PROVA ESCRITA EDITAL DE SELEÇÃO
|
|
|
- João Henrique Casado Pedroso
- 7 Há anos
- Visualizações:
Transcrição
1 PROVA ESCRITA EDITAL DE SELEÇÃO 2017 Vagas remanescentes Parte A: Conteúdos Específicos Nesta parte da prova, o candidato deve escolher apenas três questões. O valor de cada questão é 1,0 (um ponto). Circule, a seguir, as três questões que você escolheu e que serão as questões a serem corrigidas. A não demarcação das questões implica em sua não correção, bem como uma marcação incorreta (mais do que três) implica na não correção da prova e consecutiva eliminação do candidato desse processo seletivo. A1 A2 A3 A4 Utilize caneta preta ou azul na resolução das questões. Se necessário, peça folhas para rascunho. Em nenhuma hipótese escreva seu nome ou qualquer dado de identificação nesta prova! Anote o número de seu código para possíveis consultas. Em cada questão não coloque apenas a resposta: mostre como chegou a ela. 1
2 A1. Uma casa está sendo construída em diferentes etapas. Para uma dessas etapas, prevista para acontecer em 18 dias, 12 pedreiros seriam necessários. No entanto, uma vistoria do projeto que durará três dias foi agendada e nesse período a construção não pode avançar. Sendo assim, quantos pedreiros serão necessários para realizar a mesma etapa de forma que não haja atrasos para o início da etapa seguinte? Justifique sua resposta. 2
3 A2. Em 1879 Joaquim Eugênio Gomes da Silva, o Nheco, fundava a fazenda Firme, na região que mais tarde tomou o nome de Nhecolândia. [...] A Nhecolândia abrange mais ou menos 600 léguas quadradas de campos naturais, com a configuração aproximada de um triângulo isósceles, tendo como altura e base 50 e 25 léguas, respectivamente (NETTO, J. B. A criação empírica de bovinos no pantanal da Nhecolândia. Editora Resenha Tributária: São Paulo, 1979, p 32-33). Considerando a descrição acima e os dados fornecidos, há uma diferença entre a área dada (600 léguas quadradas) e a área do triângulo considerando a base e a altura fornecidas. Qual a medida do lado do quadrado, em quilômetros, cuja área seja a diferença em questão? (Considere que 1 légua corresponde a 6 km). 3
4 A3. (ENEM 2016) Em um trabalho escolar, João foi convidado a calcular as áreas de vários quadrados diferentes, dispostos em sequência, da esquerda para a direita, como mostra a figura: O primeiro quadrado da sequência tem lado medindo 1 cm, o segundo quadrado tem lado medindo 2 cm, o terceiro quadrado tem lado medindo 3 cm e assim por diante. Pergunta-se: qual é a diferença entre a área de dois quadrados sucessivos quaisquer, considerando que a sequência continua indefinidamente? Esse número é sempre ímpar? Por quê? 4
5 A4. Em uma urna contendo duas bolas brancas, três bolas vermelhas e uma azul acrescenta-se uma bola que pode ser branca, azul ou vermelha. Em seguida retiram-se cinco bolas. Sabe-se que apenas duas das bolas retiradas eram brancas e que não restaram bolas azuis após a retirada. Em relação às bolas que restaram na urna, é correto afirmar que exatamente uma era vermelha? Justifique sua resposta. 5
6 Parte B Análise de Situações Didáticas Nesta parte da prova, o candidato deve escolher apenas duas questões. O valor de cada questão é 1,5 pontos. Circule, a seguir, as duas questões que você escolheu e que serão as questões a serem corrigidas. A não demarcação das questões implica em sua não correção, bem como uma marcação incorreta (mais do que duas) implica na não correção da prova e consecutiva eliminação do candidato desse processo seletivo. B1 B2 B3 6
7 B1. Lucas é um aluno que está tentando compreender o processo de multiplicação entre dois números naturais. Ao estudar as anotações em seu caderno (figura abaixo), surgiram as seguintes dúvidas: i) por que podemos multiplicar separadamente o número de cima pelos algarismos que formam o número que está abaixo? ii) por que devemos deslocar para a esquerda o resultado da segunda multiplicação? a) Como você responderia às dúvidas matemáticas desse aluno? b) Descreva uma situação didática para mostrar como você ensinaria multiplicações dessa mesma natureza. 7
8 B2. Camila, aluna do ensino fundamental, lembra-se da última aula de Matemática, na qual aprendeu que, para saber se um número é divisível por três, basta somar seus algarismos e analisar se o resultado é múltiplo de três. No entanto, ela não sabe por que esse processo é válido e decide tirar essa dúvida na aula seguinte. Se você fosse o professor ou a professora de Matemática de Camila, como sanaria sua dúvida? 8
9 B3. A professora apresenta o seguinte problema aos alunos do 5 ano do Ensino Fundamental: Para identificar alguns presentes precisarei de cartões e fitas. Os cartões que escolhi são vendidos em embalagens com 4 unidades. As fitas com tamanho ideal para a identificação estão em embalagens com 12 unidades. Se eu não quero que falte nem cartões e nem fitas, qual é a quantidade mínima de embalagens que devo comprar? Paula responde: Muito fácil! Como o problema fala de quantidade mínima é só tirar o MMC entre as duas quantidades. Após alguns cálculos, Paula responde: 12, a resposta é 12. Intrigado com a esperteza da amiga, Lauro questiona: Professora, é isso mesmo? Paula deu a resposta correta? Sendo você a professora ou professor dessa turma, como mediaria essa situação? 9
Nº de inscrição: PROVA ESCRITA
PROVA ESCRITA Parte A: Conteúdos Específicos Nesta parte da prova, o candidato deve escolher apenas três questões. O valor de cada questão é 1,0 (um ponto). Circule, a seguir, as três questões que você
PROVA ESCRITA. Parte A: Conteúdos Específicos. Nº de inscrição: EDITAL DE SELEÇÃO 2017
Parte A: Conteúdos Específicos PROVA ESCRITA EDITAL DE SELEÇÃO 2017 Nesta parte da prova, o candidato deve escolher apenas três questões. O valor de cada questão é 1,0 (um ponto). Circule, a seguir, as
OBMEP 2010 Soluções da prova da 2ª Fase Nível 2. Questão 1
Questão a) Para saber o número que deve dizer ao matemágico, Joãozinho deve fazer quatro contas: ª conta: multiplicar o número no cartão escolhido por 2; 2ª conta: somar 3 ao resultado da primeira conta;
PROPOSTA DIDÁTICA. 3. Desenvolvimento da proposta didática 1 Dia (10 mim) Acomodação dos alunos e realização da chamada.
PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: Camila Dorneles da Rosa 1.2 Público alvo: Alunos do 6 ao 9 ano e Magistério. 1.3 Duração: 5 horas aula 1.4 Conteúdo desenvolvido: Operações
Prova da segunda fase - Nível 3
Caro Aluno, Parabéns pela sua participação na nona edição da Olimpíada de Matemática de São José do Rio Preto! Lembre-se de que uma Olimpíada é diferente de uma prova escolar. Muitas vezes, as questões
Conhecimentos Específicos
PROCESSO SELETIVO 2016 07/12/2015 INSTRUÇÕES 1. Confira, abaixo, o seu número de inscrição, turma e nome. Assine no local indicado. 2. Aguarde autorização para abrir o caderno de prova. Antes de iniciar
MATEMÁTICA - 3o ciclo Sequências e sucessões (7 o ano)
MATEMÁTICA - 3o ciclo Sequências e sucessões (7 o ano) Exercícios de provas nacionais e testes intermédios 1. Na figura seguinte, estão representados os quatro primeiros termos de uma sucessão de sólidos
Instruções para a realização da Prova Leia com muita atenção
Nível 2 Instruções para a realização da Prova Leia com muita atenção Prova da segunda fase Caro Aluno, Parabéns pela sua participação na décima terceira edição da Olimpíada de Matemática de São José do
PROVA DE MATEMÁTICA. Marque no cartão-resposta anexo, a única opção correta correspondente a cada questão.
PAG.02 PROVA DE MATEMÁTICA Marque no cartão-resposta anexo, a única opção correta correspondente a cada questão. 1. Tenho um saco com 39 laranjas. A quantidade de laranjas que faltam para completar 4 dúzias
Instruções para a realização da Prova Leia com muita atenção
Nível 1 Instruções para a realização da Prova Leia com muita atenção Prova da segunda fase Caro Aluno, Parabéns pela sua participação na décima terceira edição da Olimpíada de Matemática de São José do
Prova de Habilitação
Prova de Habilitação professor 13 de setembro de 2014 INStRUÇÕES 1. Verifi que se os seus dados informados no quadro abaixo estão corretos. Caso as informações não estejam corretas, comunique o erro ao
Análise Combinatória Intermediário
Análise Combinatória Intermediário 1. (AFA) As senhas de acesso a um determinado arquivo de um microcomputador de uma empresa deverão ser formadas apenas por 6 dígitos pares, não nulos. Sr. José, um dos
Instruções para a realização da Prova Leia com muita atenção!
Nível 1 Instruções para a realização da Prova Leia com muita atenção! Prova da segunda fase Caro Aluno, Parabéns pela sua participação na décima segunda edição da Olimpíada de Matemática de São José do
A) são da mesma cor. B) são vermelhas. C) uma é vermelha e duas são brancas. D) uma é branca e duas são vermelhas. E) pelo menos uma é vermelha.
XXII OLIMPÍADA BRASILEIRA DE MATEMÁTIA Primeira Fase Nível 1 - A duração da prova é de 3 horas. - Não é permitido o uso de calculadoras nem consultas a notas ou livros. - Você pode solicitar papel para
Instruções para a realização da Prova Leia com muita atenção. Prova da segunda fase
Nível 1 Instruções para a realização da Prova Leia com muita atenção Prova da segunda fase Caro Aluno, Parabéns pela sua participação na décima primeira edição da Olimpíada de Matemática de São José do
e um quadrado vermelho. O número sete precisaria outro símbolo porque não seria possível criá-lo através da multiplicação de outros primos, então foi
PRODUTO DIDÁTICO O produto pedagógico produzido ao final desta dissertação será o novo segredo dos números, que recebeu este nome porque foi baseado no trabalho da professora Ester P. Grossi no ano de
Resposta: Não. Porque não sabemos o total de pessoas que compareceram às urnas de cada município.
DIURNO 1 a SÉRIE DO ENSINO MÉDIO 1 QUESTÃO 1 (VALOR: 1,5) No dia 3 de outubro deste ano, o povo decidiu que NÃO era a favor da proibição da comercialização de armas de fogo e munição no país. O referendo
Instruções para a realização da Prova Leia com muita atenção!
Nível 3 Instruções para a realização da Prova Leia com muita atenção! Prova da segunda fase Caro Aluno, Parabéns pela sua participação na décima segunda edição da Olimpíada de Matemática de São José do
XXVIII OLIMPÍADA DE MATEMATICA DO RIO GRANDE DO NORTE PRIMEIRA FASE SOLUÇÃO DA PROVA DO NÍVEL I
XXVIII OLIMPÍADA DE MATEMATICA DO RIO GRANDE DO NORTE 2017- PRIMEIRA FASE SOLUÇÃO DA PROVA DO NÍVEL I PARA CADA QUESTÃO, ASSINALE UMA ALTERNATIVA COMO A RESPOSTA CORRETA NOME DO(A) ESTUDANTE: ESCOLA: 1
PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA
PROBABILIDADE São duas as questões pertinentes na resolução de um problema envolvendo probabilidades. Primeiro, é preciso quantificar o conjunto de todos os resultados possíveis, que será chamado de espaço
OLIMPÍADA DE MATEMÁTICA 4º e 5º Ano FASE 1. Qual das maletas a seguir possui todas as peças utilizadas na montagem desse boneco?
OLIMPÍADA DE MATEMÁTICA 4º e 5º Ano FASE 1 1) Este boneco é formado por figuras geométricas planas Qual das maletas a seguir possui todas as peças utilizadas na montagem desse boneco? Resposta E 2) Isabel
AGRUPAMENTO DE ESCOLAS D. JOSÉ I 2015/16 MATEMÁTICA 5.º ANO
AGRUPAMENTO DE ESCOLAS D. JOSÉ I 2015/16 MATEMÁTICA 5.º ANO Nome N º Turma 1. Observe os números seguintes: 12, 14 e 15. a) Determine os divisores de 14 e de 15 Divisores de 14: Divisores de 15: b) Escreva
MATEMÁTICA - 3o ciclo Sequências e sucessões (7 o ano) Propostas de resolução
MATEMÁTICA - 3o ciclo Sequências e sucessões (7 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Verificando que em cada termo: o número de cubos cinzentos é igual à
Solução da prova da 1 a fase OBMEP 2010 Nível 2. QUESTÃO 1 ALTERNATIVA E Basta calcular 8% de 250: 250 = 250 = 2 10 = 20. QUESTÃO 2 ALTERNATIVA E
QUESTÃO 8 2 Basta calcular 8% de 250: 250 = 250 = 2 0 = 20. 00 25 QUESTÃO 2 Fazemos a conta diretamente: + = + = + 3 =. 2 3 3 QUESTÃO 3 Vamos ler as informações contidas no gráfico: 5 alunos não compraram
Matemática e Redação. Setor de Educação Profissional Tecnológica Teste de Seleção Curso Técnico em Petróleo e Gás Integrado ao Ensino Médio
Setor de Educação Profissional Tecnológica Teste de Seleção 2012 Edital N 13/2011 NC Prova: 11/12/2011 Anos Curso Técnico em Petróleo e Gás Integrado ao Ensino Médio INSTRUÇÕES 1. Confira, abaixo, o seu
Instruções para a Prova de MATEMÁTICA APLICADA:
Instruções para a Prova de : Confira se seu nome e RG estão corretos. Não se esqueça de assinar a capa deste caderno, no local indicado, com caneta azul ou preta. A duração total do Módulo Discursivo é
2 = cm2. Questão 1 Solução
1 Questão 1 Solução a) Como o quadrado formado com os três retângulos recortados da primeira tira tem área 36 cm, seu lado mede 6 cm. Logo o comprimento dos retângulos é 6 cm e sua largura é um terço de
Identificar e aplicar os critérios de divisibilidade por 2, 3, 4, 5,6, 8, 9 e 10.
DISCIPLINA: MATEMÁTICA PROFESSORA: GIOVANA 6os. ANOS (161 e 162) Você deverá: ORIENTAÇÃO DE ESTUDO RECUPERAÇÃO 3º. TRIMESTRE 1. Estudar o resumo dos conteúdos que, neste material, estão dentro dos quadros.
Agrupamento de Escolas Joaquim Inácio da Cruz Sobral
Agrupamento de Escolas Joaquim Inácio da Cruz Sobral Escola Básica e Secundária de Sobral de Monte Agraço FICHA DE TRABALHO DE MATEMÁTICA 7ºAno Nome: N.º Turma: Data: Trabalho de Casa: Números Inteiros
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO. Matemática
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO (NO PERÍODO DE FÉRIAS ESCOLARES) ANO 2014/20 PROFESSOR (a) DISCIPLINA Matemática ALUNO (a) SÉRIE 2º ano 1. OBJETIVO
Ficha de Trabalho nº 12 Matemática 7º ano Maio / Determina a moda, a média, a mediana e os quartis da referida distribuição.
Ficha de Trabalho nº 12 Matemática 7º ano Maio / 2011 1. Num inquérito realizado numa escola a quarenta alunos escolhidos ao acaso sobre o número do respectivo calçado registaram-se os seguintes resultados:
ESCOLA BÁSICA DOS 2º E 3º CICLOS DE SANTO ANTÓNIO
ESCOLA BÁSICA DOS 2º E 3º CICLOS DE SANTO ANTÓNIO Teste 1 Matemática 9.º C Nome: n.º Data: 14/10/2016 Classificação: Professor: Instruções gerais Não é permitido o uso de corretor. É permitido a utilização
Oficina Operações. b) Quantos quilômetros a mais ele percorreu na terça feira em relação à quinta feira?
Oficina Operações PROBLEMA 1 Um atleta, preparando-se para a corrida de São Silvestre, realizou os seguintes treinos na semana que antecedeu a prova: Segunda-feira: 18 km Terça feira: 20 km Quarta feira:
MÓDULO 1. Números. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA
Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 1 Números As questões destas aulas foram retiradas ou adaptadas de provas das Olimpíadas Brasileiras de Matemática (OBM), fonte considerável
AULA 02 AULA 01 (D) 9. ITEM 01 No lançamento de um dado e uma moeda, qual é a probabilidade de se obter cara na moeda e face 5 no dado?
AULA 01 No lançamento de um dado e uma moeda, qual é a probabilidade de se obter cara na moeda e face 5 no dado? Em um conjunto de 50 cartões numerados de 1 a 50, retirando ao acaso um desses cartões,
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO (NO PERÍODO DE FÉRIAS ESCOLARES) ANO 20 PROFESSOR (a) DISCIPLINA BRUNO REZENDE PEREIRA MATEMÁTICA ALUNO (a) SÉRIE
Instruções para a realização da Prova Leia com muita atenção
Nível 3 Instruções para a realização da Prova Leia com muita atenção Prova da segunda fase Caro Aluno, Parabéns pela sua participação na décima terceira edição da Olimpíada de Matemática de São José do
Soluções Simulado OBMEP 2017 Nível 1 6º e 7º anos do Ensino Fundamental. = 7 cm. Logo, ela parou na marca de = 13 cm.
Soluções Simulado OBMEP 2017 Nível 1 6º e 7º anos do Ensino Fundamental 1. ALTERNATIVA C Alvimar recebeu de troco 5,00 3,50 = 1,50 reais. Dividindo 1,50 por 0,25, obtemos o número de moedas de 25 centavos
Lê as perguntas com atenção e... Boa Sorte!
ESCOLA E.B. 2/3 DR. JOAQUIM MAGALHÃES CURSO de OPERADOR de PRÉ-IMPRESSÃO Educação e Formação de Jovens (Despacho Conjunto Nº 453/2004) Disciplina: Matemática Aplicada Teste Diagnóstico Data: /09/11 Nome
CIÊNCIAS HUMANAS E MATEMÁTICA
VESTIBULAR 2015 CIÊNCIAS HUMANAS E MATEMÁTICA INSTRUÇÕES 1. Só abra a prova quando o fiscal autorizar. 2. Nesta prova, você deverá resolver as dezesseis questões propostas, sendo oito questões de CIÊNCIAS
CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 00 / 01 QUESTÃO ÚNICA
14 QUESTÃO ÚNICA MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES À ESQUERDA Item 01. Um conjunto A contém os cinco primeiros números naturais, os cinco primeiros números
PROCESSO SELETIVO 2015
PROCESSO SELETIVO 2015 Anos 01/12/2014 INSTRUÇÕES 1. Confira, abaixo, o seu número de inscrição, turma e nome. Assine no local indicado. 2. Aguarde autorização para abrir o caderno de prova. Antes de iniciar
Exemplos e Contra-Exemplos
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 7 Exemplos e Contra-Exemplos Você que já tentou resolver alguns problemas de provas anteriores de Olimpíada de Matemática
PROVA ESCRITA PARTE A e B
PROCESSO DE SELEÇÃO INGRESSO NO 1º SEMESTRE DE 2014 PROVA ESCRITA PARTE A e B INSCRIÇÃO Nº CAMPO GRANDE MS, 25 DE OUTUBRO DE 2013 UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL PROGRAMA DE PÓS-GRADUAÇÃO EM
Canguru Matemático sem Fronteiras 2010
Canguru Matemático sem Fronteiras 2010 Duração: 1h30min Destinatários: alunos do 12 Ano de Escolaridade Nome: Turma: Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. As questões
Permutação; Fatorial; Resolução de exercícios de contagem. Assuntos:
Assuntos: Permutação; Fatorial; Resolução de exercícios de contagem. Prof. Hudson Sathler Delfino Exercícios Ciclo 5 N1 1º ENCONTRO. Exercício 1. (a) Quantos são os anagramas da palavra BOLA? (b)e quantos
CONCURSO DE ADMISSÃO 2003 / 2004 PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO IDENTIFICAÇÃO NÚMERO DE INSCRIÇÃO: NOME COMPLETO :
COLÉGIO MILITAR DE ELO HORIZONTE ELO HORIZONTE MG DE OUTURO DE 00 DURAÇÃO: 0 MINUTOS CONCURSO DE ADMISSÃO 00 / 00 PROVA DE MATEMÁTICA ª SÉRIE DO ENSINO MÉDIO IDENTIFICAÇÃO NÚMERO DE INSCRIÇÃO: NOME COMPLETO
Caderno de Prova. Professor de Educação Física. Prefeitura Municipal de Florianópolis Secretaria Municipal de Educação
Prefeitura Municipal de Florianópolis Secretaria Municipal de Educação Concurso Público Edital 00/ http://educa.fepese.org.br Caderno de Prova outubro de outubro das 5 às 8 h h de duração* questões S5
ADAPTAÇÃO PEGA VARETAS (Números Inteiros Negativos)
1 ADAPTAÇÃO PEGA VARETAS (Números Inteiros Negativos) Objetivos Introduzir o conceito de números inteiros negativos; Desenvolvimento O professor confeccionará o jogo com os alunos ou distribuirá os jogos
EMENTA ESCOLAR III Trimestre Ano 2014
EMENTA ESCOLAR III Trimestre Ano 2014 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 8 ano do Ensino Fundamental II Data 16/setembro 18/setembro 19/setembro 23/setembro 25/setembro 26/setembro
Turmas exclusivas com aulas ministradas no turno da Tarde.
1. CURSOS OFERECIDOS PARA 2017 1.1. O interessado em participar do Processo de Admissão do APOGEU deve se inscrever pelo site e escolher o curso disponível em uma unidade APOGEU. 1.2. O APOGEU oferece
TEMA 1 COMBINATÓRIA E PROBABILIDADES FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 1 COMBINATÓRIA E PROBABILIDADES
FICHAS DE TRABALHO.º ANO COMPILAÇÃO TEMA COMBINATÓRIA E PROBABILIDADES Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEMA COMBINATÓRIA E PROBABILIDADES Matemática A.º Ano
CPV O Cursinho que Mais Aprova na GV
CPV O Cursinho que Mais Aprova na GV FGV ADM 05/junho/06 MATEMÁTICA APLICADA 0. Para a construção de uma janela na sala de um teatro, existe a dúvida se ela deve ter a forma de um retângulo, de um círculo
ESCOLA EMEF PROFª MARIA MARGARIDA ZAMBON BENINI - PIBID 08/10/2014, 29/10/2014 e 05/11/2014
ESCOLA EMEF PROFª MARIA MARGARIDA ZAMBON BENINI - PIBID 08/10/2014, 29/10/2014 e 05/11/2014 Bolsistas: Mévelin Maus, Milena Poloni Pergher e Odair José Sebulsqui. Supervisora: Marlete Basso Roman Disciplina:
TRABALHO DE RECUPERAÇÃO DE MATEMÁTICA
ENSINO MÉDIO VALOR:,0 NOTA: Data: Professor: JECY JANE Disciplina: MATEMÁTICA Nome: n o : SÉRIE: 3ª 1º Bim ORIENTAÇÕES: TRABALHO DE RECUPERAÇÃO DE MATEMÁTICA 1- O trabalho deve ser entregue em folha de
COLÉGIO NOSSA SENHORA DA PIEDADE. Programa de Recuperação Final. 3ª Etapa Ano: 6 Turma: 6.1
COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Final 3ª Etapa 2013 Disciplina: Matemática Professor (a): Flávia Lúcia Ano: 6 Turma: 6.1 Caro aluno, você está recebendo o conteúdo de recuperação.
MATEMÁTICA MÓDULO 4 PROBABILIDADE
PROBABILIDADE Consideremos um experimento com resultados imprevisíveis e mutuamente exclusivos, ou seja, cada repetição desse experimento é impossível prever com certeza qual o resultado que será obtido,
Professor: MARA BASTOS E SÔNIA VARGAS Turma: 61 Nota: Questão 5. a) 0,1692 km b) 16,92 km. c) 169,2 km d) 1,692 km. Questão 6. a) 270 km b) 260 km
ATENÇÃO Esta é uma avaliação individual e não são permitidas consultas a nenhum tipo de material didático. Utilize caneta azul ou preta, respostas à lápis não serão consideradas para efeito de revisão,
PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Habilidades Avaliação
Disciplina: Matemática Trimestre: 1º PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Fundamentais de Matemática Sistema de Numeração decimal As quatro operações fundamentais Compreender problemas Números
Interbits SuperPro Web
MATEMÁTICA XXVII ENEM. (Enem 202) Certo vendedor tem seu salário mensal calculado da seguinte maneira: ele ganha um valor fixo de R$750,00, mais uma comissão de R$3,00 para cada produto vendido. Caso ele
VESTIBULAR 2002 Prova de Matemática
VESTIBULAR 00 Prova de Matemática Data: 8//00 Horário: 8 às horas Duração: 0 horas e 0 minutos Nº DE INSCRIÇÃO AGUARDE AUTORIZAÇÃO PARA ABRIR ESTE CADERNO DE QUESTÕES INSTRUÇÕES PARA REALIZAÇÃO DA PROVA
9 0 Fund. II Disciplina Professora Natureza Trimestre/Ano Data Valor Roteiro de estudo Matemática Vânia e exercícios de revisão
Nome Nº Ano Ensino Turma 9 0 Fund. II Disciplina Professora Natureza Trimestre/Ano Data Valor Roteiro de estudo Matemática Vânia e exercícios de revisão 0 /016 0 a 05/08/016 5,0 Introdução Querido(a) aluno(a),
a) 20 b) 16 c) 12 d) 10 e) 4
Uma loja vende barras de chocolate de diversos sabores. Em uma promoção, era possível comprar três barras de chocolate com desconto, desde que estas fossem dos sabores ao leite, amargo, branco ou com amêndoas,
Recuperação Final Matemática 3ª série do EM
COLÉGIO MILITAR DOM PEDRO II SEÇÃO TÉCNICA DE ENSINO Recuperação Final Matemática 3ª série do EM Aluno: Série: 3ª série Turma: Data: 12 de dezembro de 2017 1. Esta prova é um documento oficial do CMDPII.
MODELAGEM COMPUTACIONAL DE CONHECIMENTO Todas as linhas de pesquisa
UNIVERSIDADE FEDERAL DE ALAGOAS/UFAL Programa de Pós-Graduação em Modelagem Computacional de Conhecimento Avenida Lourival Melo Mota, Km 14, Bloco 09, Cidade Universitária 57.072-900 Maceió AL Brasil CGC:
Progressão aritmética e progressão geométrica
Progressão aritmética e progressão geométrica Qualquer conjunto cujos elementos obedecem a uma ordem é uma sequência. No cotidiano, encontramos várias sequências: a lista de chamada de uma turma, as palavras
Nome: N.º: Turma: Classificação: Professor: Enc. Educação:
Escola EB,3 de Ribeirão (Sede) ANO LECTIVO 010/011 Março 011 Nome: N.º: Turma: Classificação: Professor: Enc. Educação: Ficha de Avaliação de Matemática (Tipo Teste Intermédio) Duração do Teste: 90 minutos
Prova Tipo 1 - Nível 1
Prova Tipo 1 - Nível 1 1 a Fase - OMEPEM/SJBV/UNIFEOB - Olimpíada de Matemática das Escolas Públicas de Ensino Médio de São João da Boa Vista Informações Importantes: A prova é composta por 15 questões
Prova Tipo 4 - Nível 1
Prova Tipo 4 - Nível 1 1 a Fase - OMEPEM/SJBV/UNIFEOB - Olimpíada de Matemática das Escolas Públicas de Ensino Médio de São João da Boa Vista Informações Importantes: A prova é composta por 15 questões
XXVIII OLIMPÍADA DE MATEMATICA DO RIO GRANDE DO NORTE PRIMEIRA FASE SOLUÇÃO DA PROVA DO NÍVEL II
XXVIII OLIMPÍADA DE MATEMATICA DO RIO GRANDE DO NORTE 2017- PRIMEIRA FASE SOLUÇÃO DA PROVA DO NÍVEL II PARA CADA QUESTÃO, ASSINALE UMA ALTERNATIVA COMO A RESPOSTA CORRETA NOME DO(A) ESTUDANTE: ESCOLA:
TEMA 1 COMBINATÓRIA E PROBABILIDADES FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 1 COMBINATÓRIA E PROBABILIDADES
FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 1 COMBINATÓRIA E PROBABILIDADES Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEMA 1 COMBINATÓRIA E PROBABILIDADES Matemática
Atividade extra. Exercício 1. Exercício 2. Exercício 3. Matemática e suas Tecnologias Matemática
Atividade extra Exercício 1 João queria sair de casa, mas não sabia qual era a previsão do tempo. Ao ligar a TV no canal do tempo, a jornalista anunciou que existia a possibilidade de chuva no fim da tarde
x 1. Em cada uma das figuras, eles são apenas os primeiros elementos dos
0) Nas figuras a seguir, a curva é o gráfico da função x retângulos hachurados para infinitos que possuem as mesmas características. f x. Observe atentamente o que ocorre com os x. Em cada uma das figuras,
PLANEJAMENTO ANUAL / TRIMESTRAL 2013 Conteúdos Habilidades Avaliação
Disciplina: Matemática Trimestre: 1º PLANEJAMENTO ANUAL / TRIMESTRAL 2013 Conteúdos Fundamentais de Matemática Sistema de Numeração decimal As quatro operações fundamentais Compreender problemas Números
FIGURAS PLANAS E O CÁLCULO DE ÁREAS
unifmu Nome: Professor: Ricardo Luís de Souza Curso de Design Matemática Aplicada Atividade Exploratória III Turma: Data: FIGURAS PLANAS E O CÁLCULO DE ÁREAS Objetivo: Rever o conceito de área de figuras
Álgebra. Progressão geométrica (P.G.)
Progressão geométrica (P.G.). Calcule o valor de sabendo que: a) + 6 e 0-6 formam nessa ordem uma P.G.. b) + e + 6 formam nessa ordem uma P.G. crescente.. Calcule o seto termo de uma progressão geométrica
Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta.
Prezado(a) candidato(a): Assine e coloque seu número de inscrição no quadro abaio. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta. Nº de Inscrição Nome PROVA DE MATEMÁTICA
XX OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase - Nível
XX OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase - Nível 1-1998 01. Qual dos números a seguir é o maior? A) 3 45 B) 9 20 C) 27 14 D) 243 9 E) 81 12 02. Um menino joga três dados e soma os números que
FOLHA DE ROSTO PARA A PROVA DE AFERIÇÃO DE CONHECIMENTOS (PAC) CONCURSO DE ADMISSÃO AO 45º CURSO DE FORMAÇÃO DE SARGENTOS
FOLHA DE ROSTO PARA A PROVA DE AFERIÇÃO DE CONHECIMENTOS (PAC) CONCURSO DE ADMISSÃO AO 4º CURSO DE FORMAÇÃO DE SARGENTOS LEIA COM ATENÇÃO, ATÉ AO FIM, ESTAS INSTRUÇÕES 1. Para o preenchimento da folha
Prova Literacia Matemática fase 1
Prova Literacia Matemática fase 1 Questão 1 Na imagem está assinalada a localização de sismos (tremores de terra) ocorridos numa região dos Açores. Os registos foram obtidos no dia 19 de outubro de 2016.
PEGUE 10. Quantidade: 08 unidades
1 PEGUE 10 Materiais Um tabuleiro e 66 cartas redondas com os numerais de 1 a 7 nas seguintes quantidades: 1 22 cartas; 6-2 cartas; 2-16 cartas; 7-2 cartas; 3-12 cartas; Coringa 1 carta. 4-7 cartas; 5-4
Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.
PROBABILIDADE A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios. Os experimentos
XXI OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 2. 1 a. Fase Olimpíada Regional BA - ES - GO - RJ - RN - RS - SC - SP
XXI OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 2 a. Fase Olimpíada Regional BA - ES - GO - RJ - RN - RS - SC - SP - A duração da prova é de horas. - Não é permitido o uso de calculadoras nem
ROTEIRO DE RECUPERAÇÃO. Professor(a):Denise Capuchinho Nonato 2017
INSTITUTO EDUCACIONAL MANOEL PINHEIRO www.manoelpinheiro.com.br MATEMÁTICA ROTEIRO DE RECUPERAÇÃO Ensino Médio Etapa:2ª Série:1ª Tipo: U Professor(a):Denise Capuchinho Nonato 2017 Aluno(a): Nota: Caro
PROBABILIDADE PROPRIEDADES E AXIOMAS
PROBABILIDADE ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. A este conjunto de elementos denominamos de espaço amostral ou conjunto universo, simbolizado por
Canguru Matemático sem Fronteiras 2013
http://www.mat.uc.pt/canguru/ Destinatários: alunos do 9. o ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões
Instruções para a realização da Prova Leia com muita atenção. Prova da segunda fase
Nível 3 Instruções para a realização da Prova Leia com muita atenção Prova da segunda fase Caro Aluno, Parabéns pela sua participação na décima primeira edição da Olimpíada de Matemática de São José do
LISTA DE EXERCÍCIOS PARA PROVA FINAL/2015
ESCOLA ADVENTISTA SANTA EFIGÊNIA EDUCAÇÃO INFANTIL E ENSINO FUNDAMENTAL Rua Prof Guilherme Butler, 792 - Barreirinha - CEP 82.700-000 - Curitiba/PR Fone: (41) 3053-8636 - e-mail: [email protected]
Instruções para a realização da Prova Leia com muita atenção. Prova da segunda fase
Nível 2 Instruções para a realização da Prova Leia com muita atenção Prova da segunda fase Caro Aluno, Parabéns pela sua participação na décima primeira edição da Olimpíada de Matemática de São José do
matemática 003. caderno 1 provas da 2 a fase EESP Escola de Economia de São Paulo F U N D A Ç Ã O GETULIO VARGAS processo seletivo
F U N D A Ç Ã O GETULIO VARGAS EESP Escola de Economia de São Paulo Assinatura do Candidato 003. caderno 1 provas da 2 a fase matemática processo seletivo 1 o semestre de 2016 Você recebeu este caderno
Exercícios: comandos condicionais
Universidade Federal de Uberlândia - UFU Faculdade de Computação - FACOM Lista de exercícios de programação em linguagem C Exercícios: comandos condicionais 1. Faça um programa que receba dois números
1. Onze cubinhos, todos de mesma aresta, foram colados conforme a figura a seguir.
XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível a. Fase Olimpíada Regional AL BA GO PA PB PI RS RN SC - A duração da prova é de 3 horas. - Não é permitido o uso de calculadoras nem consultas
CURSO PRF 2017 MATEMÁTICA. diferencialensino.com.br AULA 04 MATEMÁTICA
AULA 04 MATEMÁTICA 1 AULA 001 MATEMÁTICA PROFESSOR VITIN 2 AULA 04 SISTEMA LEGAL DE MEDIDAS SISTEMA MÉTRICO DECIMAL A unidade padrão de distância/comprimento é o metro (m), porém, é possível e bastante
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA O Desenvolvimento de Hábitos de Pensamento: Um Estudo de Caso a partir de Construções
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 5ª Série / 6º ano do Ensino Fundamental Turma 2º bimestre de 2015 Data / / Escola Aluno
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 5ª Série / 6º ano do Ensino Fundamental Turma 2º bimestre de 2015 Data / / Escola Aluno Questão 1 Em uma Escola, um grupo de alunos realizou uma atividade
Prova Final de Matemática
PROVA FINAL DO 2.º CICLO DO ENSINO BÁSICO Matemática/Prova 62/1.ª Chamada/2013 Decreto-Lei n.º 139/2012, de 5 de julho A PREENCHER PELO ESTUDANTE Nome completo Documento de identificação CC n.º ou BI n.º
Canguru Matemático sem Fronteiras 2013
http://www.mat.uc.pt/canguru/ Destinatários: alunos dos 5. o e 6. o anos de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As
Canguru Matemático sem Fronteiras 2009
Destinatários: alunos dos 7 e 8 anos de Escolaridade Nome: Turma: Duração: 1h30min Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. As questões estão agrupadas em três níveis:
UERJ/EsFAO/APM D.JoãoVI
UERJ/EsFAO/APM D.JoãoVI Neste caderno você encontrará um conjunto de 32 (trinta e duas) páginas numeradas seqüencialmente, contendo 15 (quinze) questões de cada uma das seguintes disciplinas:, Química,
