Problemas do 2º grau
|
|
|
- Daniela Mirandela Figueiredo
- 8 Há anos
- Visualizações:
Transcrição
1 A UUL AL A 6 6 Problemas do º grau Nas Aulas 4 e 5, tratamos de resoluções de equações do º grau. Nesta aula, vamos resolver problemas que dependem dessas equações. Observe que o significado das incógnitas deve ficar bem claro para que o equacionamento do problema possa ser feito sem dificuldade. Após a resolução da equação, devemos verificar se as duas raízes servem como resposta para o problema em questão. Freqüentemente, como você irá perceber, uma delas não faz sentido. Introdução Como esta é uma aula de resolução de problemas, é interessante que você leia atentamente cada enunciado e pense um pouco antes de ver a solução. Nossa aula PROBLEMA 1 Um operário foi contratado para construir uma calçada em volta de dois lados de um terreno retangular, como mostra a figura abaio. 0 m 30 m calçada O terreno mede 0 m por 30 m e a calçada deve ter sempre a mesma largura. Sabendo que o operário dispõe de 7 m² de lajotas para fazer a obra, qual
2 A U L A 6 deve ser a largura da calçada? Solução: É claro que a largura da calçada é nossa incógnita. Vamos então chamar de a medida que desejamos calcular. Podemos calcular de várias formas a área da calçada, que é igual a 7 m². Uma delas é a que mostramos na figura abaio: rea = rea = 0 rea = 0 Somando as áreas das três partes em que a calçada foi dividida, temos: ² = 7 ou ² = 0 Essa é uma equação do º grau e nossa incógnita, a largura da calçada, é uma de suas raízes. Vamos então resolver a equação: α φ = -50 ± (-7) -50 ± = -50 ±.788 = Utilizando uma calculadora para obter valores aproimados das raízes, temos: = -50 ± 5, , ,8 =- 10,8 =,8 =1,4 =-51,4 Observe que a raiz = - 51,4 não faz sentido no nosso problema. A medida do comprimento é sempre um número positivo. Portanto, a largura da calçada é de 1,4 m, ou seja, 1 metro e 40 centímetros.
3 PROBLEMA João comprou um certo número de camisetas (todas iguais) para dar a seus empregados e gastou R$ 96,00. Dias depois, passando em outra loja, viu a mesma camiseta em promoção, R$,00 mais barata. Desta vez, comprou uma camiseta a mais que na compra anterior e gastou R$ 90,00. Quantas camisetas João comprou ao todo? A U L A 6 Solução: precisamos dar nome às nossas incógnitas, isto é, àquilo que não conhecemos no problema. Nós não sabemos quantas camisetas João comprou da primeira vez. Vamos então chamar essa quantidade de. Também não sabemos o preço da camiseta na primeira compra. Vamos chamar esse preço de y. Desta forma, na segunda compra, João comprou + 1 camisetas e o preço de cada uma é y -, ou seja, R$,00 a menos. Podemos então resumir o que conhecemos no quadro abaio: COMPRA Nº DE CAMISETAS PREÇO TOTAL GASTO 1ª COMPRA y 96 ª COMPRA + 1 y - 90 Multiplicando o número de camisetas pelo preço de uma delas, teremos o total gasto em cada compra. Logo, as equações são as seguintes: { y = 96 ( + 1) (y - ) = 90 Temos aqui um sistema de duas equações com duas incógnitas. Vamos inicialmente desenvolver a ª equação: ( + 1) (y - ) = 90 y - + y - = 90 Como a 1ª equação nos informa que y = 96, ficamos com: y - = y = - 4 y = - 4 Agora, vamos substituir esse valor de y na 1ª equação: y = 96 ( - 4) = 96 ² = 0
4 A U L A 6 Aí está a equação do º grau fornecida pelo problema. Vamos simplificar todos os termos por e resolvê-la = 0 = ± (- ) = ± = ± 196 = ± 14 α φ = + 14 = - 14 = 16 = 8 = -1 =-6 Lembre-se de que é o número de camisetas que João adquiriu na primeira compra. Logo, esse número não pode ser - 6. Concluímos que = 8, ou seja, João comprou 8 camisetas. Como na segunda compra ele adquiriu uma camiseta a mais, o número total de camisetas compradas é = 17. PROBLEMA 3 Com uma corda de 10 m de comprimento, Pedro deseja cercar uma área retangular de 5 m². Quais as medidas dos lados desse retângulo? Solução: Vamos chamar de e y o comprimento e a largura do retângulo, respectivamente, como mostra a figura: y 5 m² y Já que o perímetro do retângulo é 10 m, temos, como 1ª equação: + y + + y = 10 ou + y = 10 ou ainda + y = 5 Como a área do retângulo deve ser 10 m², temos, como ª equação: y = 5
5 As duas equações formam o sistema: { + y = 5 y = 5 A U L A 6 que é resolvido facilmente. Da 1ª equação temos y = 5 - ; substituindo na ª equação, encontramos: (5 - ) = 5 Vamos então desenvolver, arrumar e resolver essa equação: 5 - ² = 5 - ² = 0 ² = 0 = 5 ± ± 5-0 = = 5 ± 5 Usando a máquina de calcular para obter valores aproimados das raízes, encontramos: = 5 ±,4 5 +,4 5 -,4 = 7,4 =,76 = 3,6 =1, 38 Chegamos a dois valores diferentes para e, aparentemente, ambos servem ao nosso problema. No entanto, é o comprimento do retângulo e precisamos ainda calcular a largura y. Observando novamente o desenvolvimento, vemos que + y = 5, ou seja, y = 5 -. Então: a) se = 3,6 então y =5-3,6 = 1,38 b) se = 1,38 então y =5-1,38 = 3,6 Não encontramos, portanto, dois retângulos diferentes. As duas raízes da equação fornecem como resposta o mesmo retângulo. Suas medidas aproimadas são 3,6 m e 1,38 m, não importando qual delas é o comprimento ou a largura.
6 A U L A 6 Conferindo resultados Depois de resolver um problema, é aconselhável conferir o resultado encontrado para verificar se ele está mesmo correto. Afinal, é sempre possível ocorrer algum engano. Vamos então conferir os resultados dos três problemas que resolvemos nesta aula. Conferindo o problema 1 Nesse problema, encontramos para a largura da calçada = 1,4 m, aproimadamente. Vamos então calcular a área da calçada usando esse valor: Área da calçada = 1,4² , ,4 = 1, ,8 = 71,96 que é aproimadamente 7. Se o operário tem 7 m² de lajotas para fazer a calçada, então a largura de 1,4 m está certa. Conferindo o problema Concluímos nesse problema que João adquiriu 8 camisetas na primeira compra e 9 na segunda. Vamos então calcular o valor de y, que é o preço de cada camiseta na primeira compra. Temos = 8 e a equação y = 96. Logo, 8y = 96 y = 96 = 1 8 Então, cada camiseta custou R$ 1,00. Vamos agora conferir a segunda compra. Sabemos que ele comprou 9 camisetas e cada uma custou R$ 10,00, ou seja, R$,00 a menos. Então, ele gastou 9 10 = 90 reais, o que confere com o enunciado. Conferindo o problema 3 Nesse problema, concluímos que as medidas do retângulo devem ser 3,6 m e 1,38 m. Vamos então conferir sua área. Área do retângulo = 3,6. 1,38 = 4,9956 m², que é aproimadamente 5 m², como pede o enunciado. Nossa resposta, portanto, está certa. Eercícios Eercício 1 Os números 1,, 3, 4... são chamados de números naturais. Cada número natural possui um consecutivo, que é o número que vem depois dele. Por eemplo, o consecutivo de 1 é. O consecutivo de 8 é 9 etc. Multiplicando-se um número natural por seu consecutivo, encontramos 13. Que número é esse? Eercício Um triângulo retângulo tem hipotenusa 15. Um dos catetos tem 3 unidades a mais que o outro. Qual é o perímetro desse triângulo? Sugestão: Chame o menor cateto de e recorra ao Teorema de Pitágoras.
7 Eercício 3 Um terreno retangular tem 50 m² de área. Diminuindo seu comprimento em 3 m e aumentando sua largura em m, o terreno transforma-se em um quadrado. Qual é a área desse quadrado? Sugestão: Observe a figura abaio: A U L A 6 3 Eercício 4 Um grupo de pessoas saiu para almoçar em um restaurante, sendo que três delas são mulheres. A conta, de R$ 7,00, foi inicialmente dividida entre todos, mas depois os homens resolveram que, por gentileza, as mulheres não deveriam pagar. Então, cada homem contribuiu com mais R$ 4,00 e a conta foi paga. Quantas pessoas havia no grupo? Sugestão: Escolha as seguintes incógnitas: = número de pessoas do grupo y = valor que cada um deveria pagar a) Se a conta foi de R$ 7,00, qual é a primeira equação? b) Se eistem 3 mulheres no grupo, quantos são os homens? c) Se, no pagamento, cada homem contribuiu com mais R$ 4,00, qual é a segunda equação? Eercício 5 Na figura abaio eistem 0 pontos arrumados em 5 linhas e 4 colunas: Imagine que 480 soldados estão formados, arrumados em linhas e colunas. O número de linhas é 4 unidades maior que o número de colunas. Quantas são as linhas e as colunas dessa formação?
Problemas do 2º grau
A UUL AL A 6 6 Problemas do º grau Nas Aulas 4 e 5, tratamos de resoluções de equações do º grau. Nesta aula, vamos resolver problemas que dependem dessas equações. Observe que o significado das incógnitas
CEEJA MAX DADÁ GALLIZZI
CEEJA MAX DADÁ GALLIZZI MATEMÁTICA ENSINO MÉDIO APOSTILA 09 Parabéns!!! Você já é um vencedor! Voltar a estudar é uma vitória que poucos podem dizer que conseguiram. É para você, caro aluno, que desenvolvemos
Vamos iniciar, nesta aula, a revisão do nosso. Vamos, inicialmente, escolher nossas incógnitas: x = número de homens. y = número de mulheres.
A UA UL LA Revisão I Introdução Vamos iniciar, nesta aula, a revisão do nosso curso do 2º grau. Ela será feita em forma de exemplos que vão abordar de novo os principais conteúdos. Para aproveitar bem
Resolvendo sistemas. Nas aulas anteriores aprendemos a resolver
A UA UL LA Resolvendo sistemas Introdução Nas aulas anteriores aprendemos a resolver equações de 1º grau. Cada equação tinha uma incógnita, em geral representada pela letra x. Vimos também que qualquer
Semelhança e áreas 1,5
A UA UL LA 21 21 Semelhança e áreas Introdução Na Aula 17, estudamos o Teorema de Tales e a semelhança de triângulos. Nesta aula, vamos tornar mais geral o conceito de semelhança e ver como se comportam
Equacionando problemas - II
A UA UL LA Equacionando problemas - II Introdução Nossa aula Nas duas últimas aulas, resolvemos diversas equações do º grau pelo processo de completar o quadrado perfeito ou pela utilização da fórmula
BANCO DE QUESTÕES ÁLGEBRA 9º ANO ENSINO FUNDAMENTAL ===========================================================================================
PROFESSOR: MARCELO SOARES BANCO DE QUESTÕES ÁLGEBRA 9º ANO ENSINO FUNDAMENTAL =========================================================================================== 01- Um azulejista usou 2000 azulejos
A equação da circunferência
A UA UL LA A equação da circunferência Introdução Nas duas últimas aulas você estudou a equação da reta. Nesta aula, veremos que uma circunferência desenhada no plano cartesiano também pode ser representada
Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M.
Módulo de Círculo Trigonométrico Relação Fundamental da Trigonometria a série EM Círculo Trigonométrico Relação Fundamental da Trigonometria Exercícios Introdutórios Exercício Se sen x /, determine Exercício
Material Teórico - Módulo Função Quadrática. Funcão Quadrática: Exercícios. Primeiro Ano do Ensino Médio
Material Teórico - Módulo Função Quadrática Funcão Quadrática: Eercícios Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 1 Eercícios f() Eemplo
A equação da reta. são números conhecidos. Seja então (x, y) um ponto qualquer dessa reta. e y 2. , x 2
A equação da reta A UUL AL A Vamos, nesta aula, retomar o assunto que começamos a estudar nas Aulas 9 e 30: a equação da reta. Aprenderemos hoje outra forma de obter a equação da reta e veremos diversas
CADERNO DE EXERCÍCIOS 1B
CADERNO DE EXERCÍCIOS B Ensino Médio Matemática Questão Conteúdo Habilidade da Matriz da EJA/FB Equação do º grau H7 H8 2 Teorema de Pitágoras H3 3 Área de figuras planas H3 Proporcionalidade H3 Caderno
TEOREMA DE PITÁGORAS AULA ESCRITA
TEOREMA DE PITÁGORAS AULA ESCRITA 1. Introdução O Teorema de Pitágoras é uma ferramenta importante na matemática. Ele permite calcular a medida de alguma coisa que não conseguimos com o uso de trenas ou
Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais
Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Taxa de Variação e Derivada Tarefa n.º 1. Quando o Afonso sai
Resolvendo equações. 2 = 26-3 α φ-1
A UA UL LA Resolvendo equações Introdução À medida que os problemas se tornam mais complicados, o método algébrico vai se impondo naturalmente ao método aritmético. Resolver equações fará parte das nossas
SIMULADO COMENTADO PARA TCM / RJ
) Ao se aumentar em m um dos lados de uma sala de forma quadrangular, e o outro lado em 3 m, a sala tornou-se retangular, com 56 m² de área. Então, a medida, em metros, do lado do quadrado era igual a
UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE
www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE
A álgebra nas profissões
A álgebra nas profissões A UUL AL A Nesta aula, você vai perceber que, em diversas profissões e atividades, surgem problemas que podem ser resolvidos com o auxílio da álgebra. Alguns problemas são tão
Aula de exercícios (21/05/2016) 1) (OBM) Três quadrados são colados pelos seus vértices entre si e a dois bastões verticais, como mostra a figura.
Aula de eercícios (21/05/2016) 1) (OBM) Três quadrados são colados pelos seus vértices entre si e a dois bastões verticais, como mostra a figura. A medida do ângulo é: A primeira informação que devemos
CPV o Cursinho que mais aprova na GV
CPV o Cursinho que mais aprova na GV FGV ADM 4/dezembro/16 MAteMátiCA 1. Estima-se que, em determinado país, o consumo médio por minuto de farinha de trigo seja 4,8 toneladas. Nessas condições, o consumo
CÁLCULO DE ÁREA DAS FIGURAS PLANAS. Professor: Marcelo Silva. Natal-RN, agosto de 2013
CÁLCULO DE ÁREA DAS FIGURAS PLANAS Professor: Marcelo Silva Natal-RN, agosto de 013 ÁREA A reunião de um polígono com sua região interior é denominada superfície do polígono. A medida da superfície é expressa
Exercícios sobre trigonometria em triângulos
Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira [email protected] Eercícios sobre
Gabarito de Matemática do 8º ano do E.F. Lista de Exercícios (L17)
Gabarito de Matemática do 8º ano do E.F. Lista de Eercícios (L7) Queridos alunos, nesta lista vamos resolver equações fracionárias (aquelas que possuem incógnita nos denominadores) e mais algumas situações-problema
Matemática. Geometria plana
Matemática Geometria plana 01.Os valores que podem representar os lados de um triângulo obtusângulo são a) 1 cm, 2 cm e 3 cm. b) 2 cm, 3 cm e 4 cm. c) 3 cm, 4 cm e 5 cm. d) 4 cm, 5 cm e 6 cm. e) 5 cm,
Agora vamos rever alguns conceitos básicos. da Geometria, estudados ao longo do Telecurso Observe a figura abaixo e resolva a seguinte questão:
A UA UL LA Revisão II Geometria Introdução Agora vamos rever alguns conceitos básicos da Geometria, estudados ao longo do Telecurso 2000. Observe a figura abaixo e resolva a seguinte questão: Uma formiga
Lista de Exercícios (Prof. Rivaildo 9º Anos) (Álgebra ETAPA II)
Lista de Exercícios (Prof. Rivaildo 9º Anos) (Álgebra ETAPA II) 01. Um grupo de alunos do 9º ano decidiram se juntar para pintar o Bloco Onda Verde, dando-lhe um novo visual, já que estão se despedindo
Soluções das Questões de Matemática do Processo Seletivo de Admissão à Escola de Aprendizes- Marinheiros PSAEAM
Soluções das Questões de Matemática do Processo Seletivo de Admissão à Escola de Aprendizes- Marinheiros PSAEAM Questão 1 Concurso 010 Sabendo que 1 grosa é equivalente a 1 dúzias, é correto afirmar que
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4
FICHA de AVALIAÇÃO de MATEMÁTICA A º Ano Versão Nome: Nº Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias Quando,
CADERNO DE EXERCÍCIOS 1C
CADERNO DE EXERCÍCIOS C Ensino Médio Matemática Questão Conteúdo Teorema de Pitágoras Área de círculo Equação do º grau Área de círculo Equação do º grau Habilidade da Matriz da EJA/FB H H7 H8 H H7 H8
REVISÃO 9º ANO - MATEMÁTICA MATEMÁTICA - PROF: JOICE
MATEMÁTICA - PROF: JOICE 1- Resolva, em R, as equações do º grau: 7x 11x = 0. x² - 1 = 0 x² - 5x + 6 = 0 - A equação do º grau x² kx + 9 = 0, assume as seguintes condições de existência dependendo do valor
Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros. Barbosa, L.S.
Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros Barbosa, L.S. [email protected] 4 de janeiro de 2014 2 Sumário I Provas 5 1 Matemática 2013/2014 7 II Soluções 11 2 Matemática
Objetivos. Expressar o vértice da parábola em termos do discriminante e dos
MÓDULO 1 - AULA 17 Aula 17 Parábola - aplicações Objetivos Expressar o vértice da parábola em termos do discriminante e dos coeficientes da equação quadrática Expressar as raízes das equações quadráticas
Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.
9 ENSINO 9-º ano Matemática FUNDAMENTAL Atividades complementares Este material é um complemento da obra Matemática 9 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida. Samuel
COLÉGIO SHALOM Ensino Fundamental II 9º ANO Profº: RONALDO VILAS BOAS COSTA Disciplina: GEOMETRIA 9 B 25 C
COLÉGIO SHALOM Ensino Fundamental II 9º ANO Profº: RONALDO VILAS BOAS COSTA Disciplina: GEOMETRIA TRABALHO Data: /1/018 Nota: Estudante :. No. 1) O valor de no triângulo retângulo abaio é: a) 10. b) 1.
Teorema de Pitágoras
Teorema de Pitágoras Luan Arjuna 1 Introdução Uma das maiores preocupações dos matemáticos da antiguidade era a determinação de comprimentos: desde a altura de um edifício até a distância entre duas cidades,
Sistemas do 1º grau. Pedro e José são amigos. Ao saírem do trabalho, Nossa aula
A UUL AL A Sistemas do 1º grau Pedro e José são amigos. Ao saírem do trabalho, passaram por uma livraria onde havia vários objetos em promoção. Pedro comprou 2 cadernos e 3 livros e pagou R$ 17,40, no
Aula 1: Revisando o Conjunto dos Números Reais
Aula 1: Revisando o Conjunto dos Números Reais Caro aluno, nesta aula iremos retomar um importante assunto, já estudado em anos anteriores: o conjunto dos números reais. Frequentemente, encontramo-nos
Complemento Matemático 03 Ciências da Natureza I TEOREMA DE PITÁGORAS Física - Ensino Médio Material do aluno
01. Para essa atividade sugerimos inicialmente que você observe a ilustração abaio e responda aos questionamentos: 1 cm 1 cm a. Calcule a área dos dois quadrados menores que estão em destaque: b. Some
Resumo: Nestas notas faremos um breve estudo sobre as principais propriedades. mínimos, gráficos e algumas aplicações simples.
Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Equação quadrática Prof. Doherty
CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito
CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito BREVE REVISÃO DE GEOMETRIA PARA AJUDAR NO ESTUDO DOS VETORES É importante que o aluno esteja bem familiarizado com as propriedades usuais da geometria plana,
Exercícios Propostos
Cursinho: Universidade para Todos Professor: Cirlei Xavier Lista: 5 a Lista de Matemática Aluno (a): Disciplina: Matemática Conteúdo: Equações e Funções Turma: A e B Data: Setembro de 016 01. Resolva 11
Resumo: Nestas notas faremos um breve estudo sobre as principais propriedades. mínimos, gráficos e algumas aplicações simples.
Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Equação quadrática Prof. Doherty
CADERNO DE EXERCÍCIOS 1B
CADERNO DE EXERCÍCIOS B Ensino Médio Ciências da Natureza I Questão Conteúdo Habilidade da Matriz da EJA/FB Equação do º grau H2 H22 2 Teorema de Pitágoras H6 Aceleração média H2 Impulso H2 . A produção
TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS
TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS 1) Uma escada está apoiada em um muro de 2 m de altura, formando um ângulo de 45º. Forma-se, portanto, um triângulo retângulo isósceles. Qual é o comprimento da escada?
Resolução prova de matemática UDESC
Resolução prova de matemática UDESC 009. Prof. Guilherme Sada Ramos Guiba 1. O enunciado da questão omite a palavra, mas quer dizer que 0% dos aprovados passaram somente na disciplina A, 50% passaram somente
PROF. ARTHUR LIMA ESTRATÉGIA CONCURSOS
PROF. ARTHUR LIMA ESTRATÉGIA CONCURSOS VUNESP CÂMARA SJC 2018) Um terreno tem 0,50 quilômetro quadrado de área. Em metros quadrados, a área desse terreno corresponde a (A) 5000000. (B) 500000. (C) 50000.
1º Trimestre Matemática - 27/03/ 18 Ensino Fundamental 9º ano classe: A-B-C-D - Prof. Marcelo Nome:, nº LISTA DE EXERCÍCIOS ROTEIRO DE ESTUDOS
1º Trimestre Matemática - /0/ 18 Ensino Fundamental 9º ano classe: A-B-C-D - Prof Marcelo Nome:, nº LISTA DE EXERCÍCIOS ROTEIRO DE ESTUDOS RACIONALIZAÇÃO DE DENOMINADORES PARTE 1 São três casos: 1 caso:
NIVELAMENTO 2012/1 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase
NIVELAMENTO 0/ MATEMÁTICA BÁSICA Núcleo Básico da Primeira Fase Instituto Superior Tupy Nivelamento de Matemática Básica. Adição e Subtração Regra:. REGRAS DOS SINAIS Sinais iguais: Adicionamos os algarismos
Matemática GEOMETRIA PLANA. Professor Dudan
Matemática GEOMETRIA PLANA Professor Dudan Ângulos Geometria Plana Ângulo é a região de um plano concebida pelo encontro de duas semirretas que possuem uma origem em comum, chamada vértice do ângulo. A
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ano Versão Nome: N.º Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando,
1 Curso Eduardo Chaves-www.eduardochaves.com
1 Curso Eduardo Chaves-www.eduardochaves.com Lista de exercícios de equação do 2º grau, biquadrada e equações irracionais, para estudar para prova do 2º bimestre. 1) Resolva as seguintes equações do 2º
NOÇÕES DE GEOMETRIA PLANA
NOÇÕES DE GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. Altura de um triângulo é o segmento de
01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x?
EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - ª ETAPA ============================================================================================== 01- Assunto: Equação do º grau.
Exercícios (Potenciação)
COLÉGIO SHALOM Ensino Fundamental II 9º ANO Profº: RONALDO VILAS BOAS COSTA Disciplina: MATEMÁTICA TRABALHO Data: 0//0 Nota: Estudante :. No. Exercícios (Potenciação) 0. Calcule: b) c) d) e) (-) f) - g)
Nome: N.º: Endereço: Data: Telefone: PARA QUEM CURSA O 8 Ọ ANO DO ENSINO FUNDAMENTAL EM 2018 Disciplina: MATEMÁTICA
Nome: N.º: Endereço: Data: Telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO DO ENSINO FUNDAMENTAL EM 018 Disciplina: MATEMÁTICA Prova: DESAFIO NOTA: QUESTÃO 16 Qual é o valor da expressão? 016 1 01
7 o ano/6 a série E.F.
Módulo de Notação Algébrica e Introdução às Equações Eercícios de Notação Algébrica. 7 o ano/6 a série E.F. Eercícios de Notação Algébrica Notação Algébrica e Introdução às Equações. 1 Eercícios Introdutórios
Áreas parte 1. Rodrigo Lucio Silva Isabelle Araújo
Áreas parte 1 Rodrigo Lucio Silva Isabelle Araújo Introdução Desde os egípcios, que procuravam medir e demarcar suas terras, até hoje, quando topógrafos, engenheiros e arquitetos fazem seus mapeamentos
Geometria Euclidiana Plana
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 014. Geometria Euclidiana Plana Parte II Joyce Danielle de Araújo - Engenharia de Produção Vitor Bruno - Engenharia Civil Introdução Desde os egípcios,
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - o ciclo 006-1 a Chamada Proposta de resolução 1. 1.1. Como a Marta pesa 45 kg, e para evitar lesões na coluna vertebral, o peso de uma mochila e o do material que se transporta
Exercícios Variados. 8 ano/e.f.
Módulo Miscelânea Eercícios Variados. 8 ano/e.f. Miscelânea. Eercícios Variados. 1 Eercícios Introdutórios Eercício 1. Um número par tem 10 algarismos e a soma desses algarismos é 8. Qual é o algarismo
Geometria Euclidiana Plana
CURSO INTRODUTÓRIO DE MTEMÁTIC PR ENGENHRI 016. Geometria Euclidiana Plana Parte II Danielly Guabiraba Dantas - Engenharia Civil Rafael lves da Silva - Engenharia Civil Introdução Desde os egípcios, que
Matéria: Matemática Concurso: Auditor Tributário ISS São José dos Campos 2018 Professor: Alex Lira
Concurso: Professor: Alex Lira Prova comentada: Auditor Tributário ISS SÃO JOSÉ DOS CAMPOS 2018 Matemática SUMÁRIO CONTEÚDO PROGRAMÁTICO PREVISTO NO EDITAL... 3 QUESTÕES COMENTADAS... 3 LISTA DE QUESTÕES...
NOÇÕES DE GEOMETRIA PLANA
NOÇÕES DE GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. De acordo com o número de lados o polígono
A Matemática é assim: ela representa objetos por símbolos. Podemos interpretar o desenho da figura anterior de duas maneiras: r-- ~
Aula 9 Vamos imaginar o seguinte: você precisa saber quanto é 14 x 12, mas ainda não sabe fazer esta conta e, também, não dispõe de uma calculadora para ajudá-ia. Um amigo sugeriu que você fizesse 140
9 0 Fund. II Disciplina Professora Natureza Trimestre/Ano Data Valor Roteiro de estudo Matemática Vânia e exercícios de revisão
Nome Nº Ano Ensino Turma 9 0 Fund. II Disciplina Professora Natureza Trimestre/Ano Data Valor Roteiro de estudo Matemática Vânia e exercícios de revisão 0 /016 0 a 05/08/016 5,0 Introdução Querido(a) aluno(a),
1. Um exemplo de número irracional é (A) 4, (B) 4, (C) 4, (D) 3,42 4,
1. Um exemplo de número irracional é (A) 4,2424242... (B) 4,2426406... (C) 4,2323... (D) 3,42 4,2426406... Solução: Número irracional é o número decimal infinito e não periódico. (A) A parte decimal é
LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália
1. A idade de Paulo, em anos, é um número inteiro par que satisfaz a desigualdade x - x + 5 < 0. O número que representa a idade de Paulo pertence ao conjunto a) {1, 1, 14}. b) {15, 16, 17}. c) {18, 19,
2) Aplicando as relações métricas nos triângulos retângulos abaixo, determine o valor da incógnita: a) b)
Roteiro de Estudo: Matemática 9º ANO 3ºTRIMESTRE ( prova mensal)- prof. Lilian RELEMBRANDO... 1) O valor de x no triângulo retângulo abaixo é: a) 10. b) 12. c) 15. x A d) 18. 9 B 25 C 2) Aplicando as relações
Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros. Barbosa, L.S.
Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros Barbosa, L.S. [email protected] 6 de dezembro de 2014 2 Sumário I Provas 5 1 Matemática 2013/2014 7 2 Matemática 2014/2015
Garantia de aprovação escolar
1) Uma pessoa caminha em uma pista plana com a forma de triângulo retângulo. Ao dar uma volta completa na pista com velocidade constante de caminhada, ela percorre 600 e 800 metros nos trajetos correspondentes
Gabaritos das aulas 1 a 20
Gabaritos das aulas 1 a 20 Aula 1 - Recordando operações Introdução a) adição (180 + 162) b) subtração (0-37) c) multiplicação (16 ) d) divisão (24 : 3) Eercícios a) 80 b) 37 c) - 37 d) e) 19 f) - 1 g)
Matemática. Atividades. complementares. FUNDAMENTAL 8-º ano. Este material é um complemento da obra Matemática 8. uso escolar. Venda proibida.
8 ENSINO FUNDAMENTAL 8-º ano Matemática Atividades complementares Este material é um complemento da obra Matemática 8 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida. Samuel
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1
FICHA de AVALIAÇÃO de MATEMÁTICA A 11º Ano Versão 1 Nome: Nº Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias Quando,
MATEMÁTICA - 3o ciclo Proporcionalidade inversa (9 o ano) Propostas de resolução
MATEMÁTICA - 3o ciclo Proporcionalidade inversa (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como a função f é uma função de proporcionalidade inversa, então
1 SEMELHANÇA EM TRIÂNGULOS RETÂNGULOS DICA DO MINGUADO. Matemática 2 Pedro Paulo. Semelhança entre e :
Matemática 2 Pedro Paulo GEOMETRIA PLANA XIII 1 SEMELHANÇA EM TRIÂNGULOS RETÂNGULOS Seja um triângulo retângulo, com ângulos agudos e. Traçando a altura relativa à hipotenusa, formamos os triângulos retângulos
NOME: TURMA: 1F8 C Nº PROFESSOR(A): Gerson Delcolle
NOME: TURMA: 1F8 C Nº PROFESSOR(A): Gerson Delcolle ATIVIDADE DE: Matemática (Trabalho) AVALIAÇÃO: (X) A ( ) B A1 A2 ( )A3 NOTA: Data: /12/2018 Recuperação Semestral ( x ) Recuperação Final Substitutiva
A Matemática é assim: ela representa objetos por símbolos. Podemos interpretar o desenho da figura anterior de duas maneiras: r-- ~
Acesse: http://fuvestibular.com.br/ Aula 9 Vamos imaginar o seguinte: você precisa saber quanto é 14 x 12, mas ainda não sabe fazer esta conta e, também, não dispõe de uma calculadora para ajudá-ia. Um
MATEMÁTICA - 3o ciclo Monómios e Polinómios (8 o ano) Propostas de resolução
MATEMÁTICA - 3o ciclo Monómios e Polinómios (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Identificando a diferença de quadrados na expressão (1), o quadrado da
MATEMÁTICA - 3o ciclo Proporcionalidade inversa (9 o ano) Propostas de resolução
MATEMÁTICA - 3o ciclo Proporcionalidade inversa (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Calculando a imagem do objeto 2 pela função f, temos: f(2) = 6 2
Questão 2. Questão 1. Questão 3. Resposta. Resposta. Resposta
ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço a ela reservado. Não basta escrever apenas o resultado final: é necessário mostrar os cálculos ou o raciocínio utilizado. Questão Emumasalaháumalâmpada,umatelevisão
GABARITO E PAUTA DE CORREÇÃO DO ENQ Questão 2 [ 1,0 pt ::: (a)=0,5; (b)=0,5 ] Sejam a, b, p inteiros, com p primo.
GABARITO E PAUTA DE CORREÇÃO DO ENQ-014. Questão 1 [ 1,0 pt ::: (a)=0,5; (b)=0,5 ] Sejam a, b, p inteiros, com p primo. Demonstre que: (a) se p não divide a, então (p, a) = 1. (b) se p ab, então p a ou
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 016. Gabarito Questão 01 [ 1,00 ] A secretaria de educação de um município recebeu uma certa quantidade de livros para distribuir entre as escolas
a) 4x 10 = 0, onde x é a incógnita e 4 é 10 são os coeficientes. b) x + 3 = 4x + 8
Equação do 1º Grau Introdução Equação é uma sentença matemática aberta epressa por uma igualdade envolvendo epressões matemáticas. Uma equação é composta por incógnitas e coeficientes (esses são conhecidos).
LISTA 1. a) [57, 60] c) [60, 180[ b) ]58, 116] d) ]57, 178]
LISTA 1 1- Seja n N tal que n dividido por 5 deia resto 3, n dividido por 4 deia resto e n dividido por 3 deia resto 1. Os três primeiros números naturais que satisfazem as condições de n pertencem ao
Capítulo Aplicações do produto interno
Cálculo - Capítulo 1.4 - Aplicações do produto interno - versão 0/009 1 Capítulo 1.4 - Aplicações do produto interno 1.4.1 - Ortogonalidade entre vetores 1.3.3 - Ângulo entre vetores 1.4. - Projeção ortogonal
A lei dos co-senos. Utilizando as razões trigonométricas nos triângulos. b = = 48. b = 4 cos B = 4 8 = 1 2 Þ B = 60º
A UA UL LA A lei dos co-senos Introdução Utilizando as razões trigonométricas nos triângulos retângulos, podemos resolver vários problemas envolvendo ângulos e lados. Esse tipo de problema é conhecido
Aula 2 A distância no espaço
MÓDULO 1 - AULA 2 Objetivos Aula 2 A distância no espaço Determinar a distância entre dois pontos do espaço. Estabelecer a equação da esfera em termos de distância. Estudar a posição relativa entre duas
XXVII Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas
Gabarito da Prova da Primeira Fase Nível Alfa 1 Questão 1 Na disciplina de Matemática serão realizadas duas provas durante o primeiro semestre A primeira prova com peso 2 e a segunda prova com peso 3 Caso
Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF.
Teorema de Tales O Teorema de Tales possui diversas aplicações no cotidiano, que devem ser demonstradas a fim de verificar sua importância. O Teorema diz que retas paralelas, cortadas por transversais,
Questão 26) considere os conjuntos finitos A = {0,1,3,5,6}, B = {-1,0,2,4,5,6,7} e C = {1,2,3,4,7,8} e as afirmações:
PROVA PMSE Soldado - VERSÃO A MATEMÁTICA Questão 26) considere os conjuntos finitos A = {0,1,3,5,6}, B = {-1,0,2,4,5,6,7} e C = {1,2,3,4,7,8} e as afirmações: I. O total de elementos do conjunto que representa
Acervo de provas do Curso Precursor
cervo de provas do Curso Precursor www.precursor.1br.net [email protected] PROV DE MTEMÁTIC ES 00 01) Um triângulo eqüilátero BC é inscrito em uma circunferência de raio 10. área compreendida
Material Teórico - Módulo Equações do Segundo Grau. Equações de Segundo Grau: outros resultados importantes. Nono Ano do Ensino Funcamental
Material Teórico - Módulo Equações do Segundo Grau Equações de Segundo Grau: outros resultados importantes Nono Ano do Ensino Funcamental Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio
