INSTRUÇÕES AOS CANDIDATOS
|
|
|
- Adelina Araújo Olivares
- 8 Há anos
- Visualizações:
Transcrição
1 1º ANO 009 MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEP DEPA (Casa de Thomaz Coelho / 1889) CONCURSO DE ADMISSÃO AO 1º ANO DO ENSINO MÉDIO 009/ de outubro de 009 APROVO DIRETOR DE ENSINO COMISSÃO DE ORGANIZAÇÃO PRESIDENTE MEMBRO MEMBRO INSTRUÇÕES AOS CANDIDATOS 01. Duração da prova: 0 (duas) horas. 0. O candidato tem 10 (dez) minutos iniciais para tirar dúvidas, somente quanto à impressão. 03. Esta prova é constituída de 01 (um) Caderno de Questões e 01 (um) Cartão de Respostas. 04. No Cartão de Respostas, CONFIRA seu nome, número de inscrição e o ano escolar; em seguida, assineo. 05. Esta prova contém 0 (vinte) itens, distribuídos em 8 (oito) folhas, incluindo a capa. 06. Marque cada resposta com atenção. Para o correto preenchimento do Cartão de Respostas, observe o exemplo abaixo. 00. Qual o nome da capital do Brasil? (A) Porto Alegre (B) Fortaleza Como você sabe, a opção correta é D. Marcase a resposta da seguinte maneira: (C) Cuiabá (D) Brasília (E) Manaus 00 A B C D E 07. As marcações deverão ser feitas, obrigatoriamente, com caneta esferográfica azul ou preta. 08. Não serão consideradas marcações rasuradas. Façaas como no modelo acima, preenchendo todo o interior do círculoopção sem ultrapassar os seus limites. 09. O candidato só poderá deixar o local de prova após o decurso de 80 (oitenta) minutos, o que será avisado pelo Fiscal. 10. Após o aviso acima e o término do preenchimento do Cartão de Respostas, retirese do local de provas, entregando o Cartão de Respostas ao Fiscal. 11. O candidato poderá levar o Caderno de Questões. 1. Aguarde a ordem para iniciar a prova. Boa prova! 1
2 1º ANO 009 1) Caminhando a uma velocidade constante de 1 km / h, Paulo leva 40 minutos para ir de sua casa ao Colégio Militar. Determine o tempo que irá gastar, se fizer o mesmo percurso com uma velocidade constante e igual a 3 da anterior. (A) 1 hora (B) 1h 0 min (C) 1h 30 min (D) 1h 40 min (E) horas ) Seja N o maior número formado por três algarismos distintos que, dividido por 5, deixa resto. A soma dos algarismos de N é igual a: (A) 7 (B) 6 (C) 5 (D) 4 (E) 3 3) Em uma turma, o número de alunos que gostam de Matemática é igual a 5% do número de alunos que não gostam. Qual a porcentagem do total de alunos que gostam de Matemática? (A) 0% (B) 5% (C) 30% (D) 40% (E) 45% 4) De sua jarra de suco, Claudete bebeu inicialmente 40 ml. Depois, bebeu 4 1 do que restava e, depois de algum tempo, ela bebeu o restante que representava 3 1 do volume inicial. A jarra continha inicialmente uma quantidade de suco, em ml, igual a: (A) 70 (B) 600 (C) 540 (D) 500 (E) 43
3 1º ANO 009 5) Em um grupo de 900 entrevistados que assinam, pelo menos, uma de três revistas A, B ou C, verificouse que 5 3 dos entrevistados assinam a revista A e 3 assinam a revista B. Se metade dos entrevistados assina pelo menos duas dessas revistas e se todos os que assinam a revista C assinam também a revista A, mas não assinam a revista B, quantos entrevistados assinam a revista C? (A) 180 (B) 10 (C) 40 (D) 360 (E) 540 6) Seja f uma função que tem como domínio o conjunto A = Brito, Antunes, Vinicius, Acacia, Souto, Miriam e como contradomínio o conjunto { } B = {, 3, 4, 5, 6, 7}. A função f associa a cada elemento x em A o número de letras distintas desse elemento x. Com base nessas informações, podese afirmar que: (A) quaisquer elementos distintos no domínio estão associados a distintos elementos no contradomínio; (B) todo elemento do contradomínio está associado a algum elemento do domínio; (C) f não é uma função; f Acacia = 3 ; (D) ( ) (E) f ( Brito) = f ( Souto) 7) Mestre Sarmento formou grupos de 3 e 5 alunos com todos os integrantes da turma Biomédica com o objetivo de conscientizar os demais alunos do CMRJ sobre as prevenções a serem tomadas, para se evitar o contágio da gripe suína. Sabendo que 7 5 dos alunos da turma Biomédica são do sexo masculino, que cada grupo formado contém exatamente uma aluna do sexo feminino e que a quantidade de grupos de 3 alunos é igual a k vezes a quantidade de grupos com 5 alunos, podese afirmar que k é igual a: (A) 1 (B) (C) 3 (D) 5 (E) 7 3
4 1º ANO 009 8) Se a função f :, em que representa o conjunto dos números reais, associa a x + 3 cada número real x o menor dos dois números g ( x) = e g ( x) = 0 x. Utilizandose a representação gráfica de g(x) e de h(x), então o valor máximo de f (x) é: (A) 3 3 (B) 37 3 (C) 39 4 (D) 41 4 (E) ) Dois ciclistas, A e B, competem em uma prova formada por 5 voltas na pista de um ginásio. Sabendo que os ciclistas mantêm velocidade constante durante toda a competição, que x e y denotam os tempos (em segundos) por volta dos competidores A e B, respectivamente, ( x y MMC x, y = 140 e ( ) < ), que x não é divisor de y, e que ( ) MDC x, y = 7, o número de voltas da prova que resta para o mais lento no instante em que o vencedor conclui a prova é: (A) 6 (B) 5 (C) 4 (D) 3 (E) 10) Na figura abaixo, temos um círculo de centro O, em que PA = 3 cm e PB = cm. O valor de PQ é: (A) 10 cm (B) 1 cm (C) 13 cm (D) 15 cm (E) 0 cm 4
5 1º ANO ) Na figura abaixo, ABCDEF é um hexágono regular de lado a. Os arcos que aparecem na figura são arcos de circunferência com centro nos vértices do polígono. A área S assinalada vale: B C a ( 3 π ) (A) a ( 3 3 4π ) (B) π 3 3 π 3 + π a ( ) (C) a ( ) (D) a ( ) (E) A F S E D 1) O triângulo ABC da figura dada abaixo é eqüilátero de lado igual a 1 cm. M é o ponto médio do lado BC e centro da semicircunferência que tangencia os lados AB e AC e o círculo de centro O. Este círculo menor, por sua vez, também tangencia os lados AB e AC. O valor do raio do círculo indicado de centro O vale: A (A) cm (B) 1,5 cm (C) 3 cm (D) cm (E) 3 cm O B M C 5
6 1º ANO ) Em um grande lançamento imobiliário, os cinco vendedores de plantão realizaram, numa semana, as seguintes vendas de unidades: Ademar vendeu 71, Bastos 76, Sobral 80, Calvet 8 e Euler 91. Valéria é a diretora do departamento de vendas da empresa e precisa calcular a venda média de unidades realizada por estes cinco profissionais. Curiosamente observou que, à medida que os valores iam sendo digitados e a média calculada, o programa de computador adotado gerava para resultados números inteiros. Assim, a última venda digitada por Valéria foi a realizada por: (A) Calvest (B) Bastos (C) Ademar (D) Sobral (E) Euler 14) Um relógio circular foi construído de modo que os números que indicam as horas estão nos vértices de um polígono regular. Nesse relógio, o ponteiro das horas é 5 cm menor do que o ponteiro dos minutos, cujo comprimento é igual ao raio da circunferência onde o polígono em questão, de lado medindo 15 3 cm, se encontra inscrito. Os dois ponteiros estão presos no centro do círculo. Assim, o comprimento do ponteiro menor do relógio, em centímetros, é igual a: (A) 30 (B) 4 (C) 0 (D) 15 (E) 10 15) Certo dia, para a execução de uma tarefa de reflorestamento, três auxiliares de serviços de campo foram incumbidos de plantar 378 mudas de árvores em uma reserva florestal. Dividiram a tarefa entre si, na razão inversa de suas respectivas idades: 4, 3 e 48 anos. Assim, o número de mudas que coube ao mais jovem deles foi (A) 180 (B) 168 (C) 156 (D) 144 (E) 13 6
7 1º ANO ) Os catetos AB e AC do triângulo retângulo da figura abaixo medem, respectivamente, 3 cm e 4 cm. B D E A F C O ponto E pertence à hipotenusa do triângulo ABC, e o quadrilátero ADEF é um retângulo. Se a medida do lado AF do retângulo ADEF é x, para quantos valores inteiros de x a área desse retângulo será maior ou igual a,5 cm? ( A ) 6 ( B ) 5 ( C ) 4 ( D ) 3 ( E ) 17) Uma filmadora tem bateria suficiente para 1 horas desligada ou 4 horas ligada. Se a bateria durou 8 horas, quanto tempo a máquina esteve ligada? (A) 30 minutos (B) 00 minutos (C) 180 minutos (D) 150 minutos (E) 10 minutos 18) Se x, y e z são números racionais e + x 3 z =, então: y 3 (A) x = y (B) x + y = 3 x (C) y = (D) x y = 1 (E) xy = 7
8 1º ANO ) Depois de várias observações, um agricultor deduziu que a função que melhor descreve a produção (y) de sua plantação é a função polinomial do segundo grau y = ax + bx + c, em que x corresponde à quantidade de adubo utilizada. O gráfico correspondente é dado pela figura abaixo. Temse, então, que a soma a + b + c é igual a: (A) 43 (B) 450 (C) 55 (D) 564 (E) 600 0) Dois amigos compraram placas de concreto retangulares iguais, representadas nas figuras abaixo, para pavimentar os pátios de suas respectivas casas. Os dois pátios têm a mesma área de 180 metros quadrados. O perímetro do pátio I, em metros, é igual a: Obs.: As áreas das emendas existentes entre duas placas vizinhas não devem ser consideradas. Cada placa Pátio I Pátio II (A) 38 (B) 48 (C) 58 (D) 60 (E) 64 8
00. Qual o nome do vaso sangüíneo que sai do ventrículo direito do coração humano?
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEP - DEPA (Casa de Thomaz Coelho/889) CONCURSO DE ADMISSÃO À ª SÉRIE DO ENSINO MÉDIO 006/007 DE OUTUBRO DE 006 INSTRUÇÕES AOS CANDIDATOS 0. Duração da prova: 0
INSTRUÇÕES AOS CANDIDATOS
MINITÉRIO DA DEFEA EXÉRCITO BRAILEIRO DEP - DEPA (Casa de Thomaz Coelho / 1889) CONCURO DE ADMIÃO AO 1 o ANO DO ENINO MÉDIO 008/009 18 DE OUTUBRO DE 008 APROVO DIRETOR DE ENINO COMIÃO DE ORGANIZAÇÃO PREIDENTE
00. Qual o nome do vaso sangüíneo que sai do ventrículo direito do coração humano? (A) Veia pulmonar direita
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEP - DEPA (Casa de Thomaz Coelho/1889) CONCURSO DE ADMISSÃO À 1ª SÉRIE DO ENSINO MÉDIO 004005 DE OUTUBRO DE 004 INSTRUÇÕES AOS CANDIDATOS 01. Duração da prova:
INSTRUÇÕES AOS CANDIDATOS
MINITÉRIO D DEFE EXÉRITO RILEIRO DEP - DEP (asa de Thomaz oelho / 1889) ONURO DE DMIÃO O 1 o NO DO ENINO MÉDIO 007/008 0 DE OUTURO DE 007 PROVO DIRETOR DE ENINO OMIÃO DE ORGNIZÇÃO PREIDENTE MEMRO MEMRO
INSTRUÇÕES PARA REALIZAÇÃO DA PROVA
PROVA MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DECEx - DEPA (Casa de Thomaz Coelho/1889) CONCURSO DE ADMISSÃO AO 1º ANO DO ENSINO MÉDIO 2012/2013 11 DE NOVEMBRO DE 2012 INSTRUÇÕES PARA REALIZAÇÃO DA PROVA
INSTRUÇÕES AOS CANDIDATOS
6º ANO 2008 MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEP DEPA (Casa de Thomaz Coelho / 1889) CONCURSO DE ADMISSÃO AO 6º ANO DO ENSINO FUNDAMENTAL 2008/2009 18 de outubro de 2008 APROVO DIRETOR DE ENSINO
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO D E C E x - D E P A COLÉGIO MILITAR DE MANAUS. Manaus-AM, 17 de outubro de 2010
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO D E C E x - D E P A COLÉGIO MILITAR DE MANAUS Manaus-AM, 17 de outubro de 010 CONCURSO DE ADMISSÃO 010/011 MATEMÁTICA PREENCHIDO PELO CANDIDATO Nº de inscrição
00. Qual o nome do vaso sangüíneo que sai do ventrículo direito do coração humano? (A) Veia pulmonar direita
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEP - DEPA (Casa de Thomaz Coelho/1889) CONCURSO DE ADMISSÃO À 1ª SÉRIE DO ENSINO MÉDIO 005/006 DE OUTUBRO DE 005 INSTRUÇÕES AOS CANDIDATOS 01. Duração da prova:
INSTRUÇÕES CANDIDATO, LEIA COM ATENÇÃO!
MINISTÉRIO DA DEFESA Manaus, AM, 11 de novembro de 01 EXÉRCITO BRASILEIRO CONCURSO DE ADMISSÃO 01/013 D E C Ex D E P A COLÉGIO MILITAR DE MANAUS MATEMÁTICA 1º Ano Ensino Médio INSTRUÇÕES CANDIDATO, LEIA
CONCURSO DE ADMISSÃO 2003 / 2004 PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO IDENTIFICAÇÃO NÚMERO DE INSCRIÇÃO: NOME COMPLETO :
COLÉGIO MILITAR DE ELO HORIZONTE ELO HORIZONTE MG DE OUTURO DE 00 DURAÇÃO: 0 MINUTOS CONCURSO DE ADMISSÃO 00 / 00 PROVA DE MATEMÁTICA ª SÉRIE DO ENSINO MÉDIO IDENTIFICAÇÃO NÚMERO DE INSCRIÇÃO: NOME COMPLETO
a) 64. b) 32. c) 16. d) 8. e) 4.
GEOMETRIA PLANA 1 1) (UFRGS) Observe com atenção o retângulo ABCD, na figura abaixo. Considerando as relações existentes entre as sua dimensões e a diagonal, a área desse retângulo será igual a ) (UFRGS)
(PROVA DE MATEMÁTICA DO CONCURSO DE ADMISSÃO AO 1º ANO CMB 2010 / 11) MÚLTIPLA-ESCOLHA. (Marque com um X a única alternativa certa)
(PROVA DE MATEMÁTICA DO CONCURSO DE ADMISSÃO AO 1º ANO CMB 010 / 11) MÚLTIPLA-ESCOLHA (Marque com um X a única alternativa certa) QUESTÃO 01. Uma empresa oferece serviços de acesso a internet cobrando
( Marque com um X, a única alternativa certa )
(PROVA DE MATEMÁTICA DO CONCURSO DE ADMISSÃO À 1ª SÉRIE CMB ANO 004/0) MÚLTIPLA-ESCOLHA ( Marque com um X, a única alternativa certa ) QUESTÃO 01. Na figura abaixo, o círculo tem centro O, OT = 6 unidades
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO COLÉGIO MILITAR DO RECIFE PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEP DEPA COLÉGIO MILITAR DO RECIFE 1 DE OUTUBRO DE 006 Página 1 / 8 ITEM 01 Sendo E (3 11) 11 7, encontramos para E simplificada um valor igual a: A ( ) 7 11 B
02 Do ponto P exterior a uma circunferência tiramos uma secante que corta a
01 Em um triângulo AB AC 5 cm e BC cm. Tomando-se sobre AB e AC os pontos D e E, respectivamente, de maneira que DE seja paralela a BC e que o quadrilátero BCED seja circunscritível a um círculo, a distância
UNIVERSIDADE FEDERAL FLUMINENSE
UNIVERSIDADE FEDERAL FLUMINENSE REINGRESSO E MUDANÇA DE CURSO 016 MATEMÁTICA CADERNO DE QUESTÕES INSTRUÇÕES AO CANDIDATO Você deverá ter recebido o Caderno com a Proposta de Redação, a Folha de Redação,
UNIVERSIDADE FEDERAL FLUMINENSE
UNIVERSIDADE FEDERAL FLUMINENSE REINGRESSO E MUDANÇA DE CURSO 017 MATEMÁTICA CADERNO DE QUESTÕES INSTRUÇÕES AO CANDIDATO Você deverá ter recebido o Caderno com a Proposta de Redação, a Folha de Redação,
COLÉGIO MILITAR BELO HORIZONTE
COLÉGIO MILITAR DE BELO HORIZONTE BELO HORIZONTE MG 23 DE OUTUBRO DE 200 DURAÇÃO: 20 MINUTOS CONCURSO DE ADMISSÃO 200 / 200 PROVA DE MATEMÁTICA ª SÉRIE DO ENSINO FUNDAMENTAL IDENTIFICAÇÃO NÚMERO DE INSCRIÇÃO:
MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V
MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V 1) (PUC/MG) Na figura, ABCD é paralelogramo, BE AD e BF CD. Se BE = 1, BF = 6 e BC = 8, então AB mede a) 1 b) 13 c) 14 d) 15 e) 16 ) (CESGRANRIO) O losango ADEF
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEP
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEP - DEPA (Casa de Thomaz Coelho/889) CONCURSO DE ADMISSÃO Á ª SÉRIE DO ENSINO MÉDIO PROVA DE MATEMÁTICA 00/004 GABARITO QUESTÃO ALTERNATIVA B D C 4 A 5 C 6 C
MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III
MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III 0 Dois círculos de centros A e B são tangentes exteriormente e tangenciam interiormente um círculo de centro C. Se AB = cm, AC = 7 cm e BC = 3 cm, então o raio
AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA À PARTE COM ESTA EM ANEXO.
ENSINO MÉDIO Conteúdos da 1ª Série 1º/2º Bimestre 2015 Trabalho de Dependência Nome: N. o : Turma: Professor(a): Daniel/Rogério Data: / /2015 Unidade: Cascadura Mananciais Méier Taquara Matemática Resultado
UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios
UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios 1. Um triângulo isósceles tem base medindo 8cm e lados iguais com medidas de 5cm. Qual é a área do triângulo? 2. Em um triângulo retângulo,
Equipe de Matemática MATEMÁTICA
Aluno (a): Série: 3ª Turma: TUTORIAL 9R Ensino Médio Equipe de Matemática Data: Áreas de Figuras Planas MATEMÁTICA O estudo da área de figuras planas está ligado aos conceitos relacionados à Geometria
PREPARATÓRIO PROFMAT/ AULA 8 Geometria
PREPARATÓRIO PROFMAT/ AULA 8 Geometria QUESTÕES DISCURSIVAS Questão 1. (PROFMAT-2012) As figuras a seguir mostram duas circunferências distintas, com centros C 1 e C 2 que se intersectam nos pontos A e
INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material.
OPRM 07 Nível 3 (Ensino Médio) Primeira Fase 09/06/7 ou 0/06/7 Duração: 3 horas Nome: Escola: Aplicador(a): INSTRUÇÕES Escreva seu nome, o nome da sua escola e nome do APLICADOR nos campos acima. Esta
Professor Alexandre Assis. Lista de exercícios de Geometria
1. A figura representa três círculos idênticos no interior do triângulo retângulo isósceles ABC. 3. Observando a figura a seguir, determine (em cm): a) o valor de x. b) a medida do segmento AN, sabendo
30's Volume 15 Matemática
30's Volume 1 Matemática www.cursomentor.com 9 de junho de 014 Q1. Considere os segmentos AB = x, BC =, CD = x + 1 e DE = x 18 e que AB = CD. Encontre x. BC DE Q. Em um triângulo ABC, AM é bissetriz interna
Suficiente (50% 69%) Bom (70% 89%) O Encarregado de Educação:
Escola E.B. 2,3 Eng. Nuno Mergulhão Portimão Ano Letivo 2012/2013 Teste de Avaliação Escrita de Matemática 9.º ano de escolaridade Duração do Teste: 90 minutos 19 de fevereiro de 2013 Nome: N.º Turma:
CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 99 / 00 PROVA DE CIÊNCIAS EXATAS DA. 1 a é equivalente a a
13 1 a PARTE - MATEMÁTICA MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES À ESQUERDA Item 01. Se a R e a 0, a expressão: 1 a é equivalente a a a.( ) 1 b.( ) c.( ) a
FUNDADOR PROF. EDILSON BRASIL SOÁREZ O Colégio que ensina o aluno a estudar. II Simulado de Matemática ITA. ALUNO(A): N o : TURMA:
FUNDADOR PROF. EDILSON BRASIL SOÁREZ O Colégio que ensina o aluno a estudar Central de Atendimento: 4006.7777 3 o Ensino Médio II Simulado de Matemática ITA ALUNO(A): N o : TURMA: TURNO: MANHÃ DATA: 1/04/007
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO COLÉGIO MILITAR DO RECIFE
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEP DEPA COLÉGIO MILITAR DO RECIFE ª SÉRIE DO ENSINO MÉDIO 200 Página /0 ESTA PROVA CONTÉM QUESTÃO ÚNICA COM 20 (VINTE) ITENS DE MÚLTIPLA ESCOLHA, O CANDIDATO PODERÁ
Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa
1 Projeto Jovem Nota 10 1. (Ufscar 2001) Considere o triângulo de vértices A, B, C, representado a seguir. a) Dê a expressão da altura h em função de c (comprimento do lado AB) e do ângulo A (formado pelos
UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE
www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE
MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (PROCESSO SELETIVO DE ADMISSÃO AO COLÉGIO NAVAL / PSACN-2006) Prova : Amarela MATEMÁTICA
MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (PROCESSO SELETIVO DE ADMISSÃO AO COLÉGIO NAVAL / PSACN-2006) Prova : Amarela MATEMÁTICA ) Observe o sistema de equações lineares abaixo. s x4 +y45= 2 2x+
Conhecimentos Específicos
PROCESSO SELETIVO 2017 Edital 24/2016 - NC Prova: 26/11/2016 INSCRIÇÃO TURMA NOME DO CANDIDATO ASSINO DECLARANDO QUE LI E COMPREENDI AS INSTRUÇÕES ABAIXO: CÓDIGO ORDEM INSTRUÇÕES Conhecimentos Específicos
CRONOGRAMA DE RECUPERAÇÃO ATIVIDADE DE RECUPERAÇÃO
CRONOGRAMA DE RECUPERAÇÃO SÉRIE: 1ª série do EM DISCIPLINA: MATEMÁTICA 2 Cadernos Assuntos 3 e 4 Áreas e perímetros de figuras planas Lei dos senos e cossenos Trigonometria no triângulo retângulo Teorema
rapazes presentes. Achar a porcentagem das moças que estudam nessa Universidade, em relação ao efetivo da Universidade.
01 Marcar a frase certa: (A) Todo número terminado em 0 é divisível por e por 5. (B) Todo número cuja soma de seus algarismos é 4 ou múltiplo de 4, é divisível por 4 (C) O produto de dois números é igual
30 s Volume 16 Matemática
0 s Volume 16 Matemática www.cursomentor.com 2 de dezembro de 2014 Q1. Um triângulo ABC é retângulo em A e possui a altura AH relativa a hipotenusa valendo 2, 4. Se BH vale 1, 8, calcule AC. Q2. Dois triângulos
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
UERJ/EsFAO/APM D.JoãoVI
UERJ/EsFAO/APM D.JoãoVI Neste caderno você encontrará um conjunto de 32 (trinta e duas) páginas numeradas seqüencialmente, contendo 15 (quinze) questões de cada uma das seguintes disciplinas:, Química,
POLÍGONOS REGULARES. Segmento: ENSINO MÉDIO. Tipo de Atividade: LISTA DE EXERCÍCIOS. 06/2017 Turma: 2 A
Segmento: ENSINO MÉDIO Disciplina: GEOMETRIA Tipo de Atividade: LISTA DE EXERCÍCIOS Prof. Marcelo 06/017 Turma: A POLÍGONOS REGULARES 1) Considere um quadrado com 3 cm de lado, inscrito em um círculo.
VESTIBULAR 2002 Prova de Matemática
VESTIBULAR 00 Prova de Matemática Data: 8//00 Horário: 8 às horas Duração: 0 horas e 0 minutos Nº DE INSCRIÇÃO AGUARDE AUTORIZAÇÃO PARA ABRIR ESTE CADERNO DE QUESTÕES INSTRUÇÕES PARA REALIZAÇÃO DA PROVA
Resolução de Questões 9º Ano Áreas Prof. Túlio. Aplicação: Turmas A e C
Resolução de Questões 9º Ano Áreas Prof. Túlio Aplicação: Turmas A e C 1. Para decorar a fachada de um edifício, um arquiteto projetou a colocação de vitrais compostos de quadrados de lado medindo 1m,
Colégio RESOLUÇÃO. Dessa maneira, a média geométrica entre, 8 e 9 é: Portanto, a média geométrica entre, 8, é um número maior que zero e menor que 1.
Colégio Nome: N.º: Endereço: Data: Telefone: E-mail: Disciplina: MATEMÁTICA Prova: DESAFIO PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2019 QUESTÃO 16 1 1 1 1. Determinando a média geométrica entre
PROMILITARES 08/08/2018 MATEMÁTICA. Professor Rodrigo Menezes
MATEMÁTICA Professor Rodrigo Menezes Colégio Naval 2012/2013 QUESTÃO 1 Sejam P = 1 + 1 3 1 + 1 5 1 + 1 7 1 + 1 9 1 + 1 11 e Q = 1 1 5 1 1 7 1 1 9 1 1 11 Qual é o valor de P Q? a) 2 b) 2 c) 5 d) 3 e) 5
Exercícios Obrigatórios
Exercícios Obrigatórios 1) (UFRGS) Na figura 1, BC é paralelo a DE e, na figura 2, GH é paralelo a IJ. x E y J a C H a (a) ab e a/b (b) ab e b/a (c) a/b e ab (d) b/a e ab (e) a/b e 1/b Então x e y valem,
Grupo de exercícios I - Geometria plana- Professor Xanchão
Grupo de exercícios I - Geometria plana- 1. (G1 - ifce 01) Na figura abaixo, R, S e T são pontos sobre a circunferência de centro O. Se x é o número real, tal que a = 5x e b = 3x + 4 são as medidas dos
PUC - RIO Rio VESTIBULAR 2013 PROVAS DISCURSIVAS DE MATEMÁTICA LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO.
PUC - RIO - 2013 Rio VESTIBULAR 2013 2 o DIA TARDE GRUPO 1 Outubro / 2012 PROVAS DISCURSIVAS DE MATEMÁTICA LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO. 01 - Você recebeu do fiscal o seguinte material: a) este
da população têm cabelos pretos e olhos castanhos e que a população que tem cabelos pretos é 10%
0 Três pessoas resolveram percorrer um trajeto da seguinte maneira: a primeira andaria a metade do percurso mais km, a segunda a metade do que falta mais km e finalmente a terceira que andaria a metade
ÁREAS. Segmento: ENSINO MÉDIO. 06/2018 Turma: 2 A. Tipo de Atividade: LISTA DE EXERCÍCIOS. 20 m. 30 m. 40 m. 50 m
Segmento: ENSINO MÉDIO Disciplina: MAT-GEOMETRIA Tipo de Atividade: LISTA DE EXERCÍCIOS Prof. Marcelo 06/018 Turma: A ÁREAS 1) O quintal da casa de Manoel é formado por cinco quadrados ABKL, BCDE, BEHK,
Suficiente (50% 69%) Bom (70% 89%) O Encarregado de Educação:
Escola E.B. 2,3 Eng. Nuno Mergulhão Portimão Ano Letivo 2012/2013 Teste de Avaliação Escrita de Matemática 9.º ano de escolaridade Duração do Teste: 90 minutos 25 de fevereiro de 2013 Nome: N.º Turma:
Instruções para a realização da Prova Leia com muita atenção
Nível 3 Instruções para a realização da Prova Leia com muita atenção Prova da segunda fase Caro Aluno, Parabéns pela sua participação na décima segunda edição da Olimpíada de Matemática de São José do
INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material.
OPRM 016 Nível Segunda Fase 4/09/16 Duração: 4 Horas e 30 minutos Nome: Escola: Aplicador(a): INSTRUÇÕES Escreva seu nome, o nome da sua escola e nome do APLICADOR(A) nos campos acima. Esta prova contém
Colégio Santa Dorotéia
olégio Santa Dorotéia Área de Matemática Disciplina: Matemática no: 9º Ensino Fundamental Professores: Elias e Elvira Matemática tividades para Estudos utônomos Data: / 1 / 01 ORIENTÇÕES PR REUPERÇÃO FINL
PROVA DE MATEMÁTICA PRIMEIRA ETAPA MANHÃ
PROVA DE MATEMÁTICA PRIMEIRA ETAPA - 1997 - MANHÃ QUESTÃO 01 Durante o período de exibição de um filme, foram vendidos 2000 bilhetes, e a arrecadação foi de R$ 7.600,00. O preço do bilhete para adulto
Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta.
Prezado( candidato(: Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta. Nº de Inscrição Nome PROVA DE MATEMÁTICA
Escola Secundária com 3º Ciclo D. Dinis Curso Profissional de Técnico de Informática de Gestão Teste Diagnóstico do módulo A1
Nome: Nº 10º IG 1ª Parte 1. Qual é o perímetro da estrela representada na figura ao lado, sabendo que é formada por quatro circunferências, cada uma com 5 cm de raio, um quadrado e quatro triângulos equiláteros?
Polígonos PROFESSOR RANILDO LOPES 11.1
Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos Polígono é uma figura geométrica plana e fechada formada apenas por segmentos de reta que não se cruzam no mesmo plano. Exemplos 11.1 Elementos de um polígono
INSTITUTO GEREMARIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II
INSTITUTO GEREMARIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (21) 21087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): 9º Ano: Nº Professora: Marcos Vinício Data: / /2016 COMPONENTE CURRICULAR:
30's Volume 22 Matemática
30's Volume Matemática www.cursomentor.com 0 de julho de 015 Q1. Um homem de x + 6 5 altura x + 97 m de altura está de pé próximo a um poste de m. Neste 50 5 caso qual a medida da sombra do homem neste
INSTRUÇÕES PARA REALIZAÇÃO DA PROVA
COLÉGIIO MIILIITR DE BRSÍÍLII CONCURSO DE DMISSÃO 00 PROV DE MTEMÁTIIC RELIZÇÃO: OUT 0 1ª SÉRIIE Chefe da Seção INSTRUÇÕES PR RELIZÇÃO D PROV 1. CONFIR SU PROV a. Sua prova contém 10 (dez) páginas numeradas
Deste modo, ao final do primeiro minuto (1º. período) ele deverá se encontrar no ponto A 1. ; ao final do segundo minuto (2º. período), no ponto A 2
MATEMÁTICA 20 Um objeto parte do ponto A, no instante t = 0, em direção ao ponto B, percorrendo, a cada minuto, a metade da distância que o separa do ponto B, conforme figura. Considere como sendo de 800
começou a caminhar às 7h35min. gastou = 25 minutos. Então ele
MATEMÁTICA Caminhando sempre com a mesma velocidade, a partir do marco zero, em uma pista circular, um pedestre chega à marca dos 2 500 metros às 8 horas, e aos 000 metros às 8h5min. a) A que horas e minutos
ÁREAS. Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede:
ÁREAS 1 A prefeitura de certa cidade reservou um terreno plano, com o formato de um quadrilátero, para construir um parque, que servirá de área de lazer para os habitantes dessa cidade O quadrilátero ABCD,
UNIVERSIDADE FEDERAL FLUMINENSE CADERNO DE QUESTÕES INSTRUÇÕES AO CANDIDATO
UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA FACULTATIVA 07 MATEMÁTICA CADERNO DE QUESTÕES INSTRUÇÕES AO CANDIDATO Você deverá ter recebido o Caderno com a Proposta de Redação, a Folha de Redação, dois
A triângulo equilátero = 3.R2. 3. A hexágono = 2. A triângulo equilátero. Letra B
GEOMETRIA PLANA ÁREAS QUESTÃO 01 QUESTÃO 03 A = 1 + 16/ -1 = 1 QUESTÃO 0 A hexágono = 3.R. 3 A triângulo equilátero = 3.R. 3 A hexágono =. A triângulo equilátero A triângulo equilátero A hexágono = 1 No
04) 4 05) 2. ˆ B determinam o arco, portanto são congruentes, 200π 04)
RESOLUÇÃO DA PROVA FINAL DE MATEMÁTICA - ANO 007 a SÉRIE DO E.M. _ COLÉGIO ANCHIETA BA ELABORAÇÃO: PROF. OCTAMAR MARQUES. PROFA. MARIA ANTÔNIA GOUVEIA. QUESTÃO 0) Na figura, o raio do círculo é igual a
Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta.
Prezado(a) candidato(a): Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta. Nº de Inscrição Nome PROVA DE MATEMÁTICA
Proposta de teste de avaliação Matemática 6
Proposta de teste de avaliação Matemática 6 Nome da Escola Ano letivo 0 /0 Matemática 6.º ano Nome do Aluno Turma N.º Data Professor / / 0 PARTE 1 Nesta parte é permitido o uso da calculadora. 1. Na figura
Geometria Plana 1 (UEM-2013) Em um dia, em uma determinada região plana, o Sol nasce às 7 horas e se põe às 19 horas. Um observador, nessa região, deseja comparar a altura de determinados objetos com o
Universidade Estadual do Centro-Oeste
Universidade Estadual do Centro-Oeste º Vestibular de 007 INSTRUÇÕES 04/09/06. Confira seu nome, Nº de inscrição e assine no local indicado abaixo.. Aguarde autorização para abrir o caderno de provas..
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DECEx - DFA ESCOLA PREPARATÓRIA DE CADETES DO EXÉRCITO (EsPC de SP/1940)
Prova de Matemática Modelo A MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DECEx - DFA ESCOLA PREPARATÓRIA DE CADETES DO EXÉRCITO (EsPC de SP/1940) Pág. 1 MODELO A CONCURSO DE ADMISSÃO/2011 PROVA DE MATEMÁTICA
QUESTÕES OBJETIVAS. 1. Encontre uma fração equivalente a 9/5 cuja soma dos termos é igual a 196:
QUESTÕES OBJETIVAS 1. Encontre uma fração equivalente a 9/5 cuja soma dos termos é igual a 196: (A) 96/100 (B) 106/90 (C) 116/80 (D) 16/70 (E) 136/60. Um grupo de 6 pessoas é formado por André, Bento,
MATEMÁTICA CONCURSO VESTIBULAR ª FASE - 11/12/ Confira, abaixo, seu nome e número de inscrição. Assine no local indicado.
CONCURSO VESTIBULAR 007 ª FASE - //006 INSTRUÇÕES. Confira, aaixo, seu nome e número de inscrição. Assine no local indicado.. Aguarde autorização para arir o caderno de provas.. A interpretação das questões
COLÉGIO PEDRO II SECRETARIA DE ENSINO CONCURSO PARA PROFESSORES DE ENSINO FUNDAMENTAL E MÉDIO 2007 PROVA ESCRITA DISCURSIVA
SECRETARIA DE ENSINO CONCURSO PARA PROFESSORES DE ENSINO FUNDAMENTAL E MÉDIO 2007 PROVA ESCRITA DISCURSIVA Antes de iniciar a prova, leia atentamente as seguintes instruções: Reservado para Avaliação 1º
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - o ciclo 015 - a Fase Proposta de resolução Caderno 1 1. Calculando o valor médio das temperaturas registadas, temos Resposta: Opção B 19 + 0 + + + 5 7 0 = 5 0 =,6..1. O triângulo
Este caderno, com dezesseis páginas numeradas sequencialmente, contém dez questões de Matemática. Não abra o caderno antes de receber autorização.
2ª FASE EXAME DISCURSIVO 03/12/2017 CADERNO DE PROVA Este caderno, com dezesseis páginas numeradas sequencialmente, contém dez questões de Matemática. Não abra o caderno antes de receber autorização. INSTRUÇÕES
Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013
Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1) A área do triângulo, cujos vértices são (1, 2),
ALUNO (A): TURMA: CURSO: DATA: / / LISTA DE EXERCÍCIO Nº 2 GEOMETRIA PLANA (Quadriláteros e Áreas de Figuras Planas)
DEPARTAMENTO DE MATEMÁTICA PROFª VALÉRIA NAVARRO ALUNO (A): TURMA: CURSO: DATA: / / LISTA DE EXERCÍCIO Nº GEOMETRIA PLANA (Quadriláteros e Áreas de Figuras Planas) 1. (G1 - cftrj 014) Na figura abaixo,
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - 3o ciclo 013-1 a Chamada Proposta de resolução 1. Como o João escolhe 1 de entre 9 bolas, o número de casos possíveis para as escolhas do João são 9. Como os números, 3, 5 e
1ª Parte Questões de Múltipla Escolha. Matemática
c UFSCar ª Parte Questões de Múltipla Escolha Matemática O gráfico em setores do círculo de centro O representa a distribuição das idades entre os eleitores de uma cidade. O diâmetro AB mede 0 cm e o comprimento
Teste de Matemática A 2018 / Teste N.º 3 Matemática A. Duração do Teste: 90 minutos NÃO É PERMITIDO O USO DE CALCULADORA
Teste de Matemática A 018 / 019 Teste N.º 3 Matemática A Duração do Teste: 90 minutos NÃO É PERMITIDO O USO DE CALCULADORA 10.º Ano de Escolaridade Nome do aluno: N.º: Turma: Na resposta aos itens de escolha
LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália
1. A idade de Paulo, em anos, é um número inteiro par que satisfaz a desigualdade x - x + 5 < 0. O número que representa a idade de Paulo pertence ao conjunto a) {1, 1, 14}. b) {15, 16, 17}. c) {18, 19,
A área construída da bandeirinha APBCD, em cm 2, é igual a: a) b) c) d)
1 Para confeccionar uma bandeirinha de festa junina, utilizou-se um pedaço de papel com 10 cm de largura e 15 cm de comprimento, obedecendo-se às instruções abaixo 1 Dobrar o papel ao meio, Dobrar a ponta
INSTRUÇÕES ATENÇÃO. B Matemática Filosofia, Física e Matemática Todas com questões de 1 a 15.
INSTRUÇÕES Você está recebendo do fiscal um Caderno de Questões com 10 (cento e vinte) questões, faça somente as questões que pertencem ao seu grupo. Você receberá, também, a Folha de Respostas personalizada
MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (CONCURSO PÚBLICO DE ADMISSÃO A O COLEGIO NAVAL / CPACN-2013) MATEMÁTICA
MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (CONCURSO PÚBLICO DE ADMISSÃO A O COLEGIO NAVAL / CPACN203) NÃO ESTÁ AUTORIZADA A UTILIZAÇÃO DE MATERIAL EXTRA MATEMÁTICA . Prova Amarela ) Sejam P + +
UNIVERSIDADE FEDERAL FLUMINENSE CADERNO DE QUESTÕES INSTRUÇÕES AO CANDIDATO
08 UNIVERSIDADE FEDERAL FLUMINENSE REINGRESSO E MUDANÇA DE CURSO MATEMÁTICA CADERNO DE QUESTÕES INSTRUÇÕES AO CANDIDATO Você deverá ter recebido o Caderno com a Proposta de Redação, a Folha de Redação,
ASSINATURA DO CANDIDATO
ASSINATURA DO CANDIDATO INSTRUÇÕES 1 - Confira seu nome, número de inscrição e assine no local indicado na capa. 2 - Aguarde autorização para abrir o caderno de provas. 3 - A interpretação das questões
LEIA COM ATENÇÃO E SIGA RIGOROSAMENTE ESTAS INSTRUÇÕES
DEPARTAMENTO DE RECURSOS HUMANOS - DRH SELEÇÃO PÚBLICA PARA FORMAÇÃO DE CADASTRO DE RESERVA DE PROFESSOR SUBSTITUTO PARA A SECRETARIA MUNICIPAL DE EDUCAÇÃO EDITAL 28/2012 PROFESSOR DE MATEMÁTICA LOCAL
CONCURSO DE ADMISSÃO 1º ANO/ENS. MÉDIO MATEMÁTICA 2011/12 PAG. 02 PROVA DE MATEMÁTICA
CONCURSO DE ADMISSÃO 1º ANO/ENS. MÉDIO MATEMÁTICA 2011/12 PAG. 02 PROVA DE MATEMÁTICA Marque no cartão-resposta anexo a única opção correta correspondente a cada questão. 1. Estamos no mês de outubro.
GGM Geometria Básica - UFF Lista 4 Profa. Lhaylla Crissaff. 1. Encontre a área de um losango qualquer em função de suas diagonais. = k 2.
1. Encontre a área de um losango qualquer em função de suas diagonais. 2. Se dois triângulos ABC e DEF são semelhantes com razão de semelhança k, mostre que A ABC A DEF = k 2. 3. Na figura 1, ABCD e EF
01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x?
EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - ª ETAPA ============================================================================================== 01- Assunto: Equação do º grau.
MATEMÁTICA. Capítulo 3 LIVRO 2. (I) Áreas das Figuras Planas (II) Áreas de Polígonos Regulares. Páginas: 168 à 188
MATEMÁTICA LIVRO Capítulo (I) Áreas das Figuras Planas (II) Áreas de Polígonos Regulares Páginas: 68 à 88 Áreas de Figuras Planas toda área é uma medida de superfície [u] unidade padrão [u]² [u] I. ÁREA
Edital Nº. 08/2009-DIGPE 13 de dezembro de 2009 INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA
Caderno de Provas MATEMÁTICA Edital Nº. 08/2009-DIGPE 13 de dezembro de 2009 INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA Use apenas caneta esferográfica azul ou preta. Escreva o seu nome completo e o número
26 A 30 D 27 C 31 C 28 B 29 B
26 A O total de transplantes até julho de 2015 é de 912 transplantes. Destes, 487 são de córnea. Logo 487/912 53,39% transplantes são de córnea. 27 C O número de subnutridos caiu de 1,03 bilhões de pessoas
