma pequena força F1 produz uma força muito maior F2. 23 Pressão absoluta vs pressão diferencial (gauge pressure) #! Na equação p = p o +! g h #! p é a pressão absoluta #! p p o é a pressão diferencial #! Podemos usar h para medir a pressão: #! Se p > p o então h>0 #! Se p < p o então h<0 24
Medição da pressão: o manómetro #! Extremidade aberta para a atmosfera. #! A outra extremidade está em contacto com a pressão a medir. #! A pressão em B é p B =p o +!gh 25 Medição da pressão atmosférica: o barómetro! Inventado por Torricell (1608-1111)! Tubo cheio de mercurio! A pressão atmosférica é dada por p = p 0 " #gh = 0 p 0 = #gh 26
1 atmosfera #! Uma atmosfera é a pressão exercida por uma coluna de mercúrio a 0 ºC com 760 mm de altura e considerando g = 9.806 65 m/s 2 #! Uma atmosfera (1 atm) => #! 760 mm de mercúrio = #! 13.6 x10 3 x 9,80665 x 0,76 Pa #! 1.013 x 10 5 Pa 27 O princípio de Arquimedes! Matemático grego que vivia em Siracusa Sicília 287 212 A.C.! Descobriu (entre outras coisas a impulsão dos fluidos (Eureka!) Um corpo completamente imerso num fluído sofre uma força ascensional igual ao peso do fluido deslocado pelo corpo 28
Impulsão #! A força ascensional é chamada impulsão #! A causa física da impulsão é a diferença de pressão entre a parte superior e inferior do corpo. #! Destacar: o volume de fluido deslocado pelo corpo = volume imerso do corpo. 29 Física para Biólogos - JLY Impulsão #! A intensidade da força de impulsão B é sempre igual ao peso, P fluido desloc, da quantidade de fluido deslocada: #! Ora o V fluido desloc é igual ao volume da parte imersa do corpo. #! A impulsão só depende da densidade " fluido do fluido e do volume V fluido desloc da parte submersa (ou imersa) do corpo. 30
Corpo submerso #! Se o corpo é mais denso que o fluido a força para baixo é maior e o corpo afunda. #! No geral: #! Mas 31 Corpo submerso #! Se o corpo é menos denso que o fluido sofre uma força ascensional superior ao seu peso. #! Quando atinge a superfície, flutua. 32
Objecto que flutua #! Equilíbrio entre o peso e a impulsão 33 Problema do iceberg Densidade do gelo: 0,917 g/cm 3 Densidade da água do mar: 1,030 g/cm 3 ~90% do iceberg encontra-se submerso! 34
Forças exercidas sobre um balão #! Impulsão: B = " ar V balão g #! Peso: P = mg = " fluido usado V fluido usado g + (m tecido +m barquinha +m pessoas +m objectos )g #! Força ascensional total: B - P Física para Biólogos - JLY 35 Problema do balão com barquinha B P (fluido deslocado: ar frio)! (peso: ar quente + balão)! Admitimos que o volume da barquinha é desprezável. A massa m inclui a barquinha e todos os outros apetrechos. Equilíbrio m=300 kg Física para Biólogos - JLY 36
Problema da coroa de ouro Como determinar se a coroa é de ouro maciço? Podemos: 1.! Calcular V: Directamente, ou através de: B=T ar -T água =!Vg 2.! Calcular a massa: Directamente ou através de T ar 3.! Calcular a densidade. 4.! Comparar com a do Au 37 Arquimedes e Hieron, Rei de Siracusa O que Arquimedes teria feito, sem nada saber de densidades. m=!v m=!v m igual B igual V igual! igual m igual B diferente V diferente! diferente 38