Transformação de Coordenadas
|
|
|
- Aurélia Madureira Gentil
- 8 Há anos
- Visualizações:
Transcrição
1 Transformação de Coordenadas Manuela Vasconcelos Lsboa, 5 de Mao de 07 Implcações da Adopção dos Novos Sstemas Transformação da Informação Geográfca Exstente Precsão dos Métodos de Transformação Adequação do eferencal Geodésco Qualdade da(s) ede(s) [email protected]
2 Tpos de Conversões / Transformações de Coordenadas Drecta Sstema Sstema (M, P) (M,P )!!Erro!! (, λ) (, λ) (h ) Drecta!!Erro!! (h ) (X,, Z) (X,, Z)!!Erro!! [email protected] 3 Alguns Tpos de Transformações de Coordenadas Sstema Sstema (X,, Z) Bürsa-Wolf (X,, Z) ( Molodensky, λ, h ), λ, h ) (M, P) Polnómos ( (M,P ), λ ), λ ) ( Grelhas NTv ( [email protected] 4
3 Transformação de Helmert no Espaço Z Z Z (T X, T, T Z ) O O X X X [email protected] 5 Transformação de Helmert no Espaço X Z X T T Z T X Z 0 Z - 0 X Z 0 X X X k Z Z (X,, Z) coordenadasno sstema de partda (m) (X,,Z) coordenadas nosstemadechegada (m) (TX,T,TZ) vectorde translaçãoentreas orgensdossstemas (m) (X,,Z) k factor de escala(ppm) rotações em torno dos exosx,, Z (radanos) [email protected] 6 3
4 Transformação de Helmert (Bürsa-Wolf) X Z T T T X Z ( k) Z - X Z X X Z (X,,Z ) coordenadasno sstema de partda (m) (X,,Z) coordenadas nosstemadechegada (m) (TX,T,TZ) vectorde translaçãoentreas orgensdos sstemas (m) (X,,Z) k factor de escala(ppm) rotaçõesem tornodos exosx,, Z (radanos) [email protected] 7 ( Poston Vector [email protected] 8 4
5 5 9 Transformação de Transformação de Molodensky Molodensky ( ) 3 M sn e ) e a( N sn e a M ) sn( f) a a (f cos Z snλ sn cosλ sn X cos cosλ snλ X λ N a sn f) a (f. f sn Z snλ cos cosλ cos X h λ em radanos, h emmetros [email protected] 0 0 Transformação de Transformação de Molodensky Molodensky ( ) n ξ cosλ cos ω snλ ψ cosλ sn n X ( ) n ξ snλ cos ω cosλ ψ snλ sn n ( ) n ξ snλ ψ cos n Z M ) sn( f) a a (f ψ N λ ω h sn f) a a -(f a ξ
6 Transformações Polnomas M c0 cm cp c3m c4mp c5p K P d0 dm dp d3m d4mp d5p K (M,P) coordenadas nosstemade partda (m) (M,P ) coordenadas nosstemade chegada (m) (c,d) coefcentes a determnar [email protected] Transformações Polnomas E a0 au av a3u a4uv a5v N b0 bu bv b3u b4uv d5v K K E X h u 0 N k v 0 (E,N) coordenadas no sstema de partda (m) (E,N) coordenadas no sstema de chegada (m) X0 0,, h, k:parâmetros de normalzação (a,b) coefcentes adetermnar [email protected] 6
7 Grelhas NTv Grelhas de dferenças de coordenadas geográfcas Cradas com base nas coordenadas de pontos conhecdos nos dos sstemas de referênca Undades: segundos de arco Formato standard A transformação é realzada através de nterpolação sobre a grelha [email protected] 3 Grelhas NTv [email protected] 4 7
8 Transformação de Coordenadas Contnente Sstemas Locas (DatumLsboa, Datum73) para PT-TM06/ ETS89: Molodensky Bursa-Wolf Funções Polnomas das Coordenadas Cartográfcas Grelhas de Dferenças de Coordenadas Estratéga Determnação dos parâmetros: VG de.ªordem Avalação da sua qualdade: VG de.ªordem (excepto para as grelhas) 5 Dferenças PT-TM06 TM06 - HGDLx (PT-TM06) - (HGDLx) M (m) P (m) vector (m) méda desvo padrão máxmo mínmo [email protected] 6 8
9 Dferenças PT-TM06 TM06 - HGD73 (PT-TM06) - (HGD73) M (m) P (m) vector (m) méda desvo padrão máxmo mínmo [email protected] 7 Transformação de Coordenadas Contnente HGD73 -> PT-TM06/ETS89TM06/ETS89 Comparação da Planmetra(vector) esíduos (m) Molodensky Bürsa-Wolf Polnómos º grau Grelhas máxmo méda mínmo e.m.q HGDLx -> PT-TM06/ETS89TM06/ETS89 esíduos (m) Molodensky Bürsa-Wolf Polnómos º grau Grelhas máxmo méda mínmo e.m.q [email protected] 8 9
10 Transformação Polnomal HGDLx-> > PT-TM06 TM06 Polnómos de.º Grau Pontos Base.ª ordem esíduos M (m) P (m) Total (m) Máxmo Méda Mínmo e.m.q Pontos de Controlo.ª ordem esíduos M (m) P (m) Total (m) Máxmo Méda Mínmo e.m.q [email protected] 9 Transformação Polnomal HGD73 -> > PT-TM06 TM06 Polnómos de.º Grau Pontos Base.ª ordem esíduos M (m) P (m) Total (m) Máxmo Méda Mínmo e.m.q Pontos de Controlo.ª ordem esíduos M (m) P (m) Total (m) Máxmo Méda Mínmo e.m.q [email protected] 0 0
11 Transformação de Coordenadas Contnente Transformação por grelhas HGD73 -> PT-TM06/ETS89 VG não observados com GNSS esíduos M (m) P (m) vector (m) Máxmo Méda Mínmo e.m.q Grelhas cradas com a.ª,.ªe 3.ªordens Avalação da sua qualdade: 5 VG observados em TK [email protected] Transformação de Coordenadas egões Autónomas Data Locas para PTA08-UTM / ITF93 : Molodensky Bursa-Wolf Funções Polnomas das Coordenadas Cartográfcas Estratéga Determnação dos parâmetros: VG envolventes à Ilha (Grupo) Avalação da sua qualdade: estantes VG (em n.º superor) [email protected]
12 Grupo Ocdental Dferenças de Coordenadas: PTA08 Observatóro 3 Grupo Central Dferenças de Coordenadas: PTA08 Base SW 4
13 Grupo Orental Dferenças de Coordenadas: PTA08 S. Braz 5 Transformação de Coordenadas egões Autónomas Data Locas -> PTA08-UTM/ITF93 Funçõ ções Polnomas de.º Grau. A. Açores G. Orental G. Central G. Ocdental Máxmo esíduos Méda Mínmo e.m.q esíduos em Planmetra (Vector) Undades: metro esíduos. A. Madera Máxmo 0.4 Méda Mínmo e.m.q
14 Aplcatvos para Transformação de Coordenadas 7 WebTranscoord ://cgpr.dgterrtoro dgterrtoro.pt/webtranscoord webtranscoord/ Nova versão do TransCoord PO Solução de nternet Transformação de coordenadas entre os sstemas de referênca portugueses: Contnente e egões Autónomas Métodos de Transformação: Bursa-Wolf e grelhas NTv Baseado em Software lvre: Bbloteca Java GeoToolkt e Javascrpt OpenLayers [email protected] 8 4
15 WebTranscoord Interface HTML ://cgpr.dgterrtoro dgterrtoro.pt/webtranscoord webtranscoord/ 9 WebTranscoord Interface EST (servço Web) Um protocolo clente/servdor sem estado: cada mensagem HTTP contém toda a nformação necessára para compreender o peddo. Transformação ponto a ponto Integração fácl com outras aplcações web API dsponível em ://cgpr.dgterrtoro dgterrtoro.pt/webtranscoord webtranscoord/ [email protected] 30 5
16 WebTranscoord Servço EST 3 Aplcatvos para Transformação de Informação Geográfca Transformação realzada através defunções Polnomas das Coordenadas Cartográfcas ou Grelhas de Dferenças de Coordenadas Contnente e egões Autónomas Transformação ponto a ponto DXF: aplcação DGN: macro dentro do Mcrostaton SHP: aplcação necessta dos 3 fcheros: *.shp, *.shx, *.dbf TFW: aplcação necessta dos fcheros: *.tfw, *.tf Em todas as aplcações:separador decmal tem de ser o ponto (.) [email protected] 3 6
17 Aplcatvos para Transformação de Informação Geográfca 33 Aplcatvos para Transformação de Informação Geográfca 34 7
18 Grelhas NTv no QGIS 35 Grelhas NTv no QGIS 36 8
19 Grelhas NTv no QGIS 37 9
ção o do ETRS89 em Portugal Continental
Estado da Adoçã ção o do ETRS89 em Portugal Continental Manuela Vasconcelos ([email protected]) Ana Carla Bernardes ([email protected]) Paulo Patrício (ppatrí[email protected]) Tópicos Estabelecimento do
WbT WebTranscoord. baseado em software livre.
WbT WebTranscoord Programa de transformação de coordenadas baseado em software livre. çã çã ó ó WbT WebTransCoord Nova versão do TransCoord PRO; Solução de internet; Transformação de coordenadas dos sistemas
Rede Geodésica dos Arquipélagos da Madeira e dos Açores
Rede Geodésica dos Arquipélagos da Madeira e dos Açores Ana Medeiro ([email protected]) Helena Kol ([email protected]) Carla Martins ([email protected]) Manuela Vasconcelos ([email protected]) V CNCG 2 Introdução
José Alberto Gonçalves
CONVERSÕES DE SISTEMAS DE COORDENADAS NACIONAIS PARA ETRS89 UTILIZANDO GRELHAS José Alberto Gonçalves [email protected] Motivação Adopção de um novo sistema de coordenadas (PT-TM06) baseado no datum ETRS89.
Transformação de Coordenadas. João Matos Departamento de Engenharia Civil e Arquitectura
Transformação de Coordenadas João Matos Departamento de Engenharia Civil e Arquitectura (Versão 1.0) 5 Março 007 Motivação A existência de diferentes sistemas de coordenadas é incontornável, tanto por
Sistemas Nacionais de Georreferenciação
Sistemas Nacionais de Georreferenciação Manuela Vasconcelos (mvasconcelos@igeo igeo.pt) Ponta Delgada 19 de Junho de 2009 Workshop Sistemas de Referência Geo-Espaciais - Ponta Delgada 2 M. Vasconcelos
Programa de Certificação de Medidas de um laboratório
Programa de Certfcação de Meddas de um laboratóro Tratamento de dados Elmnação de dervas Programa de calbração entre laboratóros Programa nterno de calbração justes de meddas a curvas Tratamento dos resultados
Problema Real (avião, carro,...) Validação
Modelo Físco/ (EFD)? Problema Real? (avão, carro,...) Modelo Matemátco (CFD) Túnel de Vento Modelo Condções de Frontera Escala Approx. nas eqs., (ν t ) Equações (modelo de turbulênca) Instrumentos de Medda
Sistemas de posicionamento
Sistemas de posicionamento Sistemas de Posicionamento Directo ou de Referência por Coordenadas.Propriedades das projecções.transformações entre sistemas de coordenadas (Molodensky, Bursa-Wolf). Qual é
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas
CONVERSÃO DE GRANDES VOLUMES DE INFORMAÇÃO CARTOGRÁFICA PARA PT-TM06/ETRS89 CASO DO MUNICÍPIO DE VILA NOVA DE GAIA
CONVERSÃO DE GRANDES VOLUMES DE INFORMAÇÃO CARTOGRÁFICA PARA PT-TM06/ETRS89 CASO DO MUNICÍPIO DE VILA NOVA DE GAIA Marco Lima de Carvalho 1 ; Paulo Nuno Sampaio 1 1 Gaiurb Urbanismo e Habitação, EEM Dep.
Módulo I Ondas Planas. Reflexão e Transmissão com incidência normal Reflexão e Transmissão com incidência oblíqua
Módulo I Ondas Planas Reflexão e Transmssão com ncdênca normal Reflexão e Transmssão com ncdênca oblíqua Equações de Maxwell Teorema de Poyntng Reflexão e Transmssão com ncdênca normal Temos consderado
Algarismos Significativos Propagação de Erros ou Desvios
Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento
Programa de transformação de coordenadas baseado em software livre
WebTranscoord Programa de transformação de coordenadas baseado em software livre SILVA, Henrique; MEDEIRO, Ana; VASCONCELOS, Manuela PALAVRAS-CHAVE O WebTransCoord é a nova versão do TransCoord PRO, agora
CQ110 : Princípios de FQ
CQ110 : Prncípos de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott [email protected] Potencal químco, m potencal químco CQ110 : Prncípos de FQ Propredades termodnâmcas das soluções
MAPA - Orientações. Como fazer upload de arquivos espaciais no CAR?
Como fazer upload de arquivos espaciais no CAR? O único formato de arquivo suportado pelo CAR é o shapefile. Existem três tipos de shapefiles: pontos, linhas ou polígonos, e você deve utilizar o tipo certo
Tutorial 2: Configuração de sistemas de coordenadas cartográficos e extracção de subconjuntos de dados imagem
Tutorial 2: Configuração de sistemas de coordenadas cartográficos e extracção de subconjuntos de dados imagem Introdução. O objectivo principal deste tutorial consiste em extrair um subconjunto de dados
3 Metodologia de Avaliação da Relação entre o Custo Operacional e o Preço do Óleo
3 Metodologa de Avalação da Relação entre o Custo Operaconal e o Preço do Óleo Este capítulo tem como objetvo apresentar a metodologa que será empregada nesta pesqusa para avalar a dependênca entre duas
2 - Análise de circuitos em corrente contínua
- Análse de crcutos em corrente contínua.-corrente eléctrca.-le de Ohm.3-Sentdos da corrente: real e convenconal.4-fontes ndependentes e fontes dependentes.5-assocação de resstêncas; Dvsores de tensão;
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas
UTILIZAÇÃO DO GPS NO CONTROLE DE QUALIDADE DE CARTAS
UTILIZAÇÃO DO GPS NO CONTROLE DE QUALIDADE DE CARTAS Maurco Galo Paulo de Olvera Camargo UNESP - FCT - Faculdade de Cêncas e Tecnologa Departamento de Cartografa, Caxa Postal 468 19060-900 - Presdente
Curvas Horizontais e Verticais
Insttução: Faculdade de Tecnologa e Cêncas Professor: Dego Queroz de Sousa Dscplna: Topografa Curvas Horzontas e ertcas 1. Introdução Exstem dversas ocasões na engenhara em que os projetos são desenvolvs
Matemática Financeira Seções: 3.1 até 4.3 Prof. Me. Diego Fernandes Emiliano Silva
3.1 até 3.3 Stuações de fnancamento VP = parc [ 1 (1+) n ] (3.1) AV E = parc [ 1 (1+) n ] (3.2) (AV E) (1 + ) k 1 = parc [ 1 (1+) n ] (3.3) As fórmulas apresentadas acma são apresentadas nas seções 3.1,
Electromagnetismo e Óptica
Electromagnetsmo e Óptca aboratóro - rcutos OBJETIOS Obter as curvas de resposta de crcutos do tpo sére Medr a capacdade de condensadores e o coefcente de auto-ndução de bobnas por métodos ndrectos Estudar
1. CORRELAÇÃO E REGRESSÃO LINEAR
1 CORRELAÇÃO E REGREÃO LINEAR Quando deseja-se estudar se exste relação entre duas varáves quanttatvas, pode-se utlzar a ferramenta estatístca da Correlação Lnear mples de Pearson Quando essa correlação
SUMÁRIO. CÓDIGO: NTD DATA PUBLICAÇÃO: 8/04/2013 TÍTULO: Padrão de Projetos Georreferenciados VERSÃO NORMA: 3.1
TÍTULO: Padrão de SUMÁRIO NTD 002.011 PADRÃO DE PROJETOS GEORREFERENCIADOS... 2 1. Objetivo... 2 2. Sistema de Projeção de Coordenadas... 2 3. Especificação do equipamento de Global Positioning System
GA112 FUNDAMENTOS EM GEODÉSIA. Capítulo 4. Regiane Dalazoana
GA112 FUNDAMENTOS EM GEODÉSIA Capítulo 4 Regiane Dalazoana 4 : 4.1 Rede Geodésica de Referência Internacional (ITRF); Rede Geodésica de Referência Global (GGRF) 4.2 Hierarquia das Redes Geodésicas de Referência;
Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos
Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,
Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma
Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Estatística
Escola Secundára com º cclo D. Dns 10º Ano de Matemátca A Estatístca Trabalho de casa nº 15 GRUPO I 1. Num referencal o.n. Oxyz, a undade é o cm e a esfera defnda por ( ) ( ) está nscrta num cubo. O volume
Sistemas Nacionais de Georreferenciação
Sistemas Nacionais de Georreferenciação Manuela Vasconcelos ([email protected]) Lisboa, 25 de Maio de 2017 Sistemas de Georreferenciação Clássicos Continente: Datum Lisboa Datum 73 ED50 Arquipélago
Mecanismos de Escalonamento
Mecansmos de Escalonamento 1.1 Mecansmos de escalonamento O algortmo de escalonamento decde qual o próxmo pacote que será servdo na fla de espera. Este algortmo é um dos mecansmos responsáves por dstrbur
Blog Coordenadas GIS e Afins
Blog Coordenadas GIS e Afins Tutorial Convertendo arquivo CAD para o Cadastro Ambiental Rural ajustando o Sistema de Projeção Cartográfica. Agosto/2015 1 01. Introdução Para a execução do processo, iremos
Regressão múltipla linear
Regressão múltpla lnear (Análse de superfíces de tendênca) Coefcente de correlação lnear produto momento, segundo Pearson (r) SPXY = -( ) / n; SQX = - () / n; SQY = - () / n r cov(, ) var( )var( ) r SPXY
A adopção do ETRS89 em Portugal Continental: implementação, consequências e boas práticas
A adopção do ETRS89 em Portugal Continental: implementação, consequências e boas práticas Manuela Vasconcelos ([email protected]) 04/Junho/2009 O que é o ETRS89 Sistema de Referência Regional recomendado
Regressão Múltipla. Parte I: Modelo Geral e Estimação
Regressão Múltpla Parte I: Modelo Geral e Estmação Regressão lnear múltpla Exemplos: Num estudo sobre a produtvdade de trabalhadores ( em aeronave, navos) o pesqusador deseja controlar o número desses
ANÁLISE DA VARIÂNCIA DA REGRESSÃO
ANÁLISE DA VARIÂNCIA DA REGRESSÃO PROCEDIMENTO GERAL DE REGRESSÃO Em um modelo de análse de varânca, como no DIA, o fator em estudo pode ser quanttatvo ou qualtatvo. FATOR QUANTITATIVO: é aquele cujos
PARÂMETROS DE TRANSFORMAÇÃO
PROCESSOS, METODOLOGIAS E MODELOS PARÂMETROS DE TRANSFORMAÇÃO Emmanuel Saturnino CIDDEMA Setembro 2017 ROTEIRO 1 Sistema de Referência Terrestre e Datum 2 Transformação de Coordenadas 3 Modelos Matemáticos
Análise de Regressão
Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal
UNIVERSIDADE DOS AÇORES Curso Matemática Aplicada e Curso Livre
UNIVERSIDADE DOS AÇORES Curso Matemátca Aplcada e Curso Lvre Sondagens e Amostragem 4º Ano º Semestre 005/006 Fcha de trabalho nº 1 Amostragem aleatóra smples 1. Uma população U é composta por cnco números,
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas
3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas
3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas
Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.
Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: [email protected] Meddas de Dspersão Indcam se os dados estão, ou não, prómos
5 Relação entre Análise Limite e Programação Linear 5.1. Modelo Matemático para Análise Limite
5 Relação entre Análse Lmte e Programação Lnear 5.. Modelo Matemátco para Análse Lmte Como fo explcado anterormente, a análse lmte oferece a facldade para o cálculo da carga de ruptura pelo fato de utlzar
CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA
CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de
Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.
Estatístca Dscplna de Estatístca 0/ Curso de Admnstração em Gestão Públca Profª. Me. Valéra Espíndola Lessa e-mal: [email protected] Meddas de Dspersão Indcam se os dados estão, ou não, prómos uns dos
Geo-referenciação de imagens aéreas de uma câmara digital não métrica
Geo-referencação de magens aéreas de uma câmara dgtal não métrca GONÇALVES, José Alberto; PIQUEIRO, Francsco Resumo Neste trabalho descreve-se a rectfcação, geo-referencação e composção de mosacos de magens
Eletroquímica 2017/3. Professores: Renato Camargo Matos Hélio Ferreira dos Santos.
Eletroquímca 2017/3 Professores: Renato Camargo Matos Hélo Ferrera dos Santos http://www.ufjf.br/nups/ Data Conteúdo 07/08 Estatístca aplcada à Químca Analítca Parte 2 14/08 Introdução à eletroquímca 21/08
REGRESSÃO LINEAR ANÁLISE DE REGRESSÃO LINEAR MÚLTIPLA REGRESSÃO CURVILÍNEA FUNÇÃO QUADRÁTICA VERIFICAÇÃO DO AJUSTE A UMA RETA PELO COEFICIENTE 3 X 3
ANÁLISE DE REGRESSÃO LINEAR MÚLTIPLA REGRESSÃO LINEAR Verfcado, pelo valor de r, que ocorre uma sgnfcante correlação lnear entre duas varáves há necessdade de quantfcar tal relação, o que é feto pela análse
MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel
MOQ-14 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel [email protected] www.mec.ta.br/~rodrgo Prncípos de cração de modelos empírcos: Modelos (matemátcos, lógcos, ) são comumente utlzados na
UNIVERSIDADE NOVA DE LISBOA Faculdade de Economia Análise de Dados e Probabilidade 2º Semestre 2008/2009 Exame Final 1ª Época. Grupo I (4 Valores)
UNIVERSIDADE NOVA DE LISBOA Faculdade de Economa Análse de Dados e Probabldade º Semestre 008/009 Exame Fnal ª Época Clara Costa Duarte Data: 8/05/009 Graça Slva Duração: h0 Grupo I (4 Valores) A gelatara
Aplicação de um modelo simulado na formação de fábricas
Aplcação de um modelo smulado na formação de fábrcas Márca Gonçalves Pzaa (UFOP) [email protected] Rubson Rocha (UFSC) [email protected] Resumo O objetvo deste estudo é determnar a necessdade de
2ª Atividade Formativa UC ECS
I. Explque quando é que a méda conduz a melhores resultados que a medana. Dê um exemplo para a melhor utlzação de cada uma das meddas de localzação (Exame 01/09/2009). II. Suponha que um professor fez
