CEEJA MAX DADÁ GALLIZZI

Documentos relacionados
Problemas do 2º grau

Problemas do 2º grau

CEEJA MAX DADÁ GALLIZZI

CEEJA MAX DADÁ GALLIZZI

CEEJA MAX DADÁ GALLIZZI

CEEJA MAX DADÁ GALLIZZI

CEEJA MAX DADÁ GALLIZZI

NIVELAMENTO 2012/1 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase

Resolvendo sistemas. Nas aulas anteriores aprendemos a resolver

Como é possível afirmar que a sala ficou com 5,5 m de comprimento após a ampliação?

MATEMÁTICA CEEJA MAX DADÁ GALLIZZI PRAIA GRANDE - SP PARABÉNS!!! VOCÊ JÁ É UM VENCEDOR! Grandezas diretamente e inversamente proporcionais.

Plano de Trabalho Equação do segundo grau

Oficina Álgebra 2. Após os problemas 1 e 2, há dois desafios para que você possa explorar esse novo conhecimento sobre as equações do 2º grau.

Resolvendo equações. 2 = 26-3 α φ-1

Material Teórico - Módulo Função Quadrática. Funcão Quadrática: Exercícios. Primeiro Ano do Ensino Médio

BANCO DE QUESTÕES ÁLGEBRA 9º ANO ENSINO FUNDAMENTAL ===========================================================================================

Desenho e Projeto de Tubulação Industrial Nível II

AmigoPai. Matemática. Exercícios de Equação de 2 Grau

Material Teórico - Módulo Equações do Segundo Grau. Equações de Segundo Grau: outros resultados importantes. Nono Ano do Ensino Funcamental

CEEJA MAX DADÁ GALLIZZI

Assunto: Equação do 2º grau

Objetivos. Expressar o vértice da parábola em termos do discriminante e dos

CECIERJ CURSO DE FORMAÇÃO CONTINUADA. Tarefa 1 Grupo 2 Nome: Mônica de Azevedo Braga Gaspar Tutora: Lilian Rodrigues Zanelli da Costa de Paula

a) x 2-2x = 0 c) 3x 2 - x = 0 e) -x 2 + 4x = 0 g) 4x 2-5x = 0 a) x 2-4 = 0 4x 2 = 64 x 2 = 64:4 x 2 = 16 x = ± 16 x = ± 4 V = {± 4}

FUNDAÇÃO CECIERJ / CONSÓRCIO CEDERJ

MATEMÁTICA ENSINO FUNDAMENTAL

FORMAÇÃO CONTINUADA EM MATEMÁTICA

PAESPE. Equação do 2º grau

9 0 Fund. II Disciplina Professora Natureza Trimestre/Ano Data Valor Roteiro de estudo Matemática Vânia e exercícios de revisão

Fundação CECIERJ/Consórcio CEDERJ

DISCIPLINA SÉRIE CAMPO CONCEITO

Dinâmica 3. 9º Ano 2º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO. Ensino Fundamental 9º. Uma dica... Uso Conveniente da calculadora.

Lista de Exercícios Equações do 2º Grau

A álgebra nas profissões

Resumo: Nestas notas faremos um breve estudo sobre as principais propriedades. mínimos, gráficos e algumas aplicações simples.

Equação do Segundo Grau

Equacionando problemas - II

FORMAÇÃO CONTINUADA EM MATEMÁTICA Matemática 9º Ano 3º Bimestre/2012 FUNÇÃO POLINOMIAL DO 1º GRAU

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 ESTUDO DA CIRCUNFERÊNCIA

Resumo: Nestas notas faremos um breve estudo sobre as principais propriedades. mínimos, gráficos e algumas aplicações simples.

Complemento Matemático 02 Ciências da Natureza I EQUAÇÃO DO 2º GRAU Física - Ensino Médio Material do aluno

Material Teórico - Inequações Produto e Quociente de Primeiro Grau. Inequações Quociente. Primeiro Ano do Ensino Médio

PLANO DE TRABALHO SOBRE EQUAÇÃO DO 2º GRAU

Aula 1. Material necessário: Projetor, slides, lápis/caneta e folha de atividades.

Oficina de Álgebra. Oficina CNI EF / Álgebra 1 Material do aluno. Setor de Educação de Jovens e Adultos. Caro aluno,

Formação Continuada em Matemática Fundação CECIERJ/Consórcio Cederj. Matemática 9º Ano 2º Bimestre /2014. Plano de Trabalho. Equação do 2 grau.

CEEJA MAX DADÁ GALLIZZI

Sistemas do 1º grau. Pedro e José são amigos. Ao saírem do trabalho, Nossa aula

EQUAÇÕES BIQUADRADAS

Recup. 2º Trimestre TRABALHO DE MATEMÁTICA Ensino Fundamental 9º ano classe: A-B-C-D Profs. Marcelo/Fernando Nome:, nº Data de entrega: 13/09

A função do 2º grau. Na aula anterior, estudamos a função do. Nossa aula

ax bx c 0, onde a, b e c são números reais quaisquer e a 0.

MATEMÁTICA ENSINO FUNDAMENTAL

Matemática Básica Função polinomial do primeiro grau

Vamos iniciar, nesta aula, a revisão do nosso. Vamos, inicialmente, escolher nossas incógnitas: x = número de homens. y = número de mulheres.

TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA

A fórmula da equação do 2º grau

FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ/SEEDUC-RJ

Formação Continuada em Matemática Fundação CICIERJ/Consórcio Cederj. Matemática 3º Ano 4º Bimestre/2014. Plano de Trabalho

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido

Formação Continuada em Matemática Matemática 9º Ano 2º bimestre/2013 Grupo 01 Equações do 2 Grau

IGUALDADES EM IR IDENTIDADES NOTÁVEIS

Gabarito de Matemática do 8º ano do E.F. Lista de Exercícios (L17)

Aula 1: Revisando o Conjunto dos Números Reais

1). Tipos de equações. 3). Etapas na resolução algébrica de equações numéricas. 4). Os dois grandes cuidados na resolução de equações

Notas de Aulas 4 - Funções Elementares - Parte I Prof Carlos A S Soares

Professores: Darlã Nogara Oliveira, Leidi Simonin, Maiara Ghiggi, Mévelin Maus e Pitias Beckestein Paz.

Formação Continuada Nova Eja. Matemática Nova Eja- Módulo 1 1 Bimestre/ 2014 PLANO DE AÇÃO 4

MONÔMIOS E POLINÔMIOS

Material Teórico - O Plano Cartesiano e Sistemas de Equações. Sistemas de Equações do Primeiro Grau com Duas Incógnitas

a é sempre o coeficiente de x²; b é sempre o coeficiente de x, c é o coeficiente ou termo independente.

4 O método aritmético e o método algébrico

Formação Continuada Nova EJA. Plano de Ação 2- Matemática- Unidade 269 Módulo 3-2º Bim. Nome: Letícia Cristina Magalhães Pereira

Material Teórico - Inequações Produto e Quociente de Primeiro Grau. Sistemas de inequações. Primeiro Ano do Ensino Médio

Revisar e retomar os conceitos e procedimentos que foram avaliados na parcial; Estudar e sistematizar o conteúdo que será avaliado na trimestral.

Capítulo 1 Números Reais

ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 9º ANO. Introdução Potenciação. Radiciação

Conceitos Básicos INTRODUÇÃO 1 VETORES 1.1 REPRESENTAÇÃO DOS VETORES

CEEJA MAX DADÁ GALLIZZI

Equações de 2º grau. Denomina-se equação do 2º grau na incógnita x, toda equação da forma: IR e

A Matemática é assim: ela representa objetos por símbolos. Podemos interpretar o desenho da figura anterior de duas maneiras: r-- ~

Unidade 5 Diferenciação Incremento e taxa média de variação

Plano de Trabalho Equação do 2 0 grau.

Formação Continuada Nova EJA. Plano de Ação Equação de 1 grau

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 3ª SÉRIE MATEMÁTICA II PROF. MARCOS MAT II SISTEMAS LINEARES

A função y = ax + b. Na Aula 9, tivemos um primeiro contato

Material Teórico - Módulo Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano do Ensino Funcamental

Matemática 9ºAno E.F.

Sistemas Lineares. Márcio Nascimento

Para discutir as equações exponenciais, vamos pensar sobre a seguinte situação:

A Matemática é assim: ela representa objetos por símbolos. Podemos interpretar o desenho da figura anterior de duas maneiras: r-- ~

Semelhança e áreas 1,5

Exercícios Propostos

12 A interseção de retas e a solução de sistemas

Derivadas e suas Aplicações

Matemática I Tecnólogo em Construção de Edifícios e Tecnólogo em Refrigeração e Climatização

Matemática & Raciocínio Lógico

CADERNO DE EXERCÍCIOS 3C

Transcrição:

CEEJA MAX DADÁ GALLIZZI MATEMÁTICA ENSINO MÉDIO APOSTILA 09

Parabéns!!! Você já é um vencedor! Voltar a estudar é uma vitória que poucos podem dizer que conseguiram. É para você, caro aluno, que desenvolvemos esse material. Foi pensando em seu sucesso e em auiliá-lo nas redescobertas da arte matemática que elaboramos o conteúdo e os eercícios contidos nesta coleção de apostilas. Ela foi escrita em linguagem simples e com a preocupação de transmitir os assuntos importantes de matemática da forma mais clara possível. Todos nós usamos matemática diariamente, mesmo sem perceber. Em uma compra, ao pagar e ao receber o troco, estamos fazendo matemática. Até para utilizarmos corretamente uma máquina de calcular, precisamos saber matemática. Para isto, em cada aula, você encontrará ferramentas matemáticas que passarão a fazer parte da sua vida para enriquecê-la e facilitála. A matemática não é um conjunto de regras que devam ser decoradas. O importante é compreender o que está por trás de cada regra; é compreender os conceitos. Assim você poderá utilizar os seus conhecimentos em situações novas, resolvendo os problemas que surgirem na sua casa, no seu trabalho, na sua vida. Uma parte fundamental dessa apostila são os Eercícios. Não se aprende matemática apenas lendo um teto. É preciso praticar. É preciso gastar lápis e papel resolvendo eercícios. Só assim ganhamos segurança no que aprendemos e ficamos preparados para a aula seguinte. Portanto, tente fazer os eercícios de cada aula. Talvez você não consiga resolver todos, mas o importante é tentar fazer. Também aprendemos muito com nossos próprios erros. Resolva todos os eercícios em seu caderno (não responder na apostila, pois a mesma será utilizada por outros alunos no decorrer do curso). Procure-nos assim que surgirem as primeiras dificuldades, nós estaremos sempre prontos para ajudálo. No fim do curso você terá adquirido uma série de conhecimentos de matemática que serão suas ferramentas para compreender melhor o mundo que nos cerca, tornando-o um cidadão mais seguro e respeitado. Mas, acima de tudo, você vai descobrir que pensar é divertido. Raciocinar é estimulante. Resolver desafios, questionar, encontrar soluções nos dá prazer, desenvolve a nossa mente e torna mais ágil o nosso raciocínio. Adquirindo o hábito de pensar de forma organizada, você terá aprendido a mais importante das lições e nós teremos cumprido o nosso objetivo. Página

Equação de ºGrau Introdução Tetos babilônios, escritos há cerca de 4000 anos, já faziam referência a problemas que resolvemos hoje as equações de º grau. Um dos problemas mais comuns nesses escritos era o que tratava da determinação de dois números, quando conhecidos a soma e o produto deles. A resolução desses problemas era estritamente geométrica: consideravam o produto dos dois números como a área; e a soma deles, o semi-perímetro de um retângulo. As medidas dos lados do retângulo correspondiam aos números dados, que eram sempre naturais. Esse tratamento geométrico era longo e cansativo, o que levou os gregos e posteriormente os árabes a buscarem um procedimento mais metódico para resolver tais problemas. No século IX, al-khowarizmi, matemático árabe, desenvolveu um processo para resolução desses problemas que deu início à chamada álgebra geométrica. Bhaskara No século XII, baseado nos estudos feitos por al-khowarizmi, o matemático hindu Bhaskara (4 85) apresentou um processo puramente algébrico que permitia resolver qualquer equação de º grau. Ele chegou a uma fórmula que é usada até hoje e que ficou conhecida como Fórmula de Bhaskara para a resolução de equações de º grau. Página 3

Equação de ºGrau Freqüentemente, ao equacionarmos um problema, obtemos uma equação na qual a incógnita aparece elevada ao quadrado. Estas são as chamadas equações do º grau. Veja alguns eemplos: ² - 6 = 0 ² = 0 ² - 5 + 6 = 0 Repare que em todas aparece o termo ². De forma geral, a equação do º grau é escrita assim: a² + b + c = 0 onde a, b, e c são números quaisquer. Mas, o número a não pode ser zero, porque, nesse caso, o termo ² seria eliminado. O número a é o coeficiente de ². O número b é o coeficiente de. O número c é o termo independente. Nas equações abaio observe os valores de a, b e c: + 3 40 = 0; onde a = ; b = 3; c = -40 7 + 0 = 0; onde a = ; b = -7; c = 0 5y + 3y - = 0; onde a = 5; b = 3; c = - ² - 0 = 0; onde a = ; b = -0; c = 0 y² - 6 = 0; onde a = ; b = 0; c = -6 É de etrema importância saber reconhecer os coeficientes de uma equação de º grau. Página 4

Eercício Questão 0: Escreva no seu caderno somente as equações que são de º grau com uma incógnita: a) 3² - + = 0 b) 0 4 3² + 5 = 0 c) 7 = 0 d) ² + 5 6 = 0 e) 5² - = 0 f) ³ + 5 = 0 g) 7² + 7 = 0 h) 0² - 5 + 6 = 0 Equação Completa e Equação Incompleta Pela definição, devemos ter sempre. Entretanto, podemos ter ou. Assim: Quando e, a equação de º grau se diz completa. Eemplos: 5² -7 +4 = 0 é uma equação completa ( a = 5, b = -7, c = 4 ). y² +0y +0 = 0 é uma equação completa ( a =, b = 0, c = 0 ). Quando ou ou, a equação de º grau se diz incompleta. Eemplos: ² - 9 = 0 é uma equação incompleta ( a =, b = 0, c = -9 ). 5t² + 0t = 0 é uma equação incompleta ( a = 5, b = 0, c = 0 ). 3y² = 0 é uma equação incompleta ( a = 3, b = 0, c = 0 ). Página 5

Eercícios Questão 0: Todas as equações seguintes são de º grau. Nessas condições, identifique os coeficientes de cada equação: Eemplo: ² + 5 3 = 0 a =, b = 5, c = -3 a) 0² - 7 + = 0 b) ² + 8 = 0 c) 7p² + 0p + 3 = 0 d) y² - 3y 4 = 0 e) -6² + + = 0 f) -4² + 6 = 0 g) r² - 5 = 0 h) 5² = 0 Questão 03: Identifique como completa ou incompleta cada equação do º grau abaio: a) ² - 7 + 0 = 0 b) ² + 3 = 0 c) 4² - 6 = 0 d) ² - = 0 e) 9² - 4 = 0 f) 5² - 0 = 0 Questão 04: Forme as equações do º grau: Eemplo: a =, b = -5, c = -6 ² - 5² - 6 = 0 a) a =, b = -6, c = 5 b) a = 3, b = 7, c = 8 c) a = 5, b = 0, c = 0 d) a =, b = 0, c = -8 e) a = 8, b = 0, c = 0 f) a =, b = -3, c = -4 g) a = 7, b =, c = -5 h) a =, b =, c = 0 Página 6

Fórmula de Bhaskara Ou Na fórmula que encontramos para a solução da equação do º grau, vemos que, dentro da raiz quadrada, eiste o número b² - 4ac. Esse número é, em geral, representado pela letra grega (delta) e chama-se discriminante. Usando essa nova letra, temos que as raízes da equação a² + b + c = 0 são: e Onde: O discriminante modo: (delta) indica o número de soluções da equação do seguinte Se for positivo, a equação terá duas soluções reais diferentes. Se for zero, a equação terá um só valor real para a solução. Se for negativo, a equação não terá soluções reais. Página 7

Resolução de Equação de ºgrau Completa Veja os eemplos para resolver equações de º grau: EXEMPLO : Resolva a equação Resolução: Lembrando que a forma geral da equação é: a + b + c = 0 Comparamos a forma geral com a equação a ser resolvida, temos: a = ; b = -5; c = -6 b a Como é positivo, teremos duas soluções reais diferentes. 5. 5 7 49 5 7 6 5 7 A solução da equação ² - 5-6 = 0 é: S = { -, 6 } Página 8

EXEMPLO : Resolva a equação Resolução: Na equação, temos: a = ; b = 5; c = 6 b a Como é positivo, teremos duas soluções reais diferentes. 5. 5 5 4 5 A solução da equação ² + 5 + 6 = 0 é: S = { -3, - } 6 3 EXEMPLO 3: Resolva a equação Na equação, temos: a = ; b = 6; c = -6 b a 6 00. 6 0 Como é positivo, teremos duas soluções reais diferentes. 6 0 A solução da equação ² + 6-6 = 0 é: S = { -8, } 6 0 4 6 8 Página 9

EXEMPLO 4: Resolva a equação Na equação, temos: a = ; b = -7; c = 3 b a Como é positivo, teremos duas soluções reais diferentes. 7. 7 5 4 7 5 4 4 5 3 7 5 4 A solução da equação ² - 7 + 3 = 0 é: S = { ½, 3 } 4 ou0,5 EXEMPLO 5: Resolva a equação Na equação, temos: a = ; b = ; c = b a. 0 0 Como é zero, teremos uma única solução real. 0 0 A solução da equação ² + + = 0 é: S = { - } Página 0

EXEMPLO 6: Resolva a equação Na equação, temos: a = 3; b = 6; c = 4 Como é negativo, equação não terá soluções reais, pois não eiste (nos números reais) raiz quadrada de número negativo. Por esse motivo não há necessidade de utilizar a Fórmula de Bhaskara. Sendo assim a solução dessa equação é considerada como conjunto vazio que pode ser representada como { } ou ø. A solução da equação 3² + 6 + 4 = 0 é: S = { } ou S = ø Resolução de Equação de ºgrau Incompleta São aquelas que possuem os coeficientes b e c ambos nulos, ou apenas um deles nulo. As equações incompletas podem ser resolvidas por outros métodos mais simples que a fórmula de Bhaskara. Mas também poderá ser resolvida pela fórmula obtendo a mesma solução. A seguir veremos dois métodos de resolução para equações incompletas. EXEMPLO 7: Resolver a equação ² - 36 = 0 36 36 6 6 6 A solução da equação ² - 36 = 0 é: S = { -6, 6 } Página

EXEMPLO 8: Resolver a equação ² - 88 = 0 ² 88 0 88 88 44 44 A solução da equação ² - 88 = 0 é: S = { -, } EXEMPLO 9: Resolver a equação ² + 3 = 0 ( + 3) = 0 = 0 ou 3 3 0 A solução da equação ² + 3 = 0 é: S = { -3, 0 } EXEMPLO 0: Resolver a equação 3² - 5 = 0 (3 5) = 0 = 0 ou 3 5 0 3 5 5 3 5 A solução da equação 3² 5 = 0 é: S = { 0, 5 } Página

Eercícios Questão 05: Resolva as equações do º grau utilizando a fórmula de Bhaskara: a) - 5 6 = 0 f) - 6 + 9 = 0 b) + 3 0 = 0 g) - - = 0 c) + 5 + 4 = 0 h) + 30 = 0 d) - 8 + 5 = 0 i) - 5 3 = 0 e) - -3 = 0 j) 5 + + = 0 Questão 06: Qual é o número que elevado ao quadrado é igual a 5? Questão 07: Qual é o número que elevado ao quadrado é igual ao seu dobro? Questão 08: Resolva as equações incompletas: a) ² - 4 = 0 d) ² + 3 = 0 b) ² - 49 = 0 e) ² -5 = 0 c) ² - 8 = 0 f) ² -8 = 0 Página 3

Problemas do º grau Nas páginas anteriores, tratamos de resoluções de equações do º grau. Agora, vamos resolver problemas que dependem dessas equações. Observe que o significado das incógnitas deve ficar bem claro para que o equacionamento do problema possa ser feito sem dificuldade. Após a resolução da equação, devemos verificar se as duas raízes servem como resposta para o problema em questão. Freqüentemente, como você irá perceber, uma delas não faz sentido. Como esta é uma aula de resolução de problemas, é interessante que você leia atentamente cada enunciado e pense um pouco antes de ver a solução. PROBLEMA : Um operário foi contratado para construir uma calçada em volta de dois lados de um terreno retangular, como mostra a figura abaio. 0m Calçada - 30m O terreno mede 0 m por 30 m e a calçada deve ter sempre a mesma largura. Sabendo que o operário dispõe de 7 m² de lajotas para fazer a obra, qual deve ser a largura da calçada? Solução: É claro que a largura da calçada é nossa incógnita. Vamos então chamar de a medida que desejamos calcular. Podemos calcular de várias formas a área da calçada, que é igual a 7 m². Uma delas é a que mostramos na figura abaio: Área = 30 30 Área = ² 0 Área = 0 Somando as áreas das três partes em que a calçada foi dividida, temos: ² + 30 + 0 = 7 ou ² + 50-7 = 0 Essa é uma equação do º grau e nossa incógnita, a largura da calçada, é uma de suas raízes. Vamos então resolver a equação: Página 4

Resolvendo a equação, teremos: a = ; b = 50; c = -7 b a Utilizando uma calculadora para obter valores aproimados das raízes, temos: 50 788. 50 5,8 50 5,8,8,4 50 5,8 0,8 5,4 Como a medida do comprimento é sempre um número positivo, observe que a solução = - 5,4 não faz sentido no nosso problema. Portanto, a largura da calçada é de aproimadamente,4 m, ou seja, metro e 40 centímetros. Conferindo resultados Depois de resolver um problema, é aconselhável conferir o resultado encontrado para verificar se ele está mesmo correto. Afinal, é sempre possível ocorrer algum engano. Vamos então conferir o resultado do problema que acabamos de resolver. Conferindo o problema Nesse problema, encontramos para a largura da calçada,4 m, aproimadamente. Vamos então calcular a área da calçada usando esse valor: que é aproimadamente 7. Se o operário tem 7 m² de lajotas para fazer a calçada, então a largura de,4 m está certa. Página 5

PROBLEMA : João comprou um certo número de camisetas (todas iguais) para dar a seus empregados e gastou R$ 96,00. Dias depois, passando em outra loja, viu a mesma camiseta em promoção, R$,00 mais barata. Desta vez, comprou uma camiseta a mais que na compra anterior e gastou R$ 90,00. Quantas camisetas João comprou ao todo? Solução: precisamos dar nome às nossas incógnitas, isto é, àquilo que não conhecemos no problema. Nós não sabemos quantas camisetas João comprou da primeira vez. Vamos então chamar essa quantidade de. Também não sabemos o preço da camiseta na primeira compra. Vamos chamar esse preço de y. Desta forma, na segunda compra, João comprou + camisetas e o preço de cada uma é y -, ou seja, R$,00 a menos. Podemos então resumir o que conhecemos no quadro abaio: COMPRA Nº CAMISETAS PREÇO TOTAL GASTO ª COMPRA y 96 ª COMPRA + y 90 Multiplicando o número de camisetas pelo preço de uma delas, teremos o total gasto em cada compra. Logo, as equações são as seguintes: Temos aqui um sistema de duas equações com duas incógnitas. Vamos inicialmente desenvolver a ª equação: Como a ª equação nos informa que y = 96, ficamos com: Agora, vamos substituir esse valor de y na ª equação: Aí está a equação do º grau fornecida pelo problema. Vamos simplificar todos os termos por e resolvê-la. Página 6

Resolvendo a equação, teremos: a = ; b = -; c = -48 b a Utilizando uma calculadora para obter valores das raízes, temos:. 4 4 96 6 8 4 6 Lembre-se de que é o número de camisetas que João adquiriu na primeira compra. Logo, esse número não pode ser - 6. Concluímos que = 8, ou seja, João comprou 8 camisetas. Como na segunda compra ele adquiriu uma camiseta a mais, o número total de camisetas compradas é 8 + 9 = 7. Conferindo o problema Concluímos nesse problema que João adquiriu 8 camisetas na primeira compra e 9 na segunda. Vamos então calcular o valor de y, que é o preço de cada camiseta na primeira compra. Temos = 8 e a equação.y = 96. Logo, Então, cada camiseta custou R$,00. Vamos agora conferir a segunda compra. Sabemos que ele comprou 9 camisetas e cada uma custou R$ 0,00, ou seja, R$,00 a menos. Então, ele gastou 9 0 = 90 reais, o que confere com o enunciado. Página 7

Eercícios Questão 09: Os números,, 3, 4... são chamados de números naturais. Cada número natural possui um consecutivo, que é o número que vem depois dele. Por eemplo, o consecutivo de é. O consecutivo de 8 é 9 etc. Multiplicando-se um número natural por seu consecutivo, encontramos 3. Que número é esse? Questão 0: Um terreno retangular tem 50 m² de área. Diminuindo seu comprimento em 3 m e aumentando sua largura em m, o terreno transforma-se em um quadrado. Qual é a área desse quadrado? Sugestão: Observe a figura abaio: 3 Questão : Um grupo de pessoas saiu para almoçar em um restaurante, sendo que três delas são mulheres. A conta, de R$ 7,00, foi inicialmente dividida entre todos, mas depois os homens resolveram que, por gentileza, as mulheres não deveriam pagar. Então, cada homem contribuiu com mais R$ 4,00 e a conta foi paga. Quantas pessoas havia no grupo? Sugestão: Escolha as seguintes incógnitas: = número de pessoas do grupo y = valor que cada um deveria pagar Questão : Na figura abaio eistem 0 pontos arrumados em 5 linhas e 4 colunas: Imagine que 480 soldados estão formados, arrumados em linhas e colunas. O número de linhas é 4 unidades maior que o número de colunas. Quantas são as linhas e as colunas dessa formação? Página 8

Gabarito Questão 0: Alternativas: a, d, e, g. Questão 0: a) a=0; b=-7; c= b) a=; b=; c=-8 c) a=7; b=0; c=3 d) a=; b=-3; c=-4 e) a=-6; b=; c= f) a=-4;b=6; c=0 g) a=; b=0; c=-5 h) a=5; b=0; c=0 Questão 03: a) Equação completa; b) Equação completa; c) Equação incompleta; d) Equação completa; e) Equação incompleta; f) Equação incompleta. Questão 04: a) -6+5=0 b) 3 +7+8=0 c) 5 +0=0 d) -8=0 e) 8 =0 f) -3-4=0 g) 7 +-5=0 h) +=0 Questão 05: a) b) c) d) e) f) g) h) i) j) Questão 06: O número 5. Questão 07: O número. Questão 08: a) b) Questão 09: O número. Questão 0: Lado 7m e Área 49m. c) d) e) f) Questão : 9 pessoas. Questão : 4 linhas e 0 colunas. Página 9

Bibliografia Os tetos e os eercícios foram retirados e/ou pesquisados nos seguintes livros: Telecurso 000 Matemática: Volumes, e 3 Ensino Médio. - São Paulo: Editora Globo, 000. Matemática: Aula por Aula: Volume Único: Ensino Médio / Benigno Barreto Filho, Cláudio Xavier Barreto. - São Paulo: FTD, 000. Matemática: Conteto & Aplicações: Volumes, e 3: Ensino Médio. - São Paulo: Ática,999. Matemática Fundamental, º grau: Volume Único / José Ruy Giovanni, José Roberto Bonjorno, José Ruy Giovanni Jr. São Paulo: FTD, 994. Coleção Base: Matemática: Volume Único / Manoel Paiva. São Paulo: Moderna, 999. Curso Prático de Matemática: Volumes, e 3 Ensino Médio / Paulo Bucchi. São Paulo: Moderna, 998. Matemática: Temas e Metas: Volumes, e 3 / Antônio dos Santos Machado. São Paulo: Atual, 986. Praticando Matemática: 6º ao 9º ano /Álvaro Andrini, Maria José Vasconcellos. São Paulo: Editora do Brasil, 00. A Conquista da Matemática Nova: 6º ao 9º ano / José Ruy Giovanni, Benedito Castrucci, José Ruy Giovanni Jr. São Paulo: FTD, 998. Página 0

Este conjunto de apostilas foi elaborado pelos professores da Área de Matemática do CEEJA Ma Dadá Gallizzi, com base nos livros didáticos descritos na Bibliografia, ora transcrevendo eercícios e teorias, ora criando com base nos conteúdos observados. Professores Ednilton Feliciano Francis Mara C. Sirolli Paulo Teles de Araújo Jr Satie Sandra Soares Taira 00 Página