RACIOCÍNIO LÓGICO
|
|
|
- Vasco Figueiredo Gusmão
- 8 Há anos
- Visualizações:
Transcrição
1 RACIOCÍNIO LÓGICO 01. Bruno fez 1(um) jogo na SENA, apostando nos 6 (seis) números 8, 18, 28, 30, 40 e 50. Automaticamente, Bruno também estará concorrendo à quina (grupo de 5 números), à quadra (grupo de 4 números) e ao terno (grupo de 3 números), a partir do grupo inicialmente apostado. Se n é o número de quinas, q o número de quadras e p o número de ternos incluídos na aposta de Bruno, então n+ q + p é igual a: a) 12 b) 41 c) 60 d) 81 e) Para entrar na sala da diretoria de uma empresa é preciso abrir dois cadeados. Cada cadeado é aberto por meio de uma senha. Cada senha é constituída por 3 algarismos distintos. Nessas condições, o número máximo de tentativas para abrir os cadeados é: a) b) c) 720 d) 120 e) Oito pessoas, sendo 5 homens e 3 mulheres, serão organizados em uma fila. A probabilidade das pessoas do mesmo sexo ficarem juntas é: a) 1/28 b) 1/18 c) 3/28 d) 5/18 e) 1/ Um triângulo tem lados que medem, respectivamente, 6m, 8m e 10m. Um segundo triângulo, que é um triângulo semelhante ao primeiro, tem perímetro igual a 12m. A área do segundo triângulo será igual a: a) 6 m 2 b) 12 m 2 c) 24 m 2 d) 48 m 2 e) 60 m Num triângulo ABC, o ângulo interno de vértice A mede 60. O maior ângulo formado pelas bissetrizes dos ângulos internos de vértices B e C mede: a) 45 b) 60 c) 90 d) 120 e) Um capital de R$ 400,00 foi aplicado a juros simples por 3 meses, à taxa de 36% ao ano. O montante obtido nessa aplicação foi aplicado a juros compostos, à taxa de 3% ao mês, por um bimestre. O total de juros obtido nessas duas aplicações foi: a) R$ 149, 09
2 b) R$ 125,10 c) R$ 65,24 d) R$ 62,55 e) R$ 62, Determinar o valor nominal de um título que, descontado comercialmente, 60 dias antes do vencimento e à taxa de 12% ao mês, resultou um valor descontado de R$ 608,00. a) R$ 850,00 b) R$ 800,00 c) R$ 750,00 d) R$ 700,00 e) R$ 650, Ao separar o total de suas figurinhas em grupos de 12, de 15 ou de 24, uma criança observou que sobravam sempre 7 figurinhas. Sendo o total de suas figurinhas compreendido entre 250 e 300, a criança tem: a) 267 figurinhas b) 287 figurinhas c) 320 figurinhas d) 381 figurinhas e) 392 figurinhas 09. Dois produtores de soja receberam um prêmio de produtividade no valor de R$4.200,00, e decidiram dividi-lo em partes inversamente proporcionais aos seus gastos com herbicidas por hectare. Considerando que esses gastos com herbicidas foram de R$160,00 para o produtor A e de R$240,00 para o produtor B, os produtores A e B receberam, respectivamente: a) R$1.680,00; R$2.520,00 b) R$1.820,00; R$2.380,00 c) R$2.200,00; R$2.000,00 d) R$2.260,00; R$1.940,00 e) R$2.520,00; R$1.680, O valor de um carro se desvaloriza 20% no espaço de um ano, isto é, a cada ano ele vale 20% menos do que valia no início da contagem do ano. Um carro adquirido hoje por um valor V, no final de 4 anos a partir de hoje, estará valendo: a) 0,2 V. b) 0,8 V. c) V / 4. d) 0,8 4 V. e) V / 8.
3 GABARITO 01. B Comentário: Trata-se de uma questão de combinação, pois a ordem dos números não é relevante. Com isso, o número de quinas, quadras e ternos são: n q p C C C 6,5 6,4 6,3 6! 5!(6-5)! 6! 4!(6-4)! 6.5! 6 5!1! ! 4!2! 15 6! ! 3!(6-3)! 3!3! 20 Com isso, n + q + p B Comentário: Neste caso trata-se de uma questão de arranjo, pois a ordem dos algarismos importa. Para um cadeado teremos o número de tentativas igual a: 1 cadeado senhas possíveis 2 cadeado senhas possíveis Com isso teremos, no máximo, 720 tentativas em cada cadeado, ou seja, um total de tentativas. 03. A Comentário: Casos possíveis P 8 8! casos Casos favoráveis: Aqui, teremos inicialmente duas possibilidades: 1ª: H H H H H M M M 2ª: M M M H H H H H Assim fazendo as permutações teremos: 1ª: 2ª: Logo teremos casos favoráveis. Então, a probabilidade será dada por: Casos Favoráveis P Casos Possíveis A Comentário: Se os dois triângulos são semelhantes, então os lados correspondes são proporcionais. Chamaremos de a, b e c os lados do segundo triângulo.
4 Com isso: O perímetro do segundo triângulo é 12. Daí: a + b + c 12. De acordo com as propriedades da proporção, podemos fazer a igualdade: Sabemos que a + b + c, que é o perímetro, é igual a 12, daí: Cálculo de a: a/6 0,5 a 3 Cálculo de b: b/8 0,5 b 4 Cálculo de c: c/10 0,5 c 5 O triângulo que tem lados iguais a 3, 4 e 5 é um triângulo retângulo. Veja como os lados seguem o teorema de Pitágoras: Então quando tivermos um triângulo com esses lados ou múltiplos desses lados (6, 8 e 10 ou 9, 12 e 15 ou...), então trata-se de um triângulo retângulo. A área de um triângulo retângulo é facilmente obtida, pois um dos catetos é a altura e o outro cateto é a base. Logo: área (base x altura)/2 (3 x 4)/2 6m 2. Obs.: poderíamos também, ao invés de usar triângulo retângulo, termos usado a fórmula de Herão para áreas de triângulo: (perímetro/2) e a, b e c são os lados do triângulo., onde P é o semi-perímetro 05. D Comentário: No enunciado, temos apenas que o ângulo  mede 60. Podemos então, para facilitar os cálculos, construir um triângulo eqüilátero. Logo:
5 Traçando agora as bissetrizes internas dos ângulos B e C obtemos: Note que as bissetrizes formam dois ângulos, um maior (α) e um menor (β). Mas a questão pede para calcularmos apenas o maior! Sabemos que a soma dos ângulos internos de um triângulo é igual a 180, então: α α α α E Comentário: A questão está dividida em duas aplicações, a primeira a juros simples e o resultado (montante) da primeira é aplicado a juros compostos. * 1ª aplicação (juros simples): C 1 400,00 n 1 3 meses i 1 36% aa /12 3%am 0,03am M 1 C 1. (1 + i 1. n 1 ) M (1 + 0,03. 3) M ,09 M 1 436,00 * 2ª aplicação (juros compostos): C 2 436,00 n 2 1 bimestre 2 meses i 2 3%am 0,03 M 2 C 2. (1 + i 2. n 2 ) M (1 + 0,03. 2) M ,06 M 2 462,16 Com isso o juros total foi de: J 462, J 62, B Comentário: O enunciado não cita sobre qual regime é adotado então adota-se o regime de juros simples. Mas a modalidade de desconto vem expressa na questão (composto).
6 Dados do enunciado: n 60 dias 2 meses i 12% am 0,12 am V cs 608,00 O desconto comercial é dado por D c N.i.n. Então: D c N. 0,12. 2 D c 0,24.N O valor descontado comercial (valor atual comercial) é dado por V cs N D c, logo: 608 N 0,24.N 608 0,76.N N 608/0,76 N 800,00 Então, o valor nominal foi de R$ 800, A Comentário: Se não houvesse resto (r 0), na divisão do número de figurinhas por 12, 15 e 24, bastaria calcularmos o mmc de 12, 15 e 24, pois se estamos procurando um número que seja divisível por a, b, c,... basta calcularmos o mmc de a, b, c,... No caso da questão, mmc (12, 15, 24) 120. Mas como sobram sempre 7 figurinhas, devemos somar 7 aos 120. Com isso, a criança teria 127 figurinhas, mas a questão diz que a quantidade de figurinhas que a criança tem está entre 250 e 300. Qual seriam os próximos números, depois de 127, que divididos por 12, 15 e 24 deixam resto igual a 7? Simples! Basta irmos somando de 120 em 120 para acharmos os próximos números. Cuidado, pois se somássemos 127 ( ) o resto seria 14 na divisão por 15 e por 24, por exemplo. Com isso, as quantidades possíveis de figurinhas são: Logo o número de figurinhas que a criança tem, que está entre 250 e 300, é E Comentário: Sejam A e B as quantias que cada um irá receber. Então, armando a proporção (inversamente proporcional): B A
7 Sabendo que A + B 4200, temos que B 4200 A, logo: A A A 240.( A) 160A 400A A A 2520,00 Logo, o valor de B é: B B 1680, D Comentário: Se no final de cada ano o carro vale 20% a menos do que valia antes da contagem do ano, então devemos descontar 20% a cada ano: 1 ano: V 20%.V V 0,2V 0,8V 2 ano: 0,8V 20%. 0,8V 0,8V. (1 0,2) 0,8V. 0,8 0,8 2 V Percebe-se que há um certo padrão neste cálculo. Com isso teremos no 3 e 4 anos: 3 ano: 0,8 3 V 4 ano: 0,8 4 V
Raciocínio Lógico. Sabendo que o triângulo ABC é congruente ao triângulo DCE, então o valor da soma de e é superior a 20º.
Raciocínio Lógico 01- O campus de uma Universidade está sendo ampliado e passará a ter 18 prédios de ensino. Se a quantidade atual de prédios de ensino da Universidade supera em 4 unidades a quantidade
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - 3o ciclo 2007-2 a Chamada Proposta de resolução 1. Organizando todas as somas que o Paulo pode obter, com recurso a uma tabela, temos: + 1 2 3 4 5 6-6 -5-4 -3-2 -1 0-5 -4-3
Colégio Naval 2008/2009 (PROVA VERDE)
Colégio Naval 008/009 (PROVA VERDE) 01) Um triângulo retângulo, de lados expressos por números inteiros consecutivos, está inscrito em um triângulo eqüilátero T de lado x. Se o maior cateto é paralelo
Teorema de Pitágoras
Teorema de Pitágoras Luan Arjuna 1 Introdução Uma das maiores preocupações dos matemáticos da antiguidade era a determinação de comprimentos: desde a altura de um edifício até a distância entre duas cidades,
GABARITO E PAUTA DE CORREÇÃO DO ENQ Questão 2 [ 1,0 pt ::: (a)=0,5; (b)=0,5 ] Sejam a, b, p inteiros, com p primo.
GABARITO E PAUTA DE CORREÇÃO DO ENQ-014. Questão 1 [ 1,0 pt ::: (a)=0,5; (b)=0,5 ] Sejam a, b, p inteiros, com p primo. Demonstre que: (a) se p não divide a, então (p, a) = 1. (b) se p ab, então p a ou
RACIOCÍNIO LÓGICO
RACIOCÍNIO LÓGICO 01. Uma pessoa saiu de casa para o trabalho decorridos 5/18 de um dia e retornou à sua casa decorridos 13/16 do mesmo dia. Permaneceu fora de casa durante um período de: a) 14 horas e
XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO
XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Ensino Médio) GABARITO GABARITO NÍVEL ) D 6) C ) D 6) C ) B ) A 7) B ) B 7) B ) C ) D 8) C ) E 8) B ) B 4) D 9) E 4) D 9) C 4) D ) D 0) A ou
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - 4 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 06 GABARITO COMENTADO 1) De acordo com o texto, 10 alunos gostam de geometria mas não gostam de álgebra, logo
RESOLUÇÃO DA PROVA DO COLÉGIO NAVAL DE 2006 (PROVA VERDE):
RESOLUÇÃO DA PROVA DO COLÉGIO NAVAL DE 006 (PROVA VERDE): 1) Observe o sistema de equações lineares abaixo. x y 3 1 S 1: x 7y Sendo (x 1,y 1 ) solução de S 1, o resultado de (6 )x1 (1 3)y1 é igual a a)
RACIOCÍNIO LÓGICO. 04. Se dois dados, um azul e um branco, forem lançados, a probabilidade de sair 5 no azul ou 3 no branco é superior a 2/3.
RACIOCÍNIO LÓGICO 01. Anagramas são agrupamentos de letras que são obtidos ao se mudar a ordem destas em uma palavra. Cada vez que se muda a ordem das letras, obtém-se um novo anagrama. A quantidade de
XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (7ª. e 8ª. séries) GABARITO
XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (ª e ª séries) GABARITO GABARITO NÍVEL ) E ) E ) B ) D ) E ) E ) C ) D ) B ) D ) E ) C ) C ) A ) B ) D ) A ) C ) B ) Anulada ) B 0) E ) A 0)
PROVAS DE NÍVEL MÉDIO DA FUNDATEC
PROVAS DE NÍVEL MÉDIO DA FUNDATEC Obs: Algumas questões das provas abaixo continham questões que não estavam de acordo com o edital atual da Câmara/POA. Nesses casos, cada questão foi retirada ou adaptada.
2. Chamemos de partição em uns de um número sua decomposição no menor número possível de parcelas que só tenham o dígito 1...
Nível 1 1. Brincando com suas bolinhas de gude, Lucas notou um fato curioso... (a) Como sempre sobram duas bolinhas nas divisões mencionadas no enunciado, se duas bolinhas forem retiradas do total, o número
ÁREA E PERÍMETRO EXERCÍCIOS DE CONCURSOS
ÁREA E PERÍMETRO EXERCÍCIOS DE CONCURSOS E0059 (EXATUS) PM-ES 2012 QUESTÃO 66 A área de um triângulo equilátero de arestas medindo 8 cm é igual a: RESOLUÇÃO E0565 (EXATUS) PM-ES 2012 QUESTÃO 92 92 Tifany
UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE
www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE
Hewlett-Packard TRIÂNGULOS. AULAS 01 a 04. Prof. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos
Hewlett-Packard TRIÂNGULOS AULAS 01 a 04 Prof. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Sumário TRIÂNGULOS... 1 DEFINIÇÃO E ELEMENTOS... 1 SOMA DAS MEDIDAS DOS ÂNGULOS INTERNOS DE UM TRIÂNGULO...
ORM-Grande Porto Alegre 2011 provas nivel 1
ORM-Grande Porto Alegre 2011 provas nivel 1 PROBLEMA 1. a) Dado o círculo com diâmetro de 24cm e centro em O, e o setor circular (área hachurada) de área 24 cm² formado por O e os pontos A e B, como mostra
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MTEMÁTIC - 3o ciclo 008 - a Chamada Proposta de resolução 1. Como a e b são números primos diferentes são primos entre si, ou seja não têm fatores comuns na sua decomposição em fatores primos.
Trigonometria no Triângulo Retângulo
Trigonometria no Triângulo Retângulo Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina:
João esqueceu-se do seu código, mas lembra-se que é divisível por 9. Quantos códigos existem nessas condições?
2/09/16 Duração: 4 horas e 0 minutos 1 Para desbloquear o seu celular, João desliza o dedo horizontalmente ou verticalmente por um quadro numérico, semelhante ao representado na figura, descrevendo um
Analista Tributário da Receita Federal do Brasil ESAF
Analista ributário da Receita Federal do Brasil ESAF - 0 0. A negação da proposição se Paulo estuda, então Marta é atleta é logicamente equivalente à proposição: a) Paulo não estuda e Marta não é atleta.
GABARITO - ANO 2018 OBSERVAÇÃO:
GABARITO - ANO 018 OBSERVAÇÃO: Embora as soluções neste gabarito se apresentem sob a forma de um texto explicativo, gostaríamos de salientar que para efeito de contagem dos pontos adquiridos, na avaliação
DRAFT. Simulado 1 - Nível 2 - ângulos. Colégio: Gabarito
Estudante: Geometria Colégio: Simulado 1 - Nível 2 - ângulos i) Preencha o cabeçalho acima com atenção. ii) Cada questão tem apenas uma letra correta. iii) Preencha o gabarito ao lado com as respostas.
30's Volume 15 Matemática
30's Volume 1 Matemática www.cursomentor.com 9 de junho de 014 Q1. Considere os segmentos AB = x, BC =, CD = x + 1 e DE = x 18 e que AB = CD. Encontre x. BC DE Q. Em um triângulo ABC, AM é bissetriz interna
Instituto Nacional de Matemática Pura e Aplicada Programa de Aperfeiçoamento para Professores de Matemática do Ensino Médio
Instituto Nacional de Matemática Pura e Aplicada Programa de Aperfeiçoamento para Professores de Matemática do Ensino Médio PROPORCIONALIDADE - SOLUÇÕES 1. Após o desconto do Imposto de Renda, Álvaro receberá
II OMIF 2019 RESOLUÇÃO DA PROVA
II OMIF 019 RESOLUÇÃO DA PROVA QUESTÃO 01 GABARITO: B Como 3µ tem que tem valor terminado em µ, então µ =0 ou µ =5. Contudo, µ não pode ser zero, pois, se fosse, todos os algarismos teriam que ser zero.
Hewlett-Packard TRIÂNGULOS. AULAS 01 a 04. Prof. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos
Hewlett-Packard TRIÂNGULOS AULAS 01 a 04 Prof. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Sumário TRIÂNGULOS... 1 DEFINIÇÃO E ELEMENTOS... 1 SOMA DAS MEDIDAS DOS ÂNGULOS INTERNOS DE UM TRIÂNGULO...
MATEMÁTICA Professores: Andrey, Cristiano e Julio
MATEMÁTICA Professores: Andrey, Cristiano e Julio Questões Substituindo os valores dados na fórmula teremos: x 1 = x 0+1 = (x 0 )2 +a 2.x 0 = (2)2 +5 = 9 2.2 4 e x 2 = x 1+1 = (x 1 )2 +a = ( 9 4 )2 +5
1. Área do triângulo
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Plana II Prof.:
Turma: Nº: Professora: OCTAMAR Nº de questões: 20 Data: / / Nota:
SALVADOR-BA Formando pessoas para transformar o mundo Tarefa: ª AVALIAÇÃO DE MATEMÁTICA UNIDADE I ALUNO(A): a Série do Ensino Médio Turma: Nº: Professora: OCTAMAR Nº de questões: 0 Data: / / Nota: QUESTÃO
30's Volume 22 Matemática
30's Volume Matemática www.cursomentor.com 0 de julho de 015 Q1. Um homem de x + 6 5 altura x + 97 m de altura está de pé próximo a um poste de m. Neste 50 5 caso qual a medida da sombra do homem neste
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. a(x x 0) = b(y 0 y).
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 016.1 Gabarito Questão 01 [ 1,00 ::: (a)=0,50; (b)=0,50 ] (a) Seja x 0, y 0 uma solução da equação diofantina ax + by = c, onde a, b são inteiros
TEOREMA DE PITÁGORAS AULA ESCRITA
TEOREMA DE PITÁGORAS AULA ESCRITA 1. Introdução O Teorema de Pitágoras é uma ferramenta importante na matemática. Ele permite calcular a medida de alguma coisa que não conseguimos com o uso de trenas ou
Aula 1. Exercício 1: Exercício 2:
Aula 1 Exercício 1: Com centro em A e raio de medida m achamos dois pontos B e C na reta, esses dois pontos são os centros das circunferências pedidas (2 soluções ). Exercício 2: Com centro em B e raio
Soluções das Questões de Matemática do Processo Seletivo de Admissão à Escola de Aprendizes- Marinheiros PSAEAM
Soluções das Questões de Matemática do Processo Seletivo de Admissão à Escola de Aprendizes- Marinheiros PSAEAM Questão 1 Concurso 010 Sabendo que 1 grosa é equivalente a 1 dúzias, é correto afirmar que
LISTA DE EXERCÍCIOS 2º ANO GABARITO
º ANO GABARITO Questão Matemática I 8 9 7 a9 = = 7 9 6 a8 = = 6 9 55 a7 = = Portanto, a média aritmética dos últimos termos será dada por: 8 7 6 55 + + + 7 7 M = = = 6 Questão O número de vigas em cada
PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC TRIÂNGULOS
TRIÂNGULOS Conceito: Triângulo é um polígono de três lados. PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC CLASSIFICAÇÃO DOS TRIÂNGULOS Quanto
GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede
GEOMETRI PLN 1) (UFRGS) Na figura abaixo, o vértice do retângulo O está a 6 cm do vértice. O raio do círculo mede O (a) 5 cm (b) 6 cm (c) 8 cm (d) 9 cm (e) 10 cm ) (UFRGS) Na figura abaixo, é o centro
ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ]
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 017 Gabarito Questão 01 [ 1,5 ] Encontre as medidas dos lados e ângulos de dois triângulos ABC diferentes tais que AC = 1, BC = e A BC = 0 Considere
A origem das fórmulas das áreas de Figuras Planas
A origem das fórmulas das áreas de Figuras Planas Dentro da geometria quando nos é requerido o cálculo que envolve a área de uma figura plana, primeiro é preciso reconhecer qual a figura estamos trabalhando
38 a OLIMPÍADA BRASILEIRA DE MATEMÁTICA 2 a Fase Nível 1 (6 o ou 7 o ano)
38 a OLIMPÍADA BRASILEIRA DE MATEMÁTICA a Fase Nível 1 (6 o ou 7 o ano) GABARITO PARTE A - Cada problema vale 5 pontos CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta
35ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO
5ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (8º e 9º anos do Ensino Fundamental) GABARITO GABARITO NÍVEL 1) D) 6) D) 11) E) 16) B) 1) Anulada ) A) 7) D) 1) C) 17) C) ) B) ) D) 8) E) 1) D)
EXERCÍCOS DE REVISÃO TREINANDO PARA AS PROVAS 2º. BIMESTRE 8o. ANO
EXERCÍCOS DE REVISÃO TREINANDO PARA AS PROVAS 2º. BIMESTRE 8o. ANO POTENCIAÇÃO PROPRIEDADES: EXPOENTE NEGATIVO 1. Usando as propriedades da potenciação, calcule: a) x. x. x 5 = b) a 6 : a 4 c) [ ( -2 )
Aula 11 Polígonos Regulares
MODULO 1 - AULA 11 Aula 11 Polígonos Regulares Na Aula 3, em que apresentamos os polígonos convexos, vimos que um polígono regular é um polígono convexo tal que: a) todos os lados são congruentes entre
Para se adicionar (ou subtrair) frações com o mesmo denominador devemos somar (ou subtrair) os numeradores e conservar o denominador comum. = - %/!
Pontifícia Universidade Católica de Goiás Professor: Ms. Edson Vaz de Andrade Fundamentos de Matemática No estudo de Física frequentemente nos deparamos com a necessidade de realizar cálculos matemáticos
Centro Educacional Evangélico - Trabalho 2º Bimestre
Centro Educacional Evangélico - Trabalho º Bimestre Disciplina: Matemática Data de Entrega:06/06/018 Nota: 10 Para cada questão que não conter a resposta completa (por escrito) será anulada 0,1 pontos;
PROVA DE MATEMÁTICA DO 3 O ANO _EM DO COLÉGIO ANCHIETA BA. ELABORAÇÃO: PROFESSOR OCTAMAR MARQUES. RESOLUÇÃO: PROFESSORA MARIA ANTÔNIA GOUVEIA.
PROVA DE MATEMÁTICA DO O ANO _EM DO COLÉGIO ANCHIETA BA ELABORAÇÃO: PROFESSOR OCTAMAR MARQUES PROFESSORA MARIA ANTÔNIA GOUVEIA QUESTÃO 0 Na figura, as medidas dos segmentos AD e DB são, respectivamente,
[C] INCORRETA. O gráfico não permite concluir nada sobre as causas do aumento do uso de pelo menos uma droga ilícita em 2012.
Gabarito: Resposta da questão 1: Analisando as afirmativas uma a uma: INCORRETA. Pode-se verificar, pelo gráfico, que as porcentagens de usuários de opioides e usuários de Cannabis em 011 são, respectivamente,
PROCESSO SELETIVO/ O DIA GAB. 1 1 MATEMÁTICA QUESTÕES DE 01 A 15
PROCESSO SELETIVO/006 1 O DIA GAB. 1 1 MATEMÁTICA QUESTÕES DE 01 A 15 01. Para arrecadar doações, uma Entidade Beneficente usou uma conta telefônica do tipo 0800. O número de pessoas que ligaram, por dia,
Exercícios de Aplicação do Teorema de Pitágoras
Exercícios de Aplicação do Teorema de Pitágoras Prof. a : Patrícia Caldana 1. Um terreno triangular tem frentes de 12 m e 16 m em duas ruas que formam um ângulo de 90. Quanto mede o terceiro lado desse
Prova : Amarela DIRETORIA DE ENSINO DA MARINHA MARINHA DO BRASIL (PROCESSO SELETIVO DE ADMISSÃO A0 COLÉGIO NAVAL / PSACN-2008) MATEMÁTICA
MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (PROCESSO SELETIVO DE ADMISSÃO A0 COLÉGIO NAVAL / PSACN2008) NÃO ESTÁ AUTORIZADA A UTILIZAÇÃO DE MATERIAL EXTRA Prova : Amarela MATEMÁTICA 1) Sabendose
O conhecimento é a nossa propaganda.
Conhecimentos geométricos I - Ângulos Lista de Exercícios 1 Gabaritos Comentados dos Questionários 01) Calcule o valor dos ângulos suplementares A e B, sendo que, A = 3x + 40 e B = 2x + 40. a) 100 e 80.
Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros. Barbosa, L.S.
Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros Barbosa, L.S. [email protected] 4 de janeiro de 2014 2 Sumário I Provas 5 1 Matemática 2013/2014 7 II Soluções 11 2 Matemática
ATIVIDADE DE REVISÃO E FIXAÇÃO RELAÇÕES MÉTRICAS NO
Aluno(a): Educador: PEDRO EDUARDO MENDES Componente Curricular: Ano/Turma: 9º Ano ( ) A ( ) B ( ) C Turno: ( ) Matutino Data: / /18 ATIVIDADE DE REVISÃO E FIXAÇÃO RELAÇÕES MÉTRICAS NO AS RELAÇÕES MÉTRICAS
,12 2, = , ,12 = = (2012) 2.
1 QUESTÃO 1 Usando a comutatividade da multiplicação, podemos escrever 1000 0,1,01 100 = 1000,01 00 0,1 = 01 01 = (01). QUESTÃO Observe que para obter o primeiro retângulo foi necessário escrever quatro
Solução Comentada Prova de Matemática
18. Se f é uma função real de variável real definida por f() = a + b + c, onde a, b e c são números reais negativos, então o gráfico que melhor representa a derivada de f é: A) y B) y C) y D) y E) y Questão
A lei dos co-senos. Utilizando as razões trigonométricas nos triângulos. b = = 48. b = 4 cos B = 4 8 = 1 2 Þ B = 60º
A UA UL LA A lei dos co-senos Introdução Utilizando as razões trigonométricas nos triângulos retângulos, podemos resolver vários problemas envolvendo ângulos e lados. Esse tipo de problema é conhecido
Colégio Nossa Senhora de Lourdes. Matemática - Professor: Leonardo Maciel
Colégio Nossa Senhora de Lourdes Matemática - Professor: Leonardo Maciel 1. (Pucrj 015) Uma pesquisa realizada com 45 atletas, sobre as atividades praticadas nos seus treinamentos, constatou que 15 desses
SEFAZ RS AUDITOR FISCAL DA RECEITA ESTADUAL MATEMÁTICA
SEFAZ RS AUDITOR FISCAL DA RECEITA ESTADUAL MATEMÁTICA Atente às tabelas financeiras que encontram-se nas páginas 0 e. QUESTÃO 5 A sequência numérica (6, x,, y,...) é uma progressão aritmética. A partir
CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE
CURSO DE MATEMÁTICA BÁSICA Trigonometria Aula 0: Matrizes e Determinantes Trigonometria Deduzindo da própria palavra, trigonometria é a parte da geometria que estabelece relações métricas e angulares entre
ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. RESOLUÇÃO: PROFESSORA MARIA ANTÔNIA C. GOUVEIA
PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - JULHO DE ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ PROFESSORA MARIA ANTÔNIA C GOUVEIA Um capital aplicado a juros
CÁLCULO DE ÁREA DAS FIGURAS PLANAS. Professor: Marcelo Silva. Natal-RN, agosto de 2013
CÁLCULO DE ÁREA DAS FIGURAS PLANAS Professor: Marcelo Silva Natal-RN, agosto de 013 ÁREA A reunião de um polígono com sua região interior é denominada superfície do polígono. A medida da superfície é expressa
Plano de Recuperação Semestral EF2
Série/Ano: 9º ANO MATEMÁTICA Objetivo: Proporcionar ao aluno a oportunidade de rever os conteúdos trabalhados durante o semestre nos quais apresentou dificuldade e que servirão como pré-requisitos para
Resolução do Simulado Camiseta Preta
Resolução do Simulado amiseta Preta Questão 01 Vejamos a simulação da quantidade de partidas que um time deverá jogar em ambos os anos nesta competição. Primeiro Ano Primeira Fase 6 = 6 6 = 6 partidas
Plano de Recuperação Semestral 1º Semestre 2016
Disciplina: MATEMÁTICA Série/Ano: 9º ANO Objetivo: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados durante o 1º semestre nos quais apresentou defasagens e que servirão como pré-requisitos
Nome: N.º: Endereço: Data: Telefone: PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2018 Disciplina: MATEMÁTICA
Nome: N.º: Endereço: Data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2018 Disciplina: MATEMÁTICA Prova: DESAFIO NOTA: QUESTÃO 16 Dada a expressão 9x² - 24x + P. Sabendo
Triângulos classificação
Triângulos classificação Quanto aos ângulos Acutângulo: possui três ângulos agudos. Quanto aos lados Equilátero: três lados de mesma medida. Obs.: os três ângulos internos têm medidas de 60º. Retângulo:
QUESTÃO 01. Se x, y e z são números reais, é verdade que: 01) x = 2, se somente se, x 2 = 4. 02) x < y é condição suficiente para 2x < 3y.
SIMULADO DE MATEMÁTICA _ 008 a SÉRIE E M _ COLÉGIO ANCHIETA-BA ELABORAÇÃO DA PROVA: PROF OCTAMAR MARQUES PROFA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÃO 0 Se x, y e z são números reais, é verdade que: 0)
MATEMÁTICA SARGENTO DA FAB
MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr
MATEMÁTICA MÓDULO 1 TEORIA DOS NÚMEROS 1. DIVISIBILIDADE 1.1. DEFINIÇÃO 1.2. CRITÉRIOS DE DIVISIBILIDADE
TEORIA DOS NÚMEROS 1. DIVISIBILIDADE Neste momento inicial, nosso interesse será em determinar quando a divisão entre dois números inteiros é exata, ou seja, quando o resto da divisão é 0. Antes de mais
Gabarito Final com Distribuição dos Pontos - Questão 1. (1 ponto) Assim, Logo,. Daí,. (2 pontos) Portanto, Agora, como é uma P.G. com e razão, temos:
PROCESSO SELETIVO 009- Gabarito Final com Distribuição dos Pontos - Questão 1 A) De acordo com o enunciado, temos a P.A. 4. Assim, de razão r= e soma igual a () Logo,. () Daí,. Portanto, ( pontos) Agora,
Matemática Unidade I Álgebra Série 14 - Progressão aritmética. a 2 = 2 + a 1 = 3 a 3 = 3 + a 2 = 6 a 4 = 4 + a 3 = 10 a 5 = 5 + a 4 = 15.
01 a 2 = 2 + a 1 = 3 a 3 = 3 + a 2 = 6 a 4 = 4 + a 3 = 10 a 5 = 5 + a 4 = 15 Resposta: C 1 02 a 3 = a 2 + a 1 = 2 a 4 = a 3 + a 2 = 3 a 5 = a 4 + a 3 = 5 Resposta: D 2 03 O que Ronaldo percebeu é que a
b) Na figura abaixo um círculo é inscrito em um quadrado de lado 8. Calcule a área em negrito da figura. Use π 3,14. (8 pontos)
1ª questão: Geometria. Determine: a) Na figura ao lado o triângulo AED é eqüilátero, sendo F, G, H os pontos médios, respectivamente, dos lados AD, AE, DE. O segmento GI pertence à bissetriz do ângulo
Gabarito da Primeira Fase Nível Beta
. Gabarito da Primeira Fase 2019 - Nível Beta Questão 1 (20 pontos) A Figura 1 a seguir é uma representação da praça do ciclo básico na Unicamp. Nos extremos desta praça, cujo formato é circular, se encontram
Prova de Aferição de MATEMÁTICA - 3o ciclo 2003
Prova de Aferição de MATEMÁTICA - o ciclo 200 Proposta de resolução 1. 1.1. Quando se lança o dado uma vez, existem oito números possíveis de se obter: 1, 2,, 4, 5, 6, 7 e 8. Dos oito casos possíveis,
Questões MATEMÁTICA / PROFESSOR: RONILTON LOYOLA O1. Os anos bissextos têm, ao contrário dos outros anos, 366 dias. Esse dia a mais é colocado sempre no final do mês de fevereiro, que, nesses casos, passa
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 20152 Gabarito Questão 01 [ 1,00 ::: (a)0,50; (b)0,50 ] Determine TODOS os valores possíveis para os algarismos x, y, z e t de modo que os números
rapazes presentes. Achar a porcentagem das moças que estudam nessa Universidade, em relação ao efetivo da Universidade.
01 Marcar a frase certa: (A) Todo número terminado em 0 é divisível por e por 5. (B) Todo número cuja soma de seus algarismos é 4 ou múltiplo de 4, é divisível por 4 (C) O produto de dois números é igual
Classificac a o segundo os lados. Geometria plana e analı tica. Congrue ncia de tria ngulos. Tria ngulo reta ngulo. Tria ngulos
Classificac a o segundo os lados MA092 Francisco A. M. Gomes UNICAMP - IMECC Classificac a o Um tria ngulo e Equila tero, se tem tre s lados congruentes. Iso sceles, se tem dois lados congruentes. Escaleno,
Instruções para a realização da Prova Leia com muita atenção
Nível 3 Instruções para a realização da Prova Leia com muita atenção Prova da segunda fase Caro Aluno, Parabéns pela sua participação na décima segunda edição da Olimpíada de Matemática de São José do
MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 03
UNIVERSIDDE ESTDUL VLE DO CRÚ CENTRO DE CIÊNCIS EXTS E TECNOLOGI CURSO DE LICENCITUR EM MTEMÁTIC MTEMÁTIC ÁSIC II TRIGONOMETRI ula 03 Prof. Márcio Nascimento [email protected] 204. Razões Trigonométricas
FÁTIMA HELENA COSTA DIAS. institucional: MATEMÁTICA NA ESCOLA, 2ª SÉRIE, 2º BIMESTRE. Tutor: Daiana da Silva Leite
FÁTIMA HELENA COSTA DIAS e-mail institucional: [email protected] MATEMÁTICA NA ESCOLA, 2ª SÉRIE, 2º BIMESTRE Tutor: Daiana da Silva Leite Grupo: 05 Tarefa 4 Duração Prevista: 290 minutos, distribuídos
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - 24 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 17 GABARITO COMENTADO 1) O valor, em reais, pago pelo contribuinte é 0,15. (34000 26000) = 0,15. 000 = 1200
Lista de Estudo para a Prova de 1º Ano. Prof. Lafayette
Lista de Estudo para a Prova de 1º Ano Prof. Lafayette 1. Um triângulo ABC é retângulo em A e os ângulos em B e C são, respectivamente, de 30 e 60. A hipotenusa mede 4. a) Faça um desenho representativo.
XXVII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO
XXVII OLIPÍADA BRASILEIRA DE ATEÁTICA PRIEIRA FASE NÍVEL 3 (Ensino édio) GABARITO GABARITO NÍVEL 3 1) D 6) C 11) C 16) D 1) C ) C 7) B 1) C 17) C ) Anulada 3) Anulada 8) D 13) B 18) A 3) B ) B 9) B 1)
TD GERAL DE MATEMÁTICA 2ª FASE UECE
Fundação Universidade Estadual do Ceará - FUNECE Curso Pré-Vestibular - UECEVest Fones: 3101.9658 / E-mail: [email protected] Av. Dr. Silas Munguba, 1700 Campus do Itaperi 60714-903 Fone: 3101-9658/Site:
A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos Â
A UA UL LA A lei dos senos Introdução Na Aula 4 vimos que a Lei dos co-senos é uma importante ferramenta matemática para o cálculo de medidas de lados e ângulos de triângulos quaisquer, isto é, de triângulos
COLÉGIO SHALOM Ensino Fundamental II 9º ANO Profº: RONALDO VILAS BOAS COSTA Disciplina: GEOMETRIA 9 B 25 C
COLÉGIO SHALOM Ensino Fundamental II 9º ANO Profº: RONALDO VILAS BOAS COSTA Disciplina: GEOMETRIA TRABALHO Data: /1/018 Nota: Estudante :. No. 1) O valor de no triângulo retângulo abaio é: a) 10. b) 1.
LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália
1. A idade de Paulo, em anos, é um número inteiro par que satisfaz a desigualdade x - x + 5 < 0. O número que representa a idade de Paulo pertence ao conjunto a) {1, 1, 14}. b) {15, 16, 17}. c) {18, 19,
3) Seja ABC um triângulo retângulo, reto em A, onde: AB=3m, AC=4m, CO e o ponto Q é a intersecção da bissetriz
1) Para numerar as páginas de um livro, um editor resolveu utilizar apenas os números naturais pares, começando com o número ; isto é, as páginas foram numeradas com os números naturais na sequência:,
O que é triângulo (*)
Escola SESI Jundiaí Anápolis Disciplina: Matemática Turma: 1º Ano Professor (a) : César Lopes de Assis O que é triângulo (*) Considere três pontos A, B e C não colineares. Chama-se triângulo à figura geométrica
38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO
38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO GABARITO NÍVEL 2 1) C 6) B 11) B 16) D 21) A 2) C 7) C 12) C 17) D 22) A 3) D 8) E 13) D 18) C
Aula 3 Polígonos Convexos
MODULO 1 - AULA 3 Aula 3 Polígonos Convexos Conjunto convexo Definição: Um conjunto de pontos chama-se convexo se, quaisquer que sejam dois pontos distintos desse conjunto, o segmento que tem esses pontos
8 4 = 1 = 1: 2 = 0,5
A Secretaria de Agricultura e Abastecimento do Estado de São Paulo em breve publicará o edital do seu novo concurso público, após dez anos sem uma seleção. Para ajudar os concurseiros que se preparam,
Nome: N.º: endereço: data: Telefone: PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2017 Disciplina: MaTeMÁTiCa
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 07 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 A metade dos dias decorridos, desde o início
REVISÃO DOS CONTEÚDOS
REVISÃO DOS CONTEÚDOS Prof. Patricia Caldana Seno, Cosseno e Tangente de um arco Dado um arco trigonométrico AP de medida α, chamam-se cosseno e seno de α a abscissa e a ordenada do ponto P, respetivamente.
