Funções e Portas Lógicas
|
|
|
- Alana Cortês Van Der Vinne
- 7 Há anos
- Visualizações:
Transcrição
1 Funções e Portas Lógicas
2 2. Funções Lógicas Introdução Funções Lógicas Básicas Função Lógica NÃO (NOT) Função Lógica E (AND) Função Lógica OU (OR) Função Lógica NÃO E (NAND) Função Lógica NÃO OU (NOR) Interligação entre Expressões, Circuitos e Tabela da Verdade Expressões Booleanas Obtidas de Circuitos Lógicos Circuitos Lógicos Obtidos de Expressões Booleanas Tabelas da Verdade obtidas de Expressões Booleanas Expressões Booleanas Obtidas de Tabelas da Verdade Equivalência Entre Blocos Lógicos 13 Exercícios 15 1
3 2. Funções Lógicas 2.1 Introdução No início da era electrónica, todos os problemas eram resolvidos por sistemas analógicos, também conhecidos por sistemas lineares, onde uma quantidade é representada por um sinal eléctrico proporcional ao valor da grandeza medida. As quantidades analógicas podem variar numa faixa contínua de valores. Com o avanço da tecnologia, esses mesmos problemas começaram a ser solucionados através da electrónica digital, onde uma quantidade é representada por um arranjo de símbolos chamados dígitos. Este ramo da electrónica emprega nas suas máquinas, tais como: computadores, calculadoras, sistemas de controle e automação, codificadores, decodificadores, entre outros, apenas um pequeno grupo de circuitos lógicos básicos (que realizam funções lógicas), que são conhecidos como portas OU, E, NÃO e flipflops. Então, um circuito digital emprega um conjunto de funções lógicas, onde função é a relação existente entre a variável independente e a variável dependente (função) assim como aprendemos na matemática. Para cada valor possível da variável independente determina-se o valor da função. O conjunto de valores que uma variável pode assumir depende das restrições ou especificações do problema a ser resolvido. Esta variável é, normalmente, conhecida como variável independente. Por agora o nosso interesse está no comportamento de um sistema lógico como o descrito por George Boole em meados do século passado. Nestes sistemas as variáveis independentes são conhecidas como variáveis lógicas e as funções, como funções lógicas (variável lógica dependente). As variáveis lógicas (dependentes ou independentes) possuem as seguintes características: - Pode assumir somente um de dois valores possíveis; - Os seus valores são expressos por afirmações declarativas, ou seja, cada valor está associado a um significado; - Os dois valores possíveis das variáveis são mutuamente exclusivos. Uma variável lógica A pode assumir um valor verdadeiro (A=V) ou o valor falso (A=F). Em geral, usa-se uma faixa de tensão em volts compatível com os circuitos digitais utilizados para representar o valor falso ou verdadeiro de uma variável lógica. Lógica Positiva: A tensão mais positiva representa o valor V (1) e a mais negativa o valor F(0). 2
4 Lógica Negativa: O valor V é representado pela tensão mais negativa (1) e F pela tensão mais positiva (0). Lógica Mista: No mesmo sistema, usam-se as lógicas positiva e negativa. 2.2 Funções Lógicas Básicas O passo seguinte na evolução dos sistemas digitais foi a implementação dos sistemas lógicos (funções lógicas Booleanas), utilizando-se dispositivos electrónicos (circuitos digitais), obtendo-se assim, rapidez na solução dos problemas (descritos pela álgebra de Boole). Nos circuitos digitais tem-se somente dois níveis de tensão, que apresentam correspondência com os possíveis valores das variáveis lógicas. Exemplo: lógica TTL ( Transistor Transistor Logic ) Lógica Positiva: 0 V 0 lógico +5 V 1 lógico. Um sistema lógico pode ser implementado utilizando-se funções lógicas básicas. Pode-se citar: NÃO (NOT), E (AND), OU (OR), NÃO-E (NAND), NÃO-OU (NOR), OU EXCLUSIVO (XOR) e flip-flop. Vamos conhecê-las Função Lógica NÃO (NOT) É normalmente denominado de inversor, pois se a entrada tem um valor a saída apresentará o outro valor possível. Símbolo: A Simbologia representa um conjunto de circuitos electrónicos que implementa a função lógica correspondente. A Porta Lógica Inversora é representada pelo seguinte símbolo: A Y Y = f(a) = A Y=Variável dependente A=Variável independente Tabela da Verdade: É uma tabela que mostra todas as possíveis combinações de entrada e saída de um circuito lógico. Y = A (esta equação representa a função lógica correspondente) Entrada A Y Saída Função Lógica E (AND) 3
5 A função lógica AND de duas entradas realiza a seguinte operação de dependência. Y = f(a,b) = A.B = B.A (produto lógico) Símbolo: Tabela da Verdade: Exemplo: A B Y Convenção: CH A aberta = 0 CH A fechada = 1 CH B aberta = 0 CH B fechada = 1 Lâmpada apagada = 0 Lâmpada acesa = 1 Se analisarmos todas as situações possíveis das chaves verifica-se que a lâmpada acende somente quando as chaves A e B estiverem fechadas (assume 1 somente quando todas as entrada forem 1) Função lógica AND com mais de duas variáveis de entrada. Y = A.B.C = B.A.C = C.A.B = (A.B).C = A.(B.C) Comutatividade Associatividade (propriedades aritméticas...) Símbolo representativo: 4
6 Tabela da Verdade (3 var. 2 3 combinações) A B C Y Se tivermos N entradas teremos: A tabela da verdade terá 2 N combinações na entrada e Y será 1 somente quando todas as entradas forem Função Lógica OU (OR) A função lógica OR de duas variáveis realiza a seguinte operação de dependência: Y = f(a,b) = A+B (soma lógica) Símbolo: Tabela da Verdade: A B Y
7 1 1 1 Exemplo: Utiliza-se as mesmas convenções adotadas para a porta AND. Ao analisar-se todas as situações que as chaves podem assumir verifica-se que a lâmpada acende quando CH A OU CH B OU ambas estiverem ligadas (a saída assume 0 somente quando todas as entradas forem 0) Função lógica OR de mais de duas variáveis de entrada Y = A+B+C = C+B+A = B+C+A = A+(B+C) = (A+B)+C Símbolo: Comutatividade Associatividade Tabela da Verdade: A B C Y Se tivermos N entradas, teremos: 6
8 2.2.4 Função Lógica NÃO E (NAND) Como o próprio nome diz esta função é uma combinação das funções AND e INVERSOR, onde é realizada a função E invertida. Y = f(a,b) = A. B Tabela da Verdade: Símbolo: A B Y Função Lógica NÃO OU (NOR) Como o próprio nome diz esta função é uma combinação das funções OR e INVERSOR, onde é realizada a função OU invertida. Y = f(a,b) = A + B Tabela da Verdade: A B Y
9 Símbolo: Exercícios: 1. Representar portas NOR e NAND com mais de duas entradas (símbolo, função e tabela da verdade). 2. Pesquisar sobre a porta OU-EXCLUSIVO. 3. Pesquisar sobre a porta COINCIDÊNCIA. 8
10 Tabela resumo das Portas (blocos) lógicas básicas: 9
11 2.3 Interligação entre Expressões, Circuitos e Tabela da Verdade Todo circuito lógico, por mais complexo que seja, é formado pela combinação de portas lógicas básicas Expressões Booleanas Obtidas de Circuitos Lógicos Todo o circuito lógico executa uma função booleana e, por mais complexo que seja, é formado pela interligação das portas lógicas básicas. Assim, pode-se obter a expressão booleana que é executada por um circuito lógico qualquer. Para exemplificar, será obtida a expressão que o circuito da abaixo executa. Para facilitar, analisa-se cada porta lógica separadamente, observando a expressão booleana que cada uma realiza, conforme ilustra o exemplo da Fig O exemplo da figura a seguir visa evidenciar um símbolo de negação muito utilizado e que muitas vezes é esquecido e não considerado. Ele pode ser utilizado na saída de uma porta lógica (o-----), como na porta NÃO E abaixo, e na entrada de algumas portas, como será visto mais adiante (-----o) Circuitos Lógicos Obtidos de Expressões Booleanas 10
12 Será visto neste tópico que é possível desenhar um circuito lógico que executa uma função booleana qualquer, ou seja, pode-se desenhar um circuito a partir da sua expressão característica. O método para a resolução consiste em se idêntificar as portas lógicas na expressão e desenhá-las com as respectivas ligações, a partir das variáveis de entrada. Deve-se sempre respeitar a hierarquia das funções da aritmética elementar, ou seja, a solução inicia-se primeiramente pelos parênteses. Para exemplificar, será obtido o circuito que executa a expressão S=(A+B).C.(B+D). Para o primeiro parêntese tem-se uma soma booleana A+B, logo o circuito que o executa será uma porta OU. Para o segundo, tem-se outra soma booleana B+D, logo o circuito será uma porta OU. Posteriormente tem-se a multiplicação booleana de dois parênteses juntamente com a variável C, sendo o circuito que executa esta multiplicação uma porta E. Para finalizar, unem-se as respectivas ligações obtendo o circuito completo. Exercícios. Esboce os circuitos obtidos a partir das seguintes expressões: 1. S = ( A. B + C. D ) 2. S = ( A + B + C ).( A + C + D ) 3. S = ( A + B ). C.( A + C ). B 4. S = (( A + B ). C ) + ( B. D.( A + ( B. D ))) 11
13 2.3.3 Tabelas da Verdade obtidas de Expressões Booleanas Uma maneira de se fazer o estudo de uma função booleana é a utilização da tabela da verdade. Para extrair a tabela da verdade de uma expressão deve-se seguir alguns procedimentos: 1º) Montar o quadro de possibilidades; 2º) Montar colunas para os vários membros da equação; 3º) Preencher estas colunas com os seus resultados; 4º) Montar uma coluna para o resultado final e 5º) Preencher esta coluna com os resultados finais. Para exemplificar este processo, utiliza-se a expressão: A expressão contém 4 variáveis: A, B, C e D, logo, existem 24=16 possibilidades de combinação de entrada. Desta forma, monta-se o quadro de possibilidades com 4 variáveis de entrada, três colunas auxiliares, sendo uma para cada membro da expressão, e uma coluna para o resultado final Expressões Booleanas Obtidas de Tabelas da Verdade Neste item, será estudada a forma de obter expressões e circuitos a partir de tabelas da verdade, sendo este o caso mais comum de projetos práticos, pois, geralmente, necessita-se representar situações através de tabelas da verdade e a partir destas, obter a expressão booleana e consequentemente, o circuito lógico. Para demonstrar este procedimento, será obtida a expressão da seguinte tabela: 12
14 Na tabela, analisa-se onde S=1 e monta-se a expressão adequada. Para se obter a expressão basta realizar a soma booleana de cada termo acima: Nota-se que o método permite obter, de qualquer tabela, uma expressão padrão formada sempre pela soma de produtos. Utilizando a álgebra de Boole e também mapas de Karnaught é possível realizar a simplificação de expressões de funções lógicas, possibilitando a obtenção de circuitos reduzidos e portanto mais baratos. Estas técnicas não fazem parte de nosso objetivo, mas é interessante conhecê-las através de uma bibliografia adicional Equivalência Entre Blocos Lógicos As portas lógicas podem ser montadas de forma que possam realizar as mesmas tarefas, ou seja, ter as saídas a funcionar de maneira igual a uma outra já conhecida. Estas equivalências são muito importantes na prática, ou seja, na montagem de sistemas digitais, pois possibilitam maior otimização na utilização desse circuitos integrados comerciais, assegurando principalmente a redução de componentes e a consequente minimização do custo do sistema. 13
15 Todos os Blocos lógicos e expressões podem ser verificadas utilizando-se a tabela da verdade. 14
16 Exercícios de Fixação Determine as expressões das funções lógicas dos circuitos abaixo: 15
17 16
Histórico. George Boole ( ) Claude Elwood Shannon ( )
Histórico Em meados do século XIX o matemático inglês George oole desenvolveu um sistema matemático de análise lógica Em meados do século XX, o americano Claude Elwood Shannon sugeriu que a Álgebra ooleana
Aula 1. Funções Lógicas. SEL Sistemas Digitais. Prof. Dr. Marcelo Andrade da Costa Vieira
Aula 1 Funções Lógicas SEL 0414 - Sistemas Digitais Prof. Dr. Marcelo Andrade da Costa Vieira Representação Numérica: l Utilizada na representação de alguma grandeza física l Pode ser Analógica ou Digital
Introdução. Em 1854, o matemático inglês George Boole, apresentou um sistema matemático de análise lógica conhecido como álgebra de Boole.
Introdução Em 1854, o matemático inglês George Boole, apresentou um sistema matemático de análise lógica conhecido como álgebra de Boole. Obra intitulada An Investigation of the law of Thought (uma investigação
Eletrônica Digital. Funções e Portas Lógicas. Prof. Renato Moraes
Eletrônica Digital Funções e Portas Lógicas Prof. Renato Moraes Introdução Em 1854, o matemático inglês George Boole apresentou um sistema matemático de análise lógica conhecido como Álgebra de Boole.
------------------------------------------------------------------------------------------------------------------------------ Variáveis Lógicas Uma variável lógica é aquela que pode assumir apenas os
Circuitos Digitais Álgebra de Boole
Circuitos Digitais Álgebra de Boole Álgebra de Boole (ou Booleana) Desenvolvida pelo matemático britânico George Boole para estudo da lógica. Definida sobre um conjunto de dois elementos: (falso, verdadeiro)
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E DA TERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E DA TERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO Álgebra de Boole Disciplina: Lógica Professora Dr.ª: Donizete
Eletrônica Digital. Funções lógicas, álgebra de boole e circuitos lógicos combinacionais básicos. Professor: Francisco Ary
Eletrônica Digital Funções lógicas, álgebra de boole e circuitos lógicos combinacionais básicos Professor: Francisco Ary Introdução Vimos na aula anterior conversão de números binário fracionários em decimal;
3. CAPÍTULO LÓGICAS DIGITAIS
3. CAPÍTULO LÓGICAS DIGITAIS 3.1. Introdução A Lógica é um conjunto de regras para raciocínio sobre um determinado assunto, ela é muito utilizada no ramo da Filosofia e da Matemática. 3.2. Portas lógicas
Apostila de Sistemas Digitais e Computadores MÓDULOS I & II: REVISÃO ÁLGEBRA DE BOOLE.
INSTITUTO SUPERIOR POLITÉCNICO METROPOLITANO DE ANGOLA DEPARTAMENTO DE CIÊNCIAS TECNOLÓGICAS E ENGENHARIAS Apostila de Sistemas Digitais e Computadores MÓDULOS I & II: REVISÃO ÁLGEBRA DE BOOLE. SDC LCC1N
Arquitetura de Computadores Aula 9 Portas Lógicas
Arquitetura de Computadores Aula 9 Portas Lógicas Prof. Fred Sauer http://www.fredsauer.com.br [email protected] 1/18 * Definição * Tipos de portas lógicas (operadores) * Aplicações - porta de transferência
Sistemas Digitais Módulo 4 Álgebra Booleana e Circuitos Lógicos
Universidade Federal de Uberlândia Faculdade de Computação Sistemas Digitais Módulo 4 Álgebra Booleana e Circuitos Lógicos Graduação em Sistemas de Informação Prof. Dr. Daniel A. Furtado Conteúdo Introdução
ÁLGEBRA DE BOOLE B.1 - DIAGRAMA DE VENN
ÁLGEBRA DE BOOLE B.1 - DIAGRAMA DE VENN No século XIX Georges Boole desenvolveu uma teoria matemática com base nas leis da lógica - a Álgebra de Boole - cuja aplicação nos circuitos digitais e computadores
PORTAS NOR e NAND OR - AND - NOT. Considerando as entradas A e B, teremos na saída a complementação ou negação das mesmas.
PORTAS NOR e NAND As portas NOR e NAND são obtidas a partir da complementação das funções OR e AND. Podemos então dizer que o operador booleano lógico NOR é a negação do operador booleano OR enquanto que
APOSTILA COMPLEMENTAR
APOSTILA COMPLEMENTAR Conteúdo A ÁLGEBRA DE BOOLE... 1 Os níveis lógicos... 2 Operações Lógicas... 3 Função Lógica NÃO ou Inversora... 4 Função Lógica E... 5 Função lógica OU... 6 Função NÃO E... 7 Função
CIRCUITOS DIGITAIS COMBINACIONAIS (Unidade 3)
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ELETRÔNICA
PRINCÍPIO BOOLEANO E PORTAS LÓGICAS (Unidade 3)
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ELETRÔNICA
Automação Industrial Parte 8
Automação Industrial Parte 8 Prof. Ms. Getúlio Teruo Tateoki http://www.getulio.eng.br/meusalunos/autind.html -Vamos supor que seja necessário determinar a função lógica interna de um sistema desconhecido.
Abaixo descreveremos 6 portas lógicas: AND, OR, NOT, NAND, NOR e XOR.
9. Apêndice - Portas e Operações Lógicas Uma porta lógica é um circuito eletrônico (hardware) que se constitui no elemento básico de um sistema de computação. A CPU, as memórias, as interfaces de E/S são
ELETRÔNICA DIGITAL 1
CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA UNIDADE SÃO JOSÉ CURSO DE TELECOMUNICAÇÕES ELETRÔNICA DIGITAL 1 CAPÍTULO 2 SUMÁRIO 2. Funções Lógicas 2 2.1 Introdução 2 2.2 Funções Lógicas Básicas
3. Computadores Industriais
UNIVERSIDADE DO ESTADO DE SANTA CATARINA UDESC CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT DEPARTAMENTO DE ENG. DE PRODUÇÃO E SISTEMAS - DEPS INFORMÁTICA INDUSTRIAL IFD 3. Computadores Industriais Igor Kondrasovas
Projeto de Circuitos Lógicos. Introdução ao Computador 2010/01 Renan Manola
Projeto de Circuitos Lógicos Introdução ao Computador 2010/01 Renan Manola Blocos básicos dos circuitos lógicos Portas Lógicas (1) Transistor A lógica digital baseia-se no fato de que um transistor pode
Aula 7: Portas Lógicas: AND, OR, NOT, XOR, NAND e NOR
Aula 7: Portas Lógicas: AND, OR, NOT, XOR, NAND e NOR Conforme discutido na última aula, cada operação lógica possui sua própria tabela verdade. A seguir será apresentado o conjunto básico de portas lógicas
FUNDAMENTOS DA AUTOMAÇÃO Funções e Portas Lógicas. Prof. Luiz Fernando Laguardia Campos FMS
FUNDAMENTOS DA AUTOMAÇÃO Funções e Portas Lógicas Prof. Luiz Fernando Laguardia Campos FMS [email protected] Funções e Portas Lógicas Funções lógicas e, ou, não, ne e nou. Nas funções lógicas,
CURSO DE ELETRÔNICA DIGITAL A ÁLGEBRA DE BOOLE
LIÇÃO 2 A ÁLGEBRA DE BOOLE Na primeira lição do nosso curso aprendemos o significado das palavras Digital e Lógica empregadas na Eletrônica e nos computadores. Vimos que os computadores são denominados
Introdução à Automação
Núcleo de Mecânica Introdução à Automação Prof. Wander Gaspar [email protected] Sistemas Analógicos Um sistema analógico contém dispositivos que manipulam quantidades físicas que variam de forma contínua
Módulo 2 Álgebra e Lógica Booleana
1 Sistemas Digitais e Arquitetura de Computadores Módulo 2 Álgebra e Lógica Booleana 0. Álgebra de Boole 2017/2018 2 Introdução A álgebra de Boole, como a álgebra tradicional, tem, em princípio, como objeto,
Infra-Estrutura de Hardware
Infra-Estrutura de Hardware Lógica Booleana Universidade Federal Rural de Pernambuco Professor: Abner Corrêa Barros [email protected] Introdução Um circuito digital é aquele em que estão presentes
UFMT. Ministério da Educação UNIVERSIDADE FEDERAL DE MATO GROSSO PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO PLANO DE ENSINO
UFMT 1) IDENTIFICAÇÃO: Disciplina: Lógica Matemática e Elementos de Lógica Digital Ministério da Educação UNIVERSIDADE FEDERAL DE MATO GROSSO PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO PLANO DE ENSINO Curso:
SSC0112 Organização de Computadores Digitais I
SSC2 Organização de Computadores Digitais I 4ª Aula Revisão de Lógica Digital Profa. Sarita Mazzini Bruschi [email protected] Aula ministrada por Prof. Paulo Sergio Lopes de Souza Revisão de Lógica Digital
Álgebra de Boole (ou Boleana) Circuitos Digitais Portas Lógicas e Álgebra de Boole. Álgebra de Boole: Tabela Verdade. Álgebra de Boole: funções
6/3/2 Circuitos Digitais Portas Lógicas e Álgebra de Boole Prof. Abel Guilhermino Aula 3 (ou Boleana) Desenvolvida pelo matemático britânico George Boole para estudo da lógica. Definida sobre um conjunto
Prof. Leonardo Augusto Casillo
UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO Aula 6 Álgebra de Boole Prof. Leonardo Augusto Casillo Álgebra de Boole (ou Boleana) Desenvolvida pelo matemático britânico George
Arquitetura e Organização de Computadores. Álgebra Booleana
Arquitetura e Organização de Computadores Álgebra Booleana 1 Histórico e Propriedades Formalizada por George Boole em 1854 Usada por Shannon em 1938 para provar propriedades de circuitos de chaveamento
Organização de computadores
Organização de computadores Aula 6 - Álgebra de Boole Professora Marcela Santos [email protected] Tópicos Portas lógicas e álgebra de boole Álgebra de boole regras e propriedades Provas de algumas
Portas lógicas Arquitetura e Organização de Computadores Curso de Análise e Desenvolvimento de Sistemas
Portas lógicas Arquitetura e Organização de Computadores Curso de Análise e Desenvolvimento de Sistemas 1 Componentes Álgebra dos de computadores Boole Vimos anteriormente que os números binários não representam
12 - Álgebra de Boole aplicada a Circuitos Digitais Função AND: Fundamentos de TI
12 - Álgebra de oole aplicada a Circuitos Digitais Em circuitos digitais, a álgebra de oole pode ser convencionada como: V verdadeiro, nível alto ou simplesmente 1 F falso, nível baixo ou simplesmente
George Boole ( ) Claude Shannon
George Boole (1815 1864) Claude Shannon Da matemática básica temos: Constante = valor fixo Variável = pode assumir qualquer valor Constante booleana = valor fixo (0 ou 1) independente da situação! Variável
3 - Operações Lógicas. Portas Lógicas, Expressões Lógicas e Circuitos Lógicos
3 - Operações Lógicas Portas Lógicas, Expressões Lógicas e Circuitos Lógicos 1 Introdução George Boole (1854) Álgebra de Boole Operações (disjunção), (conjunção) e (negação) Constantes: 0, 1 Axiomas: associatividade,
ÁLGEBRA BOOLEANA E LÓGICA DIGITAL AULA 04 Arquitetura de Computadores Gil Eduardo de Andrade
ÁLGEBRA BOOLEANA E LÓGICA DIGITAL AULA 04 Arquitetura de Computadores Gil Eduardo de Andrade O conteúdo deste documento é baseado no livro Princípios Básicos de Arquitetura e Organização de Computadores
Sistemas Digitais Álgebra de Boole Binária e Especificação de Funções
Sistemas Digitais Álgebra de Boole Binária e Especificação de Funções João Paulo Baptista de Carvalho (Prof. Auxiliar do IST) [email protected] Álgebra de Boole Binária A Álgebra de Boole binária
Capítulo 3. Álgebra de Bool
Capítulo 3 Álgebra de Bool Adaptado dos transparentes das autoras do livro The Essentials of Computer Organization and Architecture Objectivos Compreender a relação entre lógica Booleana e os circuitos
Descrevendo Circuitos Lógicos (Continuação) CPCX UFMS Slides: Prof. Renato F. dos Santos Adaptação: Prof. Fernando Maia da Mota
Descrevendo Circuitos Lógicos (Continuação) CPCX UFMS Slides: Prof. Renato F. dos Santos Adaptação: Prof. Fernando Maia da Mota 3.11 Teoremas de DeMorgan Demorgan, foi um grande matemático, tendo contribuído
Nível da Lógica Digital (Aula 6) Portas Lógicas e Lógica Digital Nível da Lógica Digital Estudar vários aspectos da lógica digital Base de estudo para os níveis mais elevados da hierarquia das máquinas
Experimento 1 Objetivo: AND AND AND Material e Componentes Procedimento AND Nota: teste
UNIVERSIDADE FEDERAL DO PIAUÍ CCN / Departamento de Física Disciplina Eletrônica básica Técnicas digitais Prática 11 Experimento 1 Objetivo: Estabelecer a tabela verdade para o gate básico AND. Todo circuito
PCS 3115 (PCS2215) Sistemas Digitais I. Módulo 05 Álgebra Booleana. Prof. Dr. Edison Spina. Sobre o material do Prof. Dr. Marcos A. Simplicio Jr.
PCS 35 (PCS225) Sistemas Digitais I Módulo 5 Álgebra Booleana Prof. Dr. Edison Sobre o material do Prof. Dr. Marcos A. Simplicio Jr. versão: 5 (Mar/28) Conceitos básicos Conteúdo Teoremas de variável Teoremas
Eletrônica Digital Portas Lógicas
Eletrônica Digital Portas Lógicas ELETRÔNICA DIGITAL Portas Lógicas Expressões Booleanas Tabela Verdade Simbologia 3 Portas Lógicas As portas lógicas são componentes básicos da eletrônica digital usados
Circuitos Digitais. Conteúdo. Lógica. Introdução. Tabela-Verdade. Álgebra Booleana. Álgebra Booleana / Funções Lógicas. Ciência da Computação
Ciência da Computação Álgebra Booleana / Funções Lógicas Prof. Sergio Ribeiro Material adaptado das aulas de I do Prof. José Maria da UFPI Conteúdo Introdução Álgebra Booleana Constantes e Variáveis Booleanas
ELETRÔNICA DIGITAL Aula 4-Álgebra de Boole e Simplificações de circuitos lógicos
ELETRÔNICA DIGITAL Aula 4-Álgebra de Boole e Simplificações de circuitos lógicos Prof.ª Eng. Msc. Patricia Pedroso Estevam Ribeiro Email: [email protected] 08/10/2016 1 Introdução Os circuitos
Álgebra de Boole binária
Álgebra de Boole binária Fundamentação Funções lógicas de uma variável Funções lógicas de duas variáveis Princípio da dualidade Funções de n variáveis Definição formal da Álgebra de Boole Manipulação de
Universidade Federal do ABC
Universidade Federal do ABC Eletrônica Digital Aula 3: Álgebra Booleana Prof. Rodrigo Reina Muñoz [email protected] RRM T3 2017 1 Teoremas Booleanos Auxiliam a simplificar expressões lógicas e
Apresentação da Disciplina Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 60h
Apresentação da Disciplina Prof. Rômulo Calado Pantaleão Camara Carga Horária: 60h Introdução à Eletrônica É ciência que estuda a forma de controlar a energia elétrica por meios elétricos nos quais os
Transistor. Portas Lógicas (2) Base; Coletor; Emissor.
Nível da Lógica Digital Nível da Lógica Digital (Aula 6) Portas Lógicas e Lógica Digital Estudar vários aspectos da lógica digital Base de estudo para os níveis mais elevados da hierarquia das máquinas
Álgebra de Boole. Este material é uma adaptação das notas de aula dos professores Edino Fernandes, Juliano Maia, Ricardo Martins e Luciana Guedes
Álgebra de Boole Este material é uma adaptação das notas de aula dos professores Edino Fernandes, Juliano Maia, Ricardo Martins e Luciana Guedes Álgebra de Boole Álgebra Booleana ou Álgebra de Boole Conjunto
ELETRÔNICA DIGITAL II
ELETRÔNICA DIGITAL II Parte 0 Revisão Professor Michael Analógico x Digital 2 Circuitos Lógicos Os circuitos lógicos podem ser classificados em dois tipos: Circuitos Combinacionais: As saídas em qualquer
6. Análise Lógica Combinacional
Objetivos 6. Análise Lógica Combinacional Analisar circuitos lógicos combinacionais básicos, tais como AND-OR, AND-OR-inversor, EX-OR e EX- NOR Usar circuitos AND-OR e AND-OR-inversor para implementar
PCS 3115 (PCS2215) Conteúdo
-Mar-8 PCS 35 (PCS225) Sistemas Digitais I Módulo 5 Álgebra Booleana Prof. Dr. Marcos A. Simplicio Jr. versão: 3. (Jan/26) Conteúdo Conceitos básicos Teoremas de variável Teoremas de 2 variáveis Teoremas
CIRCUITOS DIGITAIS. Portas Lógicas e Álgebra Booleana
CIRCUITOS DIGITAIS Portas Lógicas e Álgebra Booleana Prof. Denis Fantinato Prof. Rodrigo Moreira Bacurau Slides baseados nas aulas do Prof. Rodrigo Moreira Bacurau Tabelas Verdade O que será visto nesta
Lógica para Computação. Álgebra de Boole
Lógica para Computação Álgebra de Boole Formas Normais Definição: diz-se que uma proposição está na forma normal (FN) se e somente se, quando muito, contém os conectivos ~, ^ e v. - Toda proposição pode
CAPÍTULO 3 PORTAS LÓGICAS E ÁLGEBRA BOOLEANA
CAPÍTULO 3 PORTAS LÓGICAS E ÁLGEBRA BOOLEANA Introdução Tabela Verdade Operações OR e AND Portas OR e AND Inversor Expressões Algébricas Portas NAND e NOR Teoremas Booleanos Introdução A álgebra booleana
UFMG DCC Álgebra de Boole. Slides ligeiramente adaptados daqueles do professor Osvaldo Farhat de Carvalho, DCC, UFMG
UFMG DCC001 2013-1 1 Álgebra de Boole Slides ligeiramente adaptados daqueles do professor Osvaldo Farhat de Carvalho, DCC, UFMG UFMG DCC001 2013-1 2 Bits e informação Representamos números, caracteres,
ELETRÔNICA DIGITAL CIRCUITOS LÓGICOS COMBINACIONAIS. 4º Bimestre Pelicano 2018
ELETRÔNICA DIGITAL CIRCUITOS LÓGICOS COMBINACIONAIS 4º Bimestre Pelicano 2018 2 CIRCUITOS LÓGICOS COMBINACIONAIS Definição: Um circuito combinacional é constituído de um conjunto de portas lógicas, as
Aula 13. Conceitos Básicos de Eletrônica Digital Circuitos Combinacionais. Prof. Dr. Dilermando Piva Jr.
13 Aula 13 Conceitos Básicos de Eletrônica Digital Circuitos Combinacionais Prof. Dr. Dilermando Piva Jr. Site Disciplina: http://fundti.blogspot.com.br/ Tópicos Álgebra de Boole Portas Lógicas Circuitos
Introdução a eletrônica digital, apresentação do curso, cronograma do curso.
EMENTA: Ferramentas para simulação e projeto de sistemas digitais. Equipamentos e componentes para montagem de sistemas digitais. Equipamentos para mensuração e teste na implementação de sistemas digitais.
PORTAS LÓGICAS E TEOREMAS DE "DE MORGAN"
Roteiro Laboratorial Nº 1 PORTAS LÓGICAS E TEOREMAS DE "DE MORGAN" BARROS, E. C. 1, NASCIMENTO, L. A. F. 1, MOURA, A. F. L. 1, Ciro J. Egoavil 2 1 Monitores da disciplina de Eletrônica I - DAEE, Fundação
ELETRÔNICA DIGITAL. Parte 5 Circuitos Combinacionais. Professor Dr. Michael Klug. 1 Prof. Michael
ELETRÔNICA DIGITAL Parte 5 Circuitos Combinacionais Professor Dr. Michael Klug 1 2 Qualquer circuito lógico, não importando a sua complexidade, pode ser descrito usando as três operações booleanas básicas
Funções e Portas Lógicas
Funções e Portas Lógicas Nikolas Libert ula 1 Eletrônica Digital ET52C Tecnologia em utomação Industrial Funções e Portas Lógicas Funções e Portas Lógicas Função Lógica Opera sobre variáveis binárias (0
CAPÍTULO 1 REVISÃO DE LÓGICA COMBINACIONAL
1 CAPÍTULO 1 REVISÃO DE LÓGICA COMBINACIONAL Sumário 1.1. Sistemas de Numeração... 3 1.1.1. Conversão Decimal Binária... 3 1.1.2. Conversão Binária Decimal... 3 1.1.3. Conversão Binária Hexadecimal...
PORTAS LÓGICAS OR, AND e NOT
PORTAS LÓGICAS OR, AND e NOT O que é uma porta lógica? Uma porta lógica poderá ajudá-lo a tomar uma decisão lógica. Em eletrônica digital, uma porta lógica pode ser definida como um circuito com somente
Disciplina: Lógica Matemática Prof. Etelvira Leite
Disciplina: Prof. Etelvira Leite A álgebra de Boole é um conjunto de postulados e operações lógicas com variáveis binárias desenvolvido pelo matemático e filósofo inglês George Boole (1815-1864). O inglês
UNIDADE 6. Responsável pelo conteúdo: Prof. tutor Viltemar Evangelista de Souza
Responsável pelo conteúdo: Prof. tutor Viltemar Evangelista de Souza Olá! Seja bem vindo! Estamos iniciando a unidade 6 do curso de Eletrônica Digital. Nesta unidade iremos aprender sobre as portas lógicas
Álgebra de Boole. George Simon Boole ( ) O criador da álgebra dos circuitos digitais. Profª Jocelma Rios. Out/2012
Out/2012 Álgebra de Boole George Simon Boole (1815-1864) O criador da álgebra dos circuitos digitais Profª Jocelma Rios O que pretendemos: Contar um pouco sobre a história da Álgebra, especialmente a Álgebra
UNIDADE 5. Responsável pelo conteúdo: Prof. tutor Viltemar Evangelista de Souza
Responsável pelo conteúdo: Prof. tutor Viltemar Evangelista de Souza Olá! Seja bem vindo! Estamos iniciando a unidade 5 do Curso de Eletrônica Digital. Nesta unidade vamos estudar: Como obter a expressão
CIRCUITOS DIGITAIS COMBINACIONAIS (Unidade 3)
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ELETRÔNICA
Álgebra Booleana. UNIVERSIDADE DA BEIRA INTERIOR Faculdade de Engenharia Departamento de Informática
Arquitectura de Computadores I Engenharia Informática (11537) Tecnologias e Sistemas de Informação (6616) Álgebra Booleana Nuno Pombo / Miguel Neto Arquitectura Computadores I 2014/2015 1 Nas primeiras
Sistemas Digitais. 6 Funções lógicas
Para o estudo das funções lógicas usa-se a álgebra de Boole, assim chamada em homenagem ao seu criador George Boole. A álgebra de Boole opera com relações lógicas e não com relações quantitativas como
COLÉGIO DO INSTITUTO BATISTA AMERICANO PROF. ABIMAILTON PRATTI DA SILVA Rua Mariana N.º 70 Retiro Volta Redonda Telefone: (24)
COLÉGIO DO INSTITUTO BATISTA AMERICANO PROF. ABIMAILTON PRATTI DA SILVA Rua Mariana N.º 70 Retiro Volta Redonda Telefone: (24) 33381279 SOLICITAÇÃO Não temos direito autoral reservado para o presente trabalho.
Álgebra Booleana e Tabelas-Verdade
Álgebra Booleana e Tabelas-Verdade Prof. Ohara Kerusauskas Rayel Disciplina de Eletrônica Digital - ET75C Curitiba, PR 9 de abril de 2015 1 / 30 Álgebra Booleana Principal diferença para a álgebra convencional:
Programação de Computadores I Dados, Operadores e Expressões PROFESSORA CINTIA CAETANO
Programação de Computadores I Dados, Operadores e Expressões PROFESSORA CINTIA CAETANO Dados em Algoritmos Quando escrevemos nossos programas, trabalhamos com: Dados que nós fornecemos ao programa Dados
CALCULADORA SIMPLES COM ULA
CALCULADORA SIMPLES COM ULA Versão 2013 RESUMO 1 Esta experiência tem por objetivo a utilização de circuitos integrados de operações lógicas e aritméticas para o desenvolvimento de circuitos que executam
LÓGICA DIGITAL - CONCEITOS. * Constantes. * Expressões: Aritméticas; Lógicas; Tabela Verdade; Relacionais; Booleanas. * Portas Lógicas.
* Tipos de Dados. * Constantes. * Expressões: Aritméticas; Lógicas; Tabela Verdade; Relacionais; Booleanas. * Portas Lógicas. 1 TIPOS DE DADOS Dados inteiros Representação das informações pertencentes
Aula 07 : Portas Lógicas e Álgebra Booleana
ELE 0316 / ELE 0937 Eletrônica Básica Departamento de Engenharia Elétrica FEIS - UNESP Aula 07 : Portas Lógicas e Álgebra Booleana 1. 1 7.1 Portas Lógicas e Expressões Algébricas 1. 2 7.1 Portas Lógicas
Universidade Federal do ABC
Universidade Federal do ABC Eletrônica Digital Aula 2: Portas Lógicas Básicas Tocci, Sistemas Digitais, Cap. 3. https://sites.google.com/site/en2605edigital/edigital Prof. Rodrigo Reina Muñoz [email protected]
Aula 4: Álgebra booleana
Aula 4: Álgebra booleana Circuitos Digitais Rodrigo Hausen CMCC UFABC 01 de fevereiro de 2013 http://compscinet.org/circuitos Rodrigo Hausen (CMCC UFABC) Aula 4: Álgebra booleana 01 de fevereiro de 2013
Organização e Arquitetura de Computadores I
Universidade Federal de Campina Grande Centro de Engenharia Elétrica e Informática Unidade Acadêmica de Sistemas e Computação Curso de Bacharelado em Ciência da Computação Organização e Arquitetura de
Descrevendo Circuitos Lógicos (Continuação) CPCX UFMS Prof. Renato F. dos Santos
Descrevendo Circuitos Lógicos (Continuação) CPCX UFMS Prof. Renato F. dos Santos 3.6 Descrevendo circuitos lógicos algebricamente Qualquer circuito lógico pode ser descrito usando as três operações booleanas
Arquitetura e Organização de Computadores. Processador Registrador Memória. Professor Airton Ribeiro
Arquitetura e Organização de Computadores Processador Registrador Memória Professor Airton Ribeiro Processador A função de um computador é executar tarefas com a finalidade de resolver problemas. Uma tarefa
Aula 1. Sistemas Analógicos vs Sistemas Digitais
ula 1 istemas nalógicos vs istemas Digitais Definições istema: conjunto de blocos (dispositivos e/ou componentes )interligados que desempenham uma função complexa. istema digital: constituído por vários
Aula 01. Sistemas Analógicos e Digitais
Aula 01 Sistemas Analógicos e Digitais (pág. 1 a 7, 45 a 46 ) 1 Prof. Dr. Aparecido Nicolett PUC-SP INTRODUÇÃO O termo digital tornou-se parte de nosso vocabulário diário, devido ao modo intenso pelo qual
