OTIMIZAÇÃO ESTRUTURAL DE CAIXAS DE ARMAZENAMENTO DE ÁGUA. Thiago Pereira Mohallem IC E-mail: tpmohallem@hotmail.com João Carlos Menezes PQ



Documentos relacionados
ANÁLISE NUMÉRICA DE VIGAS DE CONCRETO ARMADAS COM BARRAS DE FIBRA DE VIDRO (GFRP) E AÇO. Rafael dos Santos Lima 1 ; Fábio Selleio Prado 2

Efeitos dinâmicos do Vento em Edifícios Altos. Byl Farney Rodrigues da CUNHA JR¹; Frederico Martins Alves da SILVA²;

Estruturas de Concreto Armado. Eng. Marcos Luís Alves da Silva

Análise numérica de fundações diretas de aerogeradores Carlos A. Menegazzo Araujo, Dr. 1, André Puel, Msc 2, Anderson Candemil 3

CEMEF ENGENHARIA S/C LTDA. RELATÓRIO RT ANALISE ESTRUTURAL DE JANELA DE INSPEÇÃO. Cliente: INFRARED


Instituto Federal do Espírito Santo

2 Materiais e Métodos

COMPARAÇÃO DE CÁLCULOS ANALÍTICOS COM ELEMENTOS FINITOS DE VIGAS COMPOSTAS

EXERCÍCIOS DE ESTRUTURAS DE MADEIRA

Resistência dos Materiais II: Vasos de Pressão de Paredes Finas

ɸ E = ΣE.A (5) 14/04/2015. Bacharelado em Engenharia Civil. Física III

Rua Dianópolis, 122-1º andar CEP: Parque da Mooca - São Paulo / SP - Brasil Telefone: 55 (11) / Fax: 55 (11)

Introdução ao Projeto de Aeronaves. Aula 36 Dimensionamento Estrutural por Análise Numérica

ANÁLISE ESTRUTURAL DE RIPAS PARA ENGRADAMENTO METÁLICO DE COBERTURAS

Estudo Comparativo de Cálculo de Lajes Analogia de grelha x Tabela de Czerny

Tutorial de Viga: Ansys - Beam3

O tornado de projeto é admitido, para fins quantitativos, com as seguintes características [15]:

Introdução. 1. Generalidades. Para o aço estrutural. Definição

UNIVERSIDADE SÃO JUDAS TADEU

Disciplina: Resistência dos Materiais Unidade I - Tensão. Professor: Marcelino Vieira Lopes, Me.Eng.

Questão 1 Descritor: D4 Identificar a relação entre o número de vértices, faces e/ou arestas de poliedros expressa em um problema.

Universidade Federal de Minas Gerais Departamento de Engenharia Mecânica

Critérios de falha. - determinam a segurança do componente; - coeficientes de segurança arbitrários não garantem um projeto seguro;

Cotagens especiais. Você já aprendeu a interpretar cotas básicas

Corte e dobra. Nesta aula, você vai ter uma visão geral. Nossa aula. Princípios do corte e da dobra

Ajuste dos Parâmetros de um Controlador PI em uma Coluna de Destilação Binária

SUPERESTRUTURA estrutura superestrutura infra-estrutura lajes

POROSIMETRIA AO MERCÚRIO

RELATÓRIO TÉCNICO ARGOPAR PARTICIPAÇÔES LTDA FUNDAÇÕES ITABORAÍ SHOPPING ITABORAÍ - RJ ÍNDICE DE REVISÕES

Introdução ao Projeto de Aeronaves. Aula 39 Relatório de Projeto Técnicas de Estruturação

Vila das Acácias CEP São José dos Campos - SP - Brasil, loures@iae.cta.br

CONSUMO DE CIMENTO EM CONCRETOS DE CIMENTO PORTLAND: A INFLUÊNCIA DA MASSA ESPECÍFICA DOS AGREGADOS

5 Modelos Estruturais

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31)

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA ESFERAS E SUAS PARTES PROF. CARLINHOS NOME: N O :

Física Parte 2. Fórmulas para obtenção das grandezas: 1.Superfície 2.Volume 3.Densidades 4.Vazão 5.Pressão 6.Teorema de Pascal 7.

Introdução ao Método dos Elementos Finitos Conceitos Iniciais Divisão do Domínio e Funções de Base Aplicação do Método dos Resíduos Ponderados ao

Artigo submetido ao Curso de Engenharia Civil da UNESC - como requisito parcial para obtenção do Título de Engenheiro Civil

P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II FLEXÃO SIMPLES

UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE AGRONOMIA E ENGENHARIA DE ALIMENTOS SETOR DE ENGENHARIA RURAL. Prof. Adão Wagner Pêgo Evangelista

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais

Bloco sobre estacas Bielas Tirantes. Método Biela Tirante

CÁLCULO DE INCERTEZA EM ENSAIO DE TRAÇÃO COM OS MÉTODOS DE GUM CLÁSSICO E DE MONTE CARLO

ANÁLISE DE TENSÕES ELASTO-PLÁSTICA DE UMA DEFORMAÇÃO PERMANENTE (MOSSA) EM UM DUTO. Fátima Maria Nogueira de Souza SOFTEC Software Technology Ltda

UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA ALUNA LENAMIRIA CRUZ

APLICAÇÕES DA DERIVADA

INSPEÇÃO BASEADA EM RISCO SEGUNDO API 581 APLICAÇÃO DO API-RBI SOFTWARE

QUAL O NÚMERO DE VEÍCULOS QUE CIRCULA EM SÃO PAULO?

Tubos de Concreto. Tubos de concreto com fibras para águas pluviais e esgoto. Antonio D. de Figueiredo

a) 0:1:3; b) 1:0:4; c) 1:0,5:5; d) 1:1,5:7; e) 1:2:9; f) 1:2,5:10

PROGRAMA AUTOTRUSS 2.0

5. CONSIDERAÇÕES FINAIS

Estruturas Metálicas. Módulo V. Torres

Miguel C. Branchtein, Delegacia Regional do Trabalho no Rio Grande do Sul

Volumes parte 02. Isabelle Araujo

Profª. Angela A. de Souza DESENHO DE ESTRUTURAS

LISTA 3 EXERCÍCIOS SOBRE ENSAIOS DE COMPRESSÃO, CISALHAMENTO, DOBRAMENTO, FLEXÃO E TORÇÃO

PESQUISA OPERACIONAL: UMA ABORDAGEM À PROGRAMAÇÃO LINEAR. Rodolfo Cavalcante Pinheiro 1,3 Cleber Giugioli Carrasco 2,3 *

Observação do Contato Concreto-Solo da Ponta de Estacas Hélice Contínua

3. Programa Experimental

1 Analise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra.

As forças atrativas entre duas moléculas são significativas até uma distância de separação d, que chamamos de alcance molecular.

Esfera e Sólidos Redondos Área da Esfera. Volume da Esfera

SISTEMA MÉTRICO DECIMAL

ESTRUTURAS METÁLICAS UFPR CAPÍTULO 5 FLEXÃO SIMPLES

A utilização dos roletes ESI no Brasil

ANÁLISE DO ESCOAMENTO DE UM FLUIDO REAL: água

Curso de Engenharia de Produção. Processos de Fabricação

MÓDULO 03 - PROPRIEDADES DO FLUIDOS. Bibliografia

Capítulo 1 - Estática

MÉTODO DE DOSAGEM EPUSP/IPT

Facear Concreto Estrutural I

Capítulo 11 MOTORES ELÉTRICOS DE CORRENTE CONTÍNUA E UNIVERSAL. Introdução

ANÁLISE NUMÉRICA DA ADERÊNCIA ENTRE AÇO E CONCRETO ENSAIO PULL-OUT TEST

a) 290mm; 250mm; 200mm b) 400mm; 475mm; 350mm c) 250mm; 200mm; 330mm d) 250mm; 350mm; 200mm

5. Resultados e Análises

Resultados e Discussões 95

IW10. Rev.: 02. Especificações Técnicas

DISCIPLINA AMB30093 TERMODINÂMICA - Aula 3 17/10/2013. Prof. Robson Alves de Oliveira robson.aoliveira@gmail.com.br robson.oliveira@unir.

1.1 Conceitos fundamentais Vantagens e desvantagens do concreto armado Concreto fresco...30

ANÁLISE DO COMPORTAMENTO ANISOTRÓPICO DE PRISMAS DE ALVENARIA ESTRUTURAL CERÂMICA

Ensaio de tração: cálculo da tensão

Problemas de volumes

Lição 3. Instrução Programada

4. Programa Experimental

Vigas Altas em Alvenaria Estrutural

ATUALIZAÇÃO EM SISTEMAS ESTRUTURAIS

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES

EXPRESSÃO GRÁFICA CAD NOMENCLATURA

5ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO FLEXÃO

CALDsoft7 - Software de planificação em caldeiraria

Desenvolvimento de Estratégia para Programação do Futebol de Robôs da Mauá

MODELAGEM BIOCAD DE PRÓTESE DENTÁRIA IMPLANTO-MUCO-SUPORTADA EM MANDÍBULA

Desenho e Projeto de tubulação Industrial

CIRCUITO PARA MEDIÇÃO DE CORRENTES ELEVADAS

UNESP DESENHO TÉCNICO: Fundamentos Teóricos e Introdução ao CAD. Parte 3/5: Prof. Víctor O. Gamarra Rosado

ESTRUTURAS DE CONCRETO SIMPLES PARA CASAS POPULARES. Jean Fred Guimarães dos Santos Roberto Redondo Perez. Prof. Carlos Augusto Gomes (Orientador) 1

Professora: Engª Civil Silvia Romfim

PUNÇÃO EM LAJES DE CONCRETO ARMADO

Transcrição:

OTIMIZAÇÃO ESTRUTURAL DE CAIXAS DE ARMAZENAMENTO DE ÁGUA Thiago Pereira Mohallem IC E-mail: tpmohallem@hotmail.com João Carlos Menezes PQ Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica Departamento de Projetos Pça. Mal. Eduardo Gomes, n o 50, Vila das Acácias CEP: 12228-901, São José dos Campos - SP RESUMO Esse trabalho visa o estudo da geometria de caixas de armazenamento de água, com o propósito de encontrar a melhor configuração para tais, sendo esta a que minimize as tensões estáticas no recipiente que são geradas pela pressão hidrostática.para tanto, foi utilizado o software de Elementos Finitos NASTRAN Versão 2.0 Evaluation System, que permite a análise de tensões estáticas, bem como a análise de vibrações de componentes, que podem ser modelados através da teoria de vigas, de cascas e de elementos sólidos. ABSTRACT This work aims for the study of geometry of an open vessel containing water. The main purpose of study is the determination of the best geometry which minimizes the static stresses produced by the hydrostatic pressure in the container. The software of finite elements NASTRAN Version 2.0 Evaluation System used, allows the analysis of static stresses and vibrations of any solid component, which can be modeled by beams, shells and solid elements. 1. INTRODUÇÃO Vasos de armazenamento de líquidos requerem avaliação de resistência estática e dinâmica. A teoria de cascas pode ser empregada na grande maioria das modelagens desses vasos. Nota-se que a geometria dos vasos desempenha um papel importante na resistência estática e bem como no comportamento vibratório. Especificamente, no caso de caixas de armazenamento de água, nota-se uma tendência recente de adoção de geometrias circulares e perfis cônicos. As antigas caixas de água residenciais eram construídas com uma geometria retangular, com leves adoçamentos nas arestas dos lados planos, o que evidentemente é uma geometria das mais inadequadas em termos de concentração de tensões elevadas nessas bordas. O perfil cônico deve ser avaliado com respeito ao grau de conicidade e dos reforços circunferenciais e a melhor geometria desses reforços no que diz respeito aos raios de adoçamento. Busca-se dessa forma encontrar geometrias alternativas e mais resistentes para as paredes desses recipientes, sem comprometer a quantidade de material empregado, que não deve ser muito ampliada, de forma a aumentar consideravelmente o custo de fabricação. Novas configurações, mais resistentes, são propostas ao final do trabalho. 2. CONSIDERAÇÕES PRELIMINARES Primeiramente é necessária a determinação de parâmetros e condições a que serão submetidos os modelos na simulação, tais como as expressões para o cálculo do volume do tronco de cone, para a quantidade de material a ser utilizada em cada modelo, bem como estipular um material a ser empregado e estabelecer as condições de contorno necessárias para a simulação computacional.

2.1. Cálculo dos Volumes e Definição de Dimensões Com o emprego do programa NASTRAN Versão 2.0, o carregamento de água em várias geometrias diferentes para a caixa de armazenamento foi simulado. Para tanto, fixou-se a espessura em 1 mm, o volume em 1000 litros, ou 1 m 3, e o raio da base (inferior) em 0,5 m, ou 50 cm, e foi variado o raio da tampa (superior) e, conseqüentemente, a altura do tronco, de modo a manter o mesmo volume. Desse modo pode-se comparar qual geometria minimiza as tensões nas fibras externas do recipiente para uma mesma capacidade volumétrica. Iniciando o estudo com um cilindro, para obtenção de uma noção comparativa de valores, pode-se obter que volume do cilindro é dado por: V = π.r 2.h onde r = 0,5 m é o raio da base e o volume V = 1 m 3. Para essas definições pode-se encontrar a altura do cilindro h = 1,273 m. Para o tronco de cone, sabe-se que seu volume é calculado da seguinte forma: V = (1/3).π.h.(R 2 + R.r + r 2 ) onde r = 0,5 m é o raio da base e V = 1 m 3 o volume do tronco, que são valores fixos, e R o raio da tampa e h a altura do tronco, que são os valores que serão variados. 2.2. Material Adotado Deve-se estipular um material a ser empregado no modelo de simulação no NASTRAN Versão 2.0, para serem efetuadas as análises. Como a escolha desse material não implica em variações no resultado relativo obtido entre os vários modelos, pois foi feita uma análise de tensões geradas, adotou-se aço como material padrão. O aço adotado tem os seguintes propriedades mecânicas: Módulo de elasticidade: E = 207 GPa Coeficiente de Poisson: ν = 0,3 Densidade: d = 7800 kg/m 3 2.3. Condições de Contorno Tem-se que também estabelecer as condições de contorno para o modelo a ser analisado, que são nesse caso muito complexas de serem simuladas. Na realidade, a condição de contorno em uma caixa d água residencial, por exemplo, seria o contato do chão na área da base do tronco de cone. Dessa forma, o movimento impedido por essa condição de contorno, que mais se aproxima da realidade, seria o deslocamento na direção Z (perpendicular à área da base). O problema nesse caso é que o impedimento de deformações na base nessa direção,que existem na realidade. Apesar disso, adotou-se essa condição de contorno em primeira análise. O problema encontrado, a partir de então, foi o de que limitando-se somente o movimento na direção Z o corpo não se encontrou em equilíbrio de forças, provavelmente devido a resíduos não desconsiderados pelo software. A solução adotada então, foi a de engastar o recipiente em um ponto, no mínimo. Sendo assim, optou-se por fixar os pontos da circunferência de junção entre a área lateral e a área da base, já que nessa região já se esperava encontrar altas tensões, devido à presença de quinas, e, dessa forma, manter-se uma simetria dos pontos fixos. 2.4. Cálculo da Quantidade de Material Para uma análise de custo, obtém-se agora a quantidade de material empregado em cada geometria. Para isso, utiliza-se as fórmulas das áreas laterais e da base de um tronco de cone, em

função de sua altura e raios, e com o valor da espessura obtém-se o volume. Com o valor da densidade pode-se assim chegar ao valor de massa desejado. Tem-se que: A L = π.(r + r).[(r r) 2 + h 2 ] 1/2 A B = π.r 2 V = e.(a B + A L ) M = d.v onde A L é a área lateral, A B é a área da base, V é o volume de material, d é a densidade do material, M é a massa do material, e é a espessura, R é o raio da tampa, r é o raio da base e h a altura do tronco de cone. Dessa forma, chega-se a uma equação da massa em função de h, R, e, r e d. M = d.e.{ π.(r + r).[(r r) 2 + h 2 ] 1/2 + π.r 2 } Além disso, o cálculo da área espacial necessária para a ocupação da caixa d água também é um fator a se considerar. Simplificadamente, pode-se dizer que essa área é igual à área da circunferência superior do tronco de cone, ou seja: A = π.r 2 Aplicando essas equações para cada modelo analisado acima, chegamos aos dados da tabela 1. Tabela 1: Quantidade de material e área espacial necessária a cada modelo analisado. Modelo Conicidade (º) Massa (Kg) Área espacial requerida (m 2 ) A 0 37,32 0,79 B 5,44 34,55 1,13 C 12,86 32,54 1,54 D 22,04 31,57 2,01 E 32,29 31,79 2,55 F 42,48 33,33 3,14 G 73,62 57,20 7,07 H 83,08 98,69 12,57 I 84,79 119,07 15,21 Pela tabela acima observa-se que pelo critério de menor material utilizado, o que minimiza os custos de fabricação, e uma pequena área espacial ocupada, é o modelo D, que utiliza aproximadamente 31,6 Kg, ocupando por volta de 2 m 2. 3. RESULTADOS DAS SIMULAÇÕES Foram feitas simulações para diversos graus de conicidade, primeiramente com o cilindro, e chegando-se até o tronco de cone com conicidade de aproximadamente 85º, encontrando-se uma distribuição de tensões similar em todos os modelos, caracterizada por uma alta concentração de tensões de tração no centro da área da base, e de compressão, na junção da área lateral com a área da base. Além disso, a área lateral foi a região que apresentou menores valores de tensão. Percebeu-se porém, que, quanto maior a conicidade, menores foram os valores de tensões obtidos, pois, ao se aumentar a conicidade, diminuiu-se a altura do tronco de cone, de modo a manter o mesmo volume. Com essa redução da altura, a pressão hidrostática também é reduzida, originando assim menores tensões. Sendo assim, calculou-se a quantidade de material necessária à construção de cada modelo,

bem como a área espacial ocupada por eles, como exposto acima, e foi escolhida a conicidade adequada baseada nesses resultados. Segue abaixo o modelo simulado escolhido, com conicidade de 22,04º, altura de 741 mm e raio superior de 80 cm, focalizando a distribuição de tensões ao longo da geometria: V1 L1 C1 897067049. 827934286. Z Y X Output Set: MSC/NASTRAN Case 1 Contour: Plate Bot Major Stress 758801523. 689668759. 620535996. 551403233. 482270470. 413137707. 344004944. 274872181. 205739418. 136606655. 67473892. -1658871. -70791634. -1.399E+8-2.091E+8 Figura 1: Distribuição das tensões principais no tronco de cone com R=80 cm carregado, vista inclinada. Uma vez determinada a conicidade do tronco de cone, passou-se a analisar o modelo escolhido adicionando-lhe nervuras ao longo da área lateral, percebendo-se porém efeitos não desejáveis nas tensões geradas, que aumentaram, indo contra o objetivo desse projeto em minimizar as tensões. Portanto, abandonou-se a tentativa de se adicionar nervuras e partiu-se para o adoçamento de cantos vivos. O principal canto vivo existente é a junção da área lateral com a área da base. Pode-se a partir de então, analisar os modelos com vários graus de adoçamento, que pode ser modelado de acordo com um fator chamado Blend Factor durante a criação da geometria a ser simulada no software de estudo. Quanto maior esse fator, mais brusca é a mudança de direção no ponto de ligação das áreas, ou seja, o canto fica mais vivo. Por outro lado, se esse fator for muito pequeno, a tendência é de que a ligação das áreas tenda a um plano, ou seja, a mudança mais brusca se afasta do ponto de ligação, ficando mais próxima do final das áreas a serem ligadas. Simularam-se modelos com diversos graus de adoçamento, chegando aos resultados apresentados na tabela 2. Tabela 2: Valores das tensões e deslocamentos máximos para cada modelo com adoçamento analisado, bem como as taxas de redução percentual em relação ao modelo sem adoçamento. Grau de Adoçamento Deslocamento Translacional Máximo (mm) Tensão Máxima de Tração (MPa) Redução Percentual em Relação ao Modelo Sem Adoçamento Tensão Máxima de Compressão (MPa) Redução Percentual em Relação ao Modelo Sem Adoçamento 0,8 222 719 19,8-307 0,3 0,9 154 572 36,2-184 40,3 1,0 155 576 35,8-167 45,8 1,1 156 577 35,7-178 42,2 1,3 156 579 35,5-168 45,5

Abaixo pode-se verificar o modelo com maior redução percentual das tensões em relação ao modelo sem adoçamento, onde o perfil da distribuição das tensões manteve-se de acordo com os modelos anteriores, e o maior deslocamento translacional encontrado ocorreu na área lateral, próximo à junção com a área da base. V1 L1 C1 575641574. 532323653. Y Z X Output Set: MSC/NASTRAN Case 1 Contour: Plate Bot Major Stress 489005732. 445687811. 402369890. 359051969. 315734048. 272416128. 229098207. 185780286. 142462365. 99144444. 55826523. 12508602. -30809319. -74127240. -1.174E+8 Figura 2: Distribuição das tensões principais no tronco de cone com R=80 cm carregado, com grau de adoçamento igual a 1,0, vista inclinada. 4. CONCLUSÕES A conclusão a que se chega, portanto, é a de que quanto maior a conicidade, menores as tensões geradas para um recipiente de mesma capacidade volumétrica. Assim sendo, como dito anteriormente, optou-se por limitar a conicidade no que diz respeito à menor quantidade de material utilizada e à menor área espacial ocupada. Analisando-se a Tabela 1, verifica-se que o grau de conicidade que minimiza o material utilizado e ocupa uma área espacial razoável, é o modelo de aproximadamente 22º de conicidade. A partir daí então visou-se minimizar os pontos de máximos de tensão, tanto de tração quanto de compressão, que foram possíveis, através da inclusão de nervuras na área lateral e adoçamentos nos cantos vivos existentes, principalmente na junção entre as áreas lateral e da base. Com a inclusão de nervuras na área lateral, notou-se que houve um aumento nos valores das tensões de tração, o que contrariava o objetivo do estudo, que é o de minimizar as tensões. Sendo assim, descartou-se o uso dessas nervuras na área lateral. Isso não significa que o acréscimo de nervuras extras reforçando a geometria não seja útil, apenas descartou-se que a geometria principal tenha essas nervuras. Em seguida considerou-se o adoçamento dos cantos vivos da junção das áreas da base e lateral, modulando esse adoçamento em vários graus, e verificando uma significativa diminuição nos valores das tensões encontradas. Através da tabela 2, pode-se então concluir que o melhor grau de adoçamento foi o grau 1,0, pois apresentou uma redução de 35,8% no máximo valor da tensão de tração e de 45,8% no máximo valor de compressão, além de apresentar praticamente o menor valor de máximo deslocamento translacional também.

Concluindo, como o desejado na proposta inicial desse trabalho, propõe-se a geometria descrita e exemplificada na figura abaixo, como sendo a mais adequada no sentido de minimizar as tensões e as deformações geradas num recipiente de armazenamento de água, com uma determinada capacidade volumétrica: V1 L1 C1 Y Z X Figura 3: Geometria proposta, vista inclinada. AGRADECIMENTOS Sem dúvida nenhuma a idealização e concretização desse projeto não seria possível sem o amparo e dedicação de várias pessoas. Agradecemos em especial ao CNPq/PIBIC, que prioriza o incentivo à pesquisa universitária e ao orientador Prof. João Carlos Menezes, que prestou um acompanhamento estreito à pesquisa, além de nos auxiliar nas principais dificuldades encontradas. REFERÊNCIAS BIBLIOGRÁFICAS 1 MSC/Nastran for Windows CAD Integration Module Version 2.0; The MacNeal-Schwendler Corporation, New York, 1995 2 Boresi, A. P.; Advanced mechanics of materials; John Wiley & Sons, Inc., New York, 1993 3 Gould, P. L.; Analysis of shells and plates; Springer-Verlag New York, Inc., New York, 1988