Le rouge et le noir: probabilidades com cartas

Tamanho: px
Começar a partir da página:

Download "Le rouge et le noir: probabilidades com cartas"

Transcrição

1 Le rouge et le noir: probabilidades com cartas Prof. Luiz T. F. Eleno 22 de fevereiro de 207 O baralho comum Vamos considerar um baralho comum no Ocidente, dito francês, que é aquele usado nos jogos de cartas mais comuns: pôquer, buraco, canastra, etc. Esse baralho tem 52 cartas, categorizadas em 4 naipes (espadas, ouros, paus e copas ) com 3 cartas cada, numeradas de ás () a 0, seguidas por valete (), dama (2) e rei (3). As cartas de espadas e paus são usualmente pretas, ao passo que as de ouros e copas são vermelhas. Obviamente, as costas das cartas são todas idênticas, de modo que só podemos identificá-las quando vemos as suas faces. Claro que, para alguns, estas informações são supérfluas, porque já estão familiarizados com o baralho comum. Elas servem apenas para garantir que todos saibam do que falamos ao nos referir a um baralho. 2 Combinações de cartas A seguir, vamos abordar uma série de problemas, de crescente dificuldade, para ilustrar a Análise Combinatória aplicada a situações que podemos encontrar ao investigar um baralho. Imaginamos um leitor com os rudimentos de teoria de probabilidades e distribuições, discretas e contínuas, que não se espante ao encontrar fatoriais e permutações e combinações e coeficientes binomiais. 2. Baralho bem embaralhado Quando dizemos que o baralho está bem embaralhado, queremos dizer que não sabemos a ordem em que as cartas se encontram. Em outras palavras, quando todas as cartas estão de costas, não temos a menor possibilidade de prever a identidade de nenhuma delas. Uma pergunta que podemos nos fazer é: de quantos modos podemos ordenar o baralho com as 52 cartas empilhadas sobre a mesa num único maço? A solução deste problema é praticamente imediata. A primeira carta pode ser qualquer uma de 52 possibilidades. Uma vez definida a primeira, sobram 5 possibilidades para a segunda, e 50 para a terceira, e assim por diante, até que temos apenas uma possibilidade para a última. Então, se chamarmos o número total de possibilidades de Ω tot, podemos escrever que Ω tot = = 52!. Este é um número altíssimo, da ordem de É esse fato, aliás, que garante a enorme variedade de situações inusitadas e empolgantes de uma sessão de pôquer ou assim dizem os aficionados pelo jogo. 2.2 Desordem bicolor Vamos imaginar por um momento que não nos importamos com os valores ou naipes das cartas, mas apenas com as cores, isto é, só nos interessa saber se uma carta é vermelha ou preta. Quantas são as combinações possíveis? No exemplo 2., cada carta tinha uma identidade única, dada por seu naipe e seu valor. Todas eram distinguíveis. Neste caso, por outro lado, podemos separar as cartas em dois grupos, conforme as suas cores: as vermelhas e as pretas. Carta de mesma cor são indistinguíveis umas das outras por exemplo, o ás de ouros tem o mesmo efeito de um rei de copas, por serem ambas

2 2.3 PARES DE CARTAS vermelhas. Com isso, de todas as 52! combinações possíveis do baralho, como calculamos na seção 2., algumas passam a ser equivalentes. Por exemplo, imagine que uma dada configuração tem o ás de ouros na posição 32 a partir do topo e o rei de copas na posição 48. Se trocarmos essas duas cartas de posição uma com outra (sem mexer na ordem das cartas restantes), teremos uma nova configuração, mas, se apenas a cor importa, nada muda podemos dizer que, para o nosso problema, é a mesma configuração. Mas o baralho tem 26 cartas pretas e 26 cartas vermelhas. Então, em princípio, podemos recombinar simultaneamente a posição das 26 cartas vermelhas entre si, e também das 26 cartas pretas entre si, e mesmo assim manter a configuração (ou sequência) de cores. A maneira de arranjar 26 cartas distintas é, em analogia ao problema da seção 2.. Portanto, chamando agora o número total de configurações de Ω cor, podemos escrever Ω cor = 52! (2.) Este número é algo em torno de 5 0 4, muitas e muitas ordens de grandeza menor que Ω tot, mas, ainda assim, enorme. 2.3 Pares de cartas Complicando um pouco mais: vamos agora começar de um baralho bem embaralhado e formar 26 pares de cartas, aleatoriamente. Novamente, vamos nos concentrar apenas nas cores das cartas, desprezando os naipes e os valores. Vamos indicar uma carta preta por P e uma vermelha por V. Usando essa notação, podemos formar quatro tipos de pares: P P, V V, P V e V P. Repare que pares dos tipos P P ou V V são de cartas de mesma cor, enquanto os pares P V e V P tem uma carta de cada cor. Além disso, tente se convencer de que o número de pares P P é necessariamente igual ao número de pares V V e, portanto, sempre vai haver um número par de pares de mesma cor (por outro lado, pode ser que, entre os pares com cartas de cores diferentes, todos sejam P V, ou todos V P mas, geralmente, os dois estarão presentes em diferentes quantidades). Pois bem, a pergunta agora é: nestas condições, qual o número total de situações possíveis? A resposta é simples: é igual à resposta da seção anterior! De fato, nada mudou, apenas estamos separando as cartas em pares. 2.4 Pares de mesma cor Por outro lado, vamos pensar em um problema um pouco diferente. De todas as configurações possíveis da seção 2.3, vamos pensar apenas naquelas em que só temos pares P P e V V, ou seja, um subconjunto do total. Quantas são? Nesse caso, temos 26 pares, 3 P P e 3 V V (lembre-se que o número de pares P P é necessariamente igual ao número de pares V V ). Pensando em cada par como uma entidade (e não como duas cartas), e usando um raciocínio similar ao usado na seção 2.2, calculamos o número total de configurações Ω pares como sendo Ω pares = 3!3! (2.2) que é aproximadamente igual a 0 7, ou algo em torno de dez milhões. Com isso, podemos também calcular a probabilidade de embaralhar as cartas e conseguir formar 26 pares de mesma cor: Pr(26 pares de mesma cor) = Ω pares 0, (2.3) Ω cor que é, para todos os efeitos, desprezível. Praticamente sempre haverá pares de cores distintas (P V ou V P). 2

3 2.5 n PARES DE MESMA COR 2.5 n pares de mesma cor Para complicar de vez: vamos dizer que embaralhamos bem as cartas e formamos pares. Qual é a probabilidade de conseguir exatamente n pares de mesma cor (n/2 do tipo P P e n/2 do tipo V V )? Na seção 2.4, vimos a resposta para n = 26. O que precisamos fazer agora é generalizar para n = 0, 2, 4, 6,..., 24, 26. Se temos n pares de mesma cor, teremos 26 n pares de cor diferente (P V ou V P). No entanto, como observamos na seção 2.3, qualquer combinação de 26 n pares V P e P V é condizente com n pares P P e V V. Digamos, para fixar as ideias, que temos q pares P V e, consequentemente, 26 n q pares V P. Temos então que achar o número de possibilidades de arranjar n/2 pares P P, n/2 pares V V, q pares P V e 26 n q pares V P. Com o mesmo raciocínio empregado na seção 2.2, este número (vamos chamá-lo de Ω q,n ) é igual a Ω q,n = (n/2)! (n/2)! q! (26 n q)! (2.4) Mas q pode assumir qualquer valor entre 0 e 26 n. Então temos que somar os Ω q,n para todos os possíveis valores de q se quisermos obter Ω n, que é o número total de possibilidades de formar n pares: Ω q,n = (n/2)! (n/2)! q! (26 n q)! Vamos tentar simplificar essa expressão. Vamos começar reescrevendo-a como (n/2)! (n/2)! (26 n)! q! (26 n q)! (26 n)! (2.5) (2.6) Note que apenas colocamos em evidência os termos que não dependem de q e multiplicamos e dividimos as parcelas da soma por (26 n)!, rearranjando um pouco. Continuando, podemos simplificar um pouco mais: 26 n (26 n)! (n/2)! (n/2)! (26 n)! q! (26 n q)! (2.7) Vamos lembrar agora que podemos escrever a soma (a + b) p como uma expansão binomial na forma p (a + b) p p! = q! (p q)! aq b p q, (2.8) com a e b reais e p inteiro não-nulo. No caso particular em que a = b =, temos p 2 p p! = q! (p q)! (2.9) Se agora fizermos p = 26 n, ficamos com (26 n)! q! (26 n q)! = 226 n (2.0) Finalmente, usando o resultado da Eq. (2.0), reescrevemos Ω n como (n/2)! (n/2)! (26 n)! 226 n (2.) 3

4 3. BARALHO COM N CARTAS Pr(n) n Figura : As probabilidades Pr(n), ou seja, as probabilidades de n pares de mesma cor num baralho comum com 52 cartas, para todos os valores possíveis de n. Lembremos o significado de Ω n : o número de possibilidades de distribuir 26 pares de cartas, sendo que n deles com duas cartas de mesma cor. Queremos saber a probabilidade de que isso aconteça. Para isso, basta dividir Ω n pelo número de modos de distribuir 26 pares de cartas, que, como vimos, é igual a Ω cor. Portanto, ou, de forma explícita: Pr(n pares de mesma cor) = Pr(n pares de mesma cor) = Ω n Ω cor (2.2) 52! (n/2)! (n/2)! (26 n)! 226 n (2.3) Podemos agora calcular a probabilidade de não termos pares de mesma cor, ou seja, com n = 0: Pr(n = 0) = , (2.4) 52! Usando a probabilidade complementar, a probabilidade de termos algum par de mesma cor é Pr(n = 0) = Pr(n = 0) (2.5) ou seja, teremos pares de mesma cor com uma certeza quase absoluta, assim como teremos pares de cores distintas, o que havíamos visto no final da seção 2.4. A Figura é um gráfico com as probabilidades para todos os valores possíveis de n. A linha tracejada é uma curva gaussiana com a mesma média e desvio padrão que a distribuição de probabilidades dada pela Eq. (2.3), que vamos calcular mais adiante na seção 3. Da Figura, vemos que a probabilidade para n = 2 é ligeiramente maior que para n = 4, um resultado interessante que mostra a ligeira assimetria do problema. 3 Baralho com N cartas Podemos generalizar o problema da seção 2.5 para o caso de um super-barallho com N cartas. Vamos considerar que N é um inteiro múltiplo de dois, com as cartas divididas igualmente em 4

5 3. BARALHO COM N CARTAS duas cores, metade vermelhas, metade pretas. É fácil generalizar a Eq. (2.3): Pr(N, n) = (N/2)! (N/2)! N! (N/2)! (n/2)! (n/2)! (N/2 n)! 2N/2 n (3.) Para tentar simplificar a notação e o uso posterior que faremos da Eq. (3.), vamos introduzir as seguintes variáveis auxiliares: P = N/2 e c = n/2. Assim, P é o número total de pares em um baralho com N cartas (com P cartas pretas e P cartas vermelhas) e c é o número de pares V V, que é necessariamente igual ao número de pares P P. Com isso, reescrevemos a Eq. (3.) como Pr(P, c) = P! P! (2P)! P! c! c! (P 2c)! 2P 2c (3.2) Como os valores de n se restringem aos números pares do intervalo 0 n N/2, segue que 0 c P/2 (mas c pode ser tanto par quanto ímpar). Vamos agora verificar que as probabilidades, dadas pela Eq. (3.2) estão normalizadas, ou seja, P/2 Pr(P, c) = (3.3) c=0 Não é nada fácil fazer isso, e, por este motivo, vamos usar um código computacional de manipulação algébrica, o Mathematica []. Os comandos fornecidos abaixo fazem exatamente isso, quando fornecidos como entrada ao código: Pr[c_, P_] := P! P!/(2P)! P!/(c!c!(P-2c)!) 2^(P-2c) Sum[Pr[c, P], {c, 0, P/2}] O resultado, como esperado, é igual a. Usando a definição, podemos também calcular o valor médio de c, que é dado por No Mathematica, usamos o comando avc = Sum[c Pr[c, P], {c, 0, P/2}] e o código fornece o resultado P/2 c = c Pr(P, c) (3.4) c = c=0 P(P ) 2(2P ) (3.5) O desvio padrão σ também pode ser calculado a partir da definição, σ c = c 2 c 2 (3.6) sendo que P/2 c 2 = c 2 Pr(P, c) (3.7) No Mathematica, os comandos abaixo nos permitem calcular o desvio padrão: c=0 avc2 = Sum[c^2 Pr[c, P], {c, 0, P/2}]; sigc = Sqrt[avc2 - avc^2]//simplify que fornece σ c = P(P ) 2P 2(2P 3) (3.8) 5

6 REFERÊNCIAS Usando agora a definição, c = n/2, podemos imediatamente calcular a média de n: e também seu desvio padrão: n = 2 c = σ n = 2σ c = P(P ) 2P P(P ) 2P 2 2P 3 (3.9) (3.0) Para P, podemos esperar que a distribuição se aproxime de uma curva normal, dada por: Pr(P, n) exp n n 2 (3.) σ c 2π 2 Na prática, como podemos verificar na Figura, a concordância da Eq. (3.) aos pontos calculados usando a Eq. (3.) com N = 52 (ou seja, P = 26) é marcante. É interessante agora observar o desvio relativo, ou seja, o valor da relação σ n / n, que é simplesmente dado por: σ n n = 2 2P 3 σ n (3.2) O desvio relativo tende a zero para P, e a distribuição se torna cada vez mais estreita, formando um pico ao redor do valor médio. Referências [] Wolfram Research, Inc. Mathematica. v Champaign, Illinois, 205. URL: wolfram.com/mathematica. 6

Aula 6 Revisão de análise combinatória

Aula 6 Revisão de análise combinatória Aula 6 Revisão de análise combinatória Conforme você verá na próxima aula, a definição clássica de probabilidade exige que saibamos contar o número de elementos de um conjunto. Em algumas situações, é

Leia mais

Aula 10 Variáveis aleatórias discretas

Aula 10 Variáveis aleatórias discretas AULA 0 Aula 0 Variáveis aleatórias discretas Nesta aula você aprenderá um conceito muito importante da teoria de probabilidade: o conceito de variável aleatória. Você verá que as variáveis aleatórias e

Leia mais

TESTE GLOBAL PROBABILIDADES 12.º ANO

TESTE GLOBAL PROBABILIDADES 12.º ANO TESTE GLOBAL PROBABILIDADES 2.º ANO NOME: N.º: TURMA: ANO LETIVO: / DATA: / / DURAÇÃO DO TESTE: 90 MINUTOS VERSÃO 2 Na tua folha de respostas, indica de forma legível a versão do teste. FORMULÁRIO Probabilidades

Leia mais

Aplicações das Técnicas Desenvolvidas. Soluções de Exercícios e Tópicos Relacionados a Combinatória. 2 a série E.M.

Aplicações das Técnicas Desenvolvidas. Soluções de Exercícios e Tópicos Relacionados a Combinatória. 2 a série E.M. Aplicações das Técnicas Desenvolvidas Soluções de Exercícios e Tópicos Relacionados a Combinatória 2 a série E.M. Professores Tiago Miranda e Cleber Assis Aplicações das Técnicas Desenvolvidas Soluções

Leia mais

O conceito de probabilidade

O conceito de probabilidade A UA UL LA O conceito de probabilidade Introdução Nesta aula daremos início ao estudo da probabilidades. Quando usamos probabilidades? Ouvimos falar desse assunto em situações como: a probabilidade de

Leia mais

Sumário. 2 Índice Remissivo 9

Sumário. 2 Índice Remissivo 9 i Sumário 1 Teoria dos Conjuntos e Contagem 1 1.1 Teoria dos Conjuntos.................................. 1 1.1.1 Comparação entre conjuntos.......................... 2 1.1.2 União de conjuntos...............................

Leia mais

AULA 08 Probabilidade

AULA 08 Probabilidade Cursinho Pré-Vestibular da UFSCar São Carlos Matemática Professora Elvira e Monitores Ana Carolina e Bruno AULA 08 Conceitos e assuntos envolvidos: Espaço amostral Evento Combinação de eventos Espaço Amostral

Leia mais

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno Unidade I ESTATÍSTICA APLICADA Prof. Mauricio Fanno Estatística indutiva Estatística descritiva Dados no passado ou no presente e em pequena quantidade, portanto, reais e coletáveis. Campo de trabalho:

Leia mais

CARTAS, EMBARALHAMENTOS E MATEMÁTICA. Krerley Oliveira Universidade Federal de Alagoas

CARTAS, EMBARALHAMENTOS E MATEMÁTICA. Krerley Oliveira Universidade Federal de Alagoas CARTAS, EMBARALHAMENTOS E MATEMÁTICA Krerley Oliveira Universidade Federal de Alagoas Esquema da palestra Localizando a carta escolhida ( 5º ano ) Como escolher um bom jogo de pôquer (roubando)? ( Ensino

Leia mais

Fis.Rad.I /1 Notas de aula (Prof. Stenio Dore) (Dated: May 28, 2004)

Fis.Rad.I /1 Notas de aula (Prof. Stenio Dore) (Dated: May 28, 2004) INTRODUÇÃO À ESTATÍSTICA DE CONTAGEM Fis.Rad.I - 24/1 Notas de aula (Prof. Stenio Dore) (Dated: May 28, 24) I. PROBABILIDADE: E E OU Vimos que, para nossas finalidades podemos definir a probabilidade de

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA PRODUTO DA DISSERTAÇÃO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA PRODUTO DA DISSERTAÇÃO UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA PRODUTO DA DISSERTAÇÃO O JOGO DE PÔQUER: UMA SITUAÇÃO REAL PARA DAR SENTIDO AOS CONCEITOS

Leia mais

Noções sobre Probabilidade

Noções sobre Probabilidade Noções sobre Probabilidade Introdução Vimos anteriormente como apresentar dados em tabelas e gráficos, e também como calcular medidas que descrevem características específicas destes dados. Mas além de

Leia mais

Aulas particulares. Conteúdo

Aulas particulares. Conteúdo Conteúdo Capítulo 6...2 Probabilidade...2 Exercícios...4 Restpostas...9 Capítulo 7... 12 Análise combinatória... 12 Fatorial... 12 Arranjo... 13 Combinação... 16 Exercícios... 17 Respostas... 22 1 Capítulo

Leia mais

OBMEP 2010 Soluções da prova da 2ª Fase Nível 2. Questão 1

OBMEP 2010 Soluções da prova da 2ª Fase Nível 2. Questão 1 Questão a) Para saber o número que deve dizer ao matemágico, Joãozinho deve fazer quatro contas: ª conta: multiplicar o número no cartão escolhido por 2; 2ª conta: somar 3 ao resultado da primeira conta;

Leia mais

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e):

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Adição de probabilidades O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Dois eventos A e B são ditos mutuamente exclusivos se, e somente se, A B

Leia mais

Portal da OBMEP. Material Teórico - Módulo de FRAÇÃO COMO PORCENTAGEM E COMO PROBABILIDADE. Fração como Probabilidade. Sexto Ano do Ensino Fundamental

Portal da OBMEP. Material Teórico - Módulo de FRAÇÃO COMO PORCENTAGEM E COMO PROBABILIDADE. Fração como Probabilidade. Sexto Ano do Ensino Fundamental Material Teórico - Módulo de FRAÇÃO COMO PORCENTAGEM E COMO PROBABILIDADE Fração como Probabilidade Sexto Ano do Ensino Fundamental Prof. Francisco Bruno Holanda Prof. Antonio Caminha Muniz Neto 1 Introdução

Leia mais

RESOLUÇÃO DAS QUESTÕES DE ESTATÍSTICA E RACIOCÍNIO LÓGICO

RESOLUÇÃO DAS QUESTÕES DE ESTATÍSTICA E RACIOCÍNIO LÓGICO RESOLUÇÃO DAS QUESTÕES DE ESTATÍSTICA E RACIOCÍNIO LÓGICO Caro aluno, Disponibilizo abaixo a resolução das questões de Estatística e Raciocínio Lógico da prova de Analista da SEFAZ/PI 015. Resolvi as questões

Leia mais

COMBINATÓRIA ELEMENTAR BASEADO EM TOWNSEND (1987), CAP. 2

COMBINATÓRIA ELEMENTAR BASEADO EM TOWNSEND (1987), CAP. 2 COMBINATÓRIA ELEMENTAR BASEADO EM TOWNSEND (1987), CAP. 2 Newton José Vieira 23 de setembro de 2007 Matemática Discreta Capítulo 2 SUMÁRIO Problemas Básicos de Combinatória As Regras da Soma e do Produto

Leia mais

CAPÍTULO 2 ANÁLISE COMBINATÓRIA

CAPÍTULO 2 ANÁLISE COMBINATÓRIA CAPÍTULO 2 ANÁLISE COMBINATÓRIA A análise combinatória é um ramo da matemática, que tem por fim estudar as propriedades dos agrupamentos que podemos formar, segundo certas leis, com os elementos de um

Leia mais

Seja A um evento de um espaço amostral Ω finito, cujos elementos são igualmente prováveis. Define-se a probabilidade do evento A como

Seja A um evento de um espaço amostral Ω finito, cujos elementos são igualmente prováveis. Define-se a probabilidade do evento A como Aula 7 Probabilidade Nesta aula você aprenderá a definição de probabilidade, estudará os axiomas e propriedades de uma lei de probabilidade e fará revisão dos seguintes conceitos de análise combinatória:

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Matemática A 1. O ANO DE ESOLARIDADE Duração: 90 minutos Data: aderno 1 (4 min) (é permitido o uso de calculadora) 1. Uma caixa contém seis bolas vermelhas, três bolas brancas e quatro bolas azuis. Tanto

Leia mais

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues Unidade III ESTATÍSTICA Prof. Fernando Rodrigues Medidas de dispersão Estudamos na unidade anterior as medidas de tendência central, que fornecem importantes informações sobre uma sequência numérica. Entretanto,

Leia mais

COMBINATÓRIA ELEMENTAR BASEADO EM TOWNSEND (1987), CAP. 2 O QUE É COMBINATÓRIA

COMBINATÓRIA ELEMENTAR BASEADO EM TOWNSEND (1987), CAP. 2 O QUE É COMBINATÓRIA Matemática Discreta Capítulo 2 SUMÁRIO COMBINATÓRIA ELEMENTAR BASEADO EM TOWNSEND (1987), CAP. 2 Newton José Vieira 23 de setembro de 2007 Problemas Básicos de Combinatória As Regras da Soma e do Produto

Leia mais

Princípios de contagem

Princípios de contagem Princípios de contagem (1 Princípio Aditivo: Queremos comprar um computador de um dos dois fabricantes mais comuns de processadores: Intel e AMD. Suponha também que nosso orçamento nos faz ter 12 opções

Leia mais

Definição da Distribuição de Poisson

Definição da Distribuição de Poisson Capítulo IX Distribuição de Poisson Definição da Distribuição de Poisson Significado do parâmetro Propriedades da Distribuição de Poisson Aproximação Gaussiana da Distribuição de Poisson O problema do

Leia mais

Teoremas e Propriedades Operatórias

Teoremas e Propriedades Operatórias Capítulo 10 Teoremas e Propriedades Operatórias Como vimos no capítulo anterior, mesmo que nossa habilidade no cálculo de ites seja bastante boa, utilizar diretamente a definição para calcular derivadas

Leia mais

EXERCÍCIOS REVISIONAIS SOBRE BINÔMIO DE NEWTON SISTEMAS LINEARES PROBABILIDADE 2 ANO

EXERCÍCIOS REVISIONAIS SOBRE BINÔMIO DE NEWTON SISTEMAS LINEARES PROBABILIDADE 2 ANO QUESTÃO 1: Uma urna contém 4 bolas vermelhas, 6 pretas e 5 azuis. Retirando-se dessa urna, ao acaso, uma bola, CALCULE a probabilidade de ela: ser vermelha. ser vermelha ou preta. não ser azul. QUESTÃO

Leia mais

Unidade IV ESTATÍSTICA. Prof. Fernando Rodrigues

Unidade IV ESTATÍSTICA. Prof. Fernando Rodrigues Unidade IV ESTATÍSTICA Prof. Fernando Rodrigues Análise combinatória Analise combinatória é a área da Matemática que trata dos problemas de contagem. Ela é utilizada para contarmos o número de eventos

Leia mais

OBMEP 2010 Soluções da prova da 2ª Fase Nível 1. Questão 1

OBMEP 2010 Soluções da prova da 2ª Fase Nível 1. Questão 1 1 Questão 1 a) O número-parada de 93 é 4, pois 93 9 3 = 27 2 7 = 14 1 4 = 4. b) Escrevendo 3 2 = 6 vemos que 32 3 2 = 6. Como 32 = 4 2 2 2, temos 4222 4 2 2 2 = 32 3 2 = 6 e assim o número-parada de 4222

Leia mais

ESTRUTURAS DE REPETIÇÃO - PARTE 2

ESTRUTURAS DE REPETIÇÃO - PARTE 2 AULA 16 ESTRUTURAS DE REPETIÇÃO - PARTE 2 16.1 A seqüência de Fibonacci Um problema parecido, mas ligeiramente mais complicado do que o do cálculo do fatorial (veja as notas da Aula 14), é o do cálculo

Leia mais

Probabilidade combinatória

Probabilidade combinatória Capítulo 5 Probabilidade combinatória 51 Eventos e probabilidades A teoria da probabilidade é uma das áreas mais importantes da matemática do ponto de vista de aplicações Neste livro, não tentamos introduzir

Leia mais

Contagem II. Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em casos

Contagem II. Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em casos Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 5 Contagem II Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em

Leia mais

Contagem I. Figura 1: Abrindo uma Porta.

Contagem I. Figura 1: Abrindo uma Porta. Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 4 Contagem I De quantos modos podemos nos vestir? Quantos números menores que 1000 possuem todos os algarismos pares?

Leia mais

Combinatória I. Sumário Introdução Princípios Básicos... 2

Combinatória I. Sumário Introdução Princípios Básicos... 2 11 Combinatória I Sumário 11.1 Introdução....................... 2 11.2 Princípios Básicos................... 2 1 Unidade 11 Introdução 11.1 Introdução Combinatória é um vasto e importante campo da matemática

Leia mais

Notação e fórmula. O teorema do binômio de Newton se escreve como segue: são chamados coeficientes binomiais e são definidos como:

Notação e fórmula. O teorema do binômio de Newton se escreve como segue: são chamados coeficientes binomiais e são definidos como: Introdução Em matemática, binômio de Newton permite escrever na forma canônica o polinómio correspondente à potência de um binómio. O nome é dado em homenagem ao físico e matemático Isaac Newton. Entretanto

Leia mais

Conjuntos. Notações e Símbolos

Conjuntos. Notações e Símbolos Conjuntos A linguagem de conjuntos é interessante para designar uma coleção de objetos. Quando os estatísticos selecionam indivíduos de uma população eles usam a palavra amostra, frequentemente. Todas

Leia mais

Conceitos Básicos INTRODUÇÃO 1 VETORES 1.1 REPRESENTAÇÃO DOS VETORES

Conceitos Básicos INTRODUÇÃO 1 VETORES 1.1 REPRESENTAÇÃO DOS VETORES Conceitos Básicos INTRODUÇÃO Esse material foi criado por um motivo: o curso de álgebra linear II da UFRJ parte do princípio que o aluno de Engenharia da UFRJ que faz a disciplina já conhece alguns conceitos

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática A 1.º ANO DE ESCOLARIDADE Duração: 90 minutos Data: O teste é constituído por dois grupos, I e II. O Grupo I inclui quatro questões de escolha múltipla. O Grupo

Leia mais

Estas caixas são interessantes, para aumenta-las, cada vez soma-se um número ímpar, em sequência: 1 1+3= = = =25

Estas caixas são interessantes, para aumenta-las, cada vez soma-se um número ímpar, em sequência: 1 1+3= = = =25 Pitágoras Bombons e tabuleiros. Pitágoras ficou muito conhecido pelo teorema que leva seu nome, talvez esse seja o teorema mais conhecido da matemática. O teorema de Pitágoras. De acordo com este teorema,

Leia mais

Matemática Divertida. Triângulos Mágicos

Matemática Divertida. Triângulos Mágicos Matemática Divertida Triângulos Mágicos ζ(s) = n=1 1 n s Prefácio Comecei a escrever esta série de livros intitulada Matemática Divertida, pois acredito que a matemática possa ser um agente de mudanças

Leia mais

Derivadas de funções reais de variável real

Derivadas de funções reais de variável real Derivadas de funções reais de variável real O conceito de derivada tem grande importância pelas suas inúmeras aplicações em Matemática, em Física e em muitas outras ciências. Neste capítulo vamos dar a

Leia mais

4. COMBINATÓRIA BÁSICA. Combinatória: ramo da matemática que trata de arranjos de objetos (configurações satisfazendo propriedades específicas).

4. COMBINATÓRIA BÁSICA. Combinatória: ramo da matemática que trata de arranjos de objetos (configurações satisfazendo propriedades específicas). Combinatória básica Introdução INTRODUÇÃO 4. COMBINATÓRIA BÁSICA Introdução Regra da soma e do produto Modelo de amostragem Modelo de distribuição Modelo de equação Identidades combinatórias Coeficientes

Leia mais

Soluções da Lista de Exercícios Unidade 15

Soluções da Lista de Exercícios Unidade 15 Soluções da Lista de Exercícios Unidade 15 1. Um armário ficará aberto se ele for mexido um número ímpar de vezes. Por outro lado, o armário de ordem k é mexido pelas pessoas cujos números são divisores

Leia mais

Termo-Estatística (2013) 2ª Aula. Prof. Alvaro Vannucci

Termo-Estatística (2013) 2ª Aula. Prof. Alvaro Vannucci Termo-Estatística (2013) 2ª Aula Prof. Alvaro Vannucci Na Mecânica Estatística, será muito útil a utilização dos conceitos básicos de Análise Combinatória e Probabilidade. Por ex., uma garota vai sair

Leia mais

Calculo - Aula 1. Artur Soares

Calculo - Aula 1. Artur Soares Calculo - Aula 1 Artur Soares Irei resumir este curso em uma palavra: Praticidade. Iremos abordar tal assunto de forma que o aluno saia deste curso sabendo aplicar cálculo a uma questão e entender o que

Leia mais

CONTAGEM. (a) uma semana (b) um mês (c) dois meses (d) quatro meses (e) seis meses

CONTAGEM. (a) uma semana (b) um mês (c) dois meses (d) quatro meses (e) seis meses CONTAGEM Exercício 1(OBMEP 2011) Podemos montar paisagens colocando lado a lado, em qualquer ordem, os cinco quadros da figura. Trocando a ordem dos quadros uma vez por dia, por quanto tempo, aproximadamente,

Leia mais

INTRODUÇÃO ÀS PROBABILIDADES15

INTRODUÇÃO ÀS PROBABILIDADES15 INTRODUÇÃO ÀS PROBABILIDADES15 Vanderlei S. Bagnato 15.1 Introdução 15.2 Definição de Probabilidade 15.3 Adição de probabilidade 15.4 Multiplicação de probabilidades Referências Licenciatura em Ciências

Leia mais

MATRIZES - PARTE Mais exemplos Multiplicação de duas matrizes AULA 26

MATRIZES - PARTE Mais exemplos Multiplicação de duas matrizes AULA 26 AULA 26 MATRIZES - PARTE 2 26. Mais exemplos Nesta aula, veremos mais dois algoritmos envolvendo matrizes. O primeiro deles calcula a matriz resultante da multiplicação de duas matrizes e utiliza três

Leia mais

Exame de Acesso ACFES Maiores de 23; Acesso Específico. Matemática. PROVA MODELO - proposta de resolução

Exame de Acesso ACFES Maiores de 23; Acesso Específico. Matemática. PROVA MODELO - proposta de resolução Ministério da Ciência, Tecnologia e Ensino Superior Exame de Acesso ACFES Maiores de 23; Acesso Específico Matemática PROVA MODELO - proposta de resolução - INSTRUÇÕES - Deverá responder à prova na folha

Leia mais

Princípios básicos de probabilidade e aplicação à genética

Princípios básicos de probabilidade e aplicação à genética Princípios básicos de probabilidade e aplicação à genética 1ª Parte: Princípios básicos de probabilidade Probabilidade é a chance que um evento tem de ocorrer, entre dois ou mais eventos possíveis. Por

Leia mais

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08 Teoria das Filas aplicadas a Sistemas Computacionais Aula 08 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas

Leia mais

Quantização do Campo Eletromagnético

Quantização do Campo Eletromagnético Teoria Quântica de Campos II 52 Voltando para o espaço de Minkowsky isto nos permite entender porque a parte on-shell do propagador é reponsável por partículas se propagando por longas distâncias: Quantização

Leia mais

Notas de Aula. tal que, para qualquer ponto (x, y) no plano xy, temos: p XY

Notas de Aula. tal que, para qualquer ponto (x, y) no plano xy, temos: p XY UNIVERSIDDE FEDERL D BHI INSTITUTO DE MTEMÁTIC DEPRTMENTO DE ESTTÍSTIC v. demar de Barros s/n - Campus de Ondina 40170-110 - Salvador B Tel:(071)247-405 Fax 245-764 Mat 224 - Probabilidade II - 2002.2

Leia mais

Física do Calor - 23ª Aula. Prof. Alvaro Vannucci

Física do Calor - 23ª Aula. Prof. Alvaro Vannucci Física do Calor - 23ª Aula Prof. Alvaro Vannucci Na última aula vimos exemplos de como efetuar a Permutação de um conjunto de n elementos envolvendo p situações (p estados) possíveis. Por exemplo, como

Leia mais

Material Teórico - Módulo Probabilidade Condicional. Probabilidade Condicional - Parte 1. Segundo Ano do Ensino Médio

Material Teórico - Módulo Probabilidade Condicional. Probabilidade Condicional - Parte 1. Segundo Ano do Ensino Médio Material Teórico - Módulo Probabilidade Condicional Probabilidade Condicional - Parte 1 Segundo Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 1 Probabilidade

Leia mais

PROBABILIDADE. Aula 2 Probabilidade Básica. Fernando Arbache

PROBABILIDADE. Aula 2 Probabilidade Básica. Fernando Arbache PROBABILIDADE Aula 2 Probabilidade Básica Fernando Arbache Probabilidade Medida da incerteza associada aos resultados do experimento aleatório Deve fornecer a informação de quão verossímil é a ocorrência

Leia mais

Aula 00 Aula Demonstrativa

Aula 00 Aula Demonstrativa Aula 00 Modelos de questões comentadas CESPE-UnB... 3 Relação das questões comentadas... 12 Gabaritos... 13 1 Olá, pessoal. Como vocês já sabem, saiu o edital para o concurso do TCE-SC. Esta é a aula demonstrativa

Leia mais

XXXVII OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase 9 de agosto de 2014 Nível (6º e 7º anos do Ensino Fundamental)

XXXVII OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase 9 de agosto de 2014 Nível (6º e 7º anos do Ensino Fundamental) XXXVII OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase 9 de agosto de 2014 Nível (6º e 7º anos do Ensino Fundamental) Resoluções www.opm.mat.br PROBLEMA 1 a) O total de segundos destinados à visualização

Leia mais

6- Probabilidade e amostras: A distribuição das médias amostrais

6- Probabilidade e amostras: A distribuição das médias amostrais 6- Probabilidade e amostras: A distribuição das médias amostrais Anteriormente estudamos como atribuir probabilidades a uma observação de alguma variável de interesse (ex: Probabilidade de um escore de

Leia mais

TÓPICO. Fundamentos da Matemática II INTRODUÇÃO ÀS PROBABILIDADES14. Licenciatura em Ciências USP/ Univesp. Vanderlei S. Bagnato

TÓPICO. Fundamentos da Matemática II INTRODUÇÃO ÀS PROBABILIDADES14. Licenciatura em Ciências USP/ Univesp. Vanderlei S. Bagnato INTRODUÇÃO ÀS PROBABILIDADES14 TÓPICO Vanderlei S. Bagnato Fundamentos da Matemática II 14.1 Introdução 14.2 Definição de Probabilidade 14.3 Adição de probabilidade 14.4 Multiplicação de Probabilidades

Leia mais

Polinômios de Legendre

Polinômios de Legendre Seção 5: continuação do método de resolução por séries de potências Na Seção foi exposto informalmente, através de exemplos, o método de resolução de equações diferenciais ordinárias por séries de potências.

Leia mais

Gibbs Sampler para ANOVA e Misturas

Gibbs Sampler para ANOVA e Misturas Gibbs Sampler para ANOVA e Misturas Renato Assunção - DCC, UFMG Outubro de 014 1 Modelo ANOVA: componentes de variância Suponha que temos K grupos ou classes. Em cada grupo, temos um certo número de dados

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA Equações Diofantinas Lineares: uma proposta para o Ensino Médio PRODUTO DA DISSERTAÇÃO

Leia mais

Conteúdo Teórico: 04 Esperança

Conteúdo Teórico: 04 Esperança ACH2053 Introdução à Estatística Conteúdo Teórico: 04 Esperança Marcelo de Souza Lauretto Sistemas de Informação EACH www.each.usp.br/lauretto Referência: Morris DeGroot, Mark Schervish. Probability and

Leia mais

1 kp. k=1. + Na série. 1 temos p = 2 p >1 converge. k=1 + Na série k=1. temos p = 1/7 p <1 diverge. ⁷ k. se lim u k. k +

1 kp. k=1. + Na série. 1 temos p = 2 p >1 converge. k=1 + Na série k=1. temos p = 1/7 p <1 diverge. ⁷ k. se lim u k. k + TESTES DE CONVERGÊNCIA Existem diversos testes de convergência e que são cobrados em provas, mas não fique preocupado, pois fizemos esse resumão pra te ajudar a lembrar de todos! Lembre-se que esses testes

Leia mais

4.1. ESPERANÇA x =, x=1

4.1. ESPERANÇA x =, x=1 4.1. ESPERANÇA 139 4.1 Esperança Certamente um dos conceitos mais conhecidos na teoria das probabilidade é a esperança de uma variável aleatória, mas não com esse nome e sim com os nomes de média ou valor

Leia mais

Capítulo 3 Equações Diferenciais. O Wronskiano (de Josef Hoëné-Wronski, polonês, )

Capítulo 3 Equações Diferenciais. O Wronskiano (de Josef Hoëné-Wronski, polonês, ) Capítulo 3 Equações Diferenciais O Wronskiano (de Josef Hoëné-Wronski, polonês, 1776 1853) Seja a equação diferencial, ordinária, linear e de 2ª. ordem Podemos dividir por os 2 membros e escrever a equação

Leia mais

Lucas Santana da Cunha 12 de julho de 2017

Lucas Santana da Cunha   12 de julho de 2017 DISTRIBUIÇÃO NORMAL Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 12 de julho de 2017 Distribuição Normal Dentre todas as distribuições de probabilidades,

Leia mais

SOLUÇÕES OBMEP 2ª. FASE 2016

SOLUÇÕES OBMEP 2ª. FASE 2016 SOLUÇÕES OBMEP 2ª. FASE 2016 N1Q1 Solução Carolina escreveu os números 132 e 231. Esses são os únicos números que cumprem as exigências do enunciado e que possuem o algarismo 3 na posição central. Para

Leia mais

Princípio da inclusão e exclusão: Alguns Exemplos de Uso do Princípio da Inclusão e Exclusão

Princípio da inclusão e exclusão: Alguns Exemplos de Uso do Princípio da Inclusão e Exclusão Matemática Discreta Capítulo 5 SUMÁRIO PRINCÍPIO DA INCLUSÃO E EXCLUSÃO BASEADO EM TOWNSEND (1987), CAP. 5 Princípio da Inclusão e Exclusão Alguns Exemplos de Uso do Princípio da Inclusão e Exclusão Newton

Leia mais

PROBABILIDADE - INTRODUÇÃO

PROBABILIDADE - INTRODUÇÃO E.E. Dona Antônia Valadares MATEMÁTICA 1º ANO ANÁLISE COMBINATÓRIA PROBABILIDADE - INTRODUÇÃO PROFESSOR: ALEXSANDRO DE SOUSA http://donaantoniavaladares.comunidades.net TEORIA DAS PROBABILIDADES A teoria

Leia mais

Rumo Curso Pré Vestibular Assistencial - RCPVA Disciplina: Matemática Professor: Vinícius Nicolau 19 de Setembro de 2014

Rumo Curso Pré Vestibular Assistencial - RCPVA Disciplina: Matemática Professor: Vinícius Nicolau 19 de Setembro de 2014 Sumário 1 Análise Combinatória 1 1.1 Questões de Vestibular.............................. 1 1.1.1 IME-RJ, Adaptada............................ 1 1.1.2 ESPM-SP................................. 2 1.1.3 Mackenzie-SP,

Leia mais

Lucas Santana da Cunha de junho de 2018 Londrina

Lucas Santana da Cunha de junho de 2018 Londrina Distribuição Normal Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ 25 de junho de 2018 Londrina 1 / 17 Distribuição Normal Dentre todas as distribuições de probabilidades,

Leia mais

3 a Lista de PE Solução

3 a Lista de PE Solução Universidade de Brasília Departamento de Estatística 3 a Lista de PE Solução. Se X representa o ganho do jogador, então os possíveis valores para X são,, 0, e 4. Esses valores são, respectivamente, correspondentes

Leia mais

Home Programa Exercícios Provas Professor Links. 2.1 Representação de um número na base dois. O número binário 101,101 significa, na base dois:

Home Programa Exercícios Provas Professor Links. 2.1 Representação de um número na base dois. O número binário 101,101 significa, na base dois: Curso de Cálculo Numérico Professor Raymundo de Oliveira Home Programa Exercícios Provas Professor Links Capítulo 2 - Representação binária de números inteiros e reais 2.1 Representação de um número na

Leia mais

Material Teórico - O Plano Cartesiano e Sistemas de Equações. Sistemas de Equações do Primeiro Grau com Duas Incógnitas

Material Teórico - O Plano Cartesiano e Sistemas de Equações. Sistemas de Equações do Primeiro Grau com Duas Incógnitas Material Teórico - O Plano Cartesiano e Sistemas de Equações Sistemas de Equações do Primeiro Grau com Duas Incógnitas Sétimo Ano do Ensino Fundamental Prof Francisco Bruno Holanda Prof Antonio Caminha

Leia mais

XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Treinamento 7 Nível 3

XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Treinamento 7 Nível 3 UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA PET MATEMÁTICA XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Treinamento 7 Nível 3 Dias/Horários

Leia mais

Capítulo 3. Séries Numéricas

Capítulo 3. Séries Numéricas Capítulo 3 Séries Numéricas Neste capítulo faremos uma abordagem sucinta sobre séries numéricas Apresentaremos a definição de uma série, condições para que elas sejam ou não convergentes, alguns exemplos

Leia mais

Análise Combinatória. Matemática Discreta. Prof Marcelo Maraschin de Souza

Análise Combinatória. Matemática Discreta. Prof Marcelo Maraschin de Souza Análise Combinatória Matemática Discreta Prof Marcelo Maraschin de Souza Introdução Combinatória é o ramo da matemática que trata de contagem. Esses problema são importantes quando temos recursos finitos,

Leia mais

Material Teórico - Módulo Equações do Segundo Grau. Equações de Segundo Grau: outros resultados importantes. Nono Ano do Ensino Funcamental

Material Teórico - Módulo Equações do Segundo Grau. Equações de Segundo Grau: outros resultados importantes. Nono Ano do Ensino Funcamental Material Teórico - Módulo Equações do Segundo Grau Equações de Segundo Grau: outros resultados importantes Nono Ano do Ensino Funcamental Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio

Leia mais

AULA 1 Introdução aos limites 3. AULA 2 Propriedades dos limites 5. AULA 3 Continuidade de funções 8. AULA 4 Limites infinitos 10

AULA 1 Introdução aos limites 3. AULA 2 Propriedades dos limites 5. AULA 3 Continuidade de funções 8. AULA 4 Limites infinitos 10 Índice AULA 1 Introdução aos limites 3 AULA 2 Propriedades dos limites 5 AULA 3 Continuidade de funções 8 AULA 4 Limites infinitos 10 AULA 5 Limites quando numerador e denominador tendem a zero 12 AULA

Leia mais

1 Congruências e aritmética modular

1 Congruências e aritmética modular 1 Congruências e aritmética modular Vamos considerar alguns exemplos de problemas sobre números inteiros como motivação para o que se segue. 1. O que podemos dizer sobre a imagem da função f : Z Z, f(x)

Leia mais

No caso do campo, mesmo dentro de um volume finito, a energia total dada pela soma de todos estes modos zero é infinita: ( compare com 33.

No caso do campo, mesmo dentro de um volume finito, a energia total dada pela soma de todos estes modos zero é infinita: ( compare com 33. número de partículas Teoria Quântica de Campos I 34 pois veremos que cada um destes modos de excitação do campo corresponde a uma partícula (de momento k) Espaço de Fock O espaço de Hilbert construído

Leia mais

aula DISTRIBUIÇÃO NORMAL - PARTE I META OBJETIVOS PRÉ-REQUISITOS Apresentar o conteúdo de distribuição normal

aula DISTRIBUIÇÃO NORMAL - PARTE I META OBJETIVOS PRÉ-REQUISITOS Apresentar o conteúdo de distribuição normal DISTRIBUIÇÃO NORMAL - PARTE I 4 aula META Apresentar o conteúdo de distribuição normal OBJETIVOS Ao final desta aula, o aluno deverá: determinar a média e a variância para uma função contínua; padronizar

Leia mais

EQUAÇÕES RELACIONAIS FUZZY E COMO RESOLVÊ-LAS

EQUAÇÕES RELACIONAIS FUZZY E COMO RESOLVÊ-LAS EQUAÇÕES RELACIONAIS FUZZY E COMO RESOLVÊ-LAS PEDRO ALADAR TONELLI 1. Introdução Nosso objetivo é apresentar de uma forma simples o procedimento para achar soluções de uma equação relacional fuzzy para

Leia mais

CONJUNTO DOS NÚMEROS INTEIROS. No conjunto dos números naturais operações do tipo

CONJUNTO DOS NÚMEROS INTEIROS. No conjunto dos números naturais operações do tipo CONJUNTO DOS NÚMEROS INTEIROS No conjunto dos números naturais operações do tipo 9-5 = 4 é possível 5 5 = 0 é possível 5 7 =? não é possível e para tornar isso possível foi criado o conjunto dos números

Leia mais

Capítulo 2- Funções. Dado dois conjuntos não vazios e e uma lei que associa a cada elemento de um único elemento de, dizemos que é uma função de em.

Capítulo 2- Funções. Dado dois conjuntos não vazios e e uma lei que associa a cada elemento de um único elemento de, dizemos que é uma função de em. Conceitos Capítulo 2- Funções O termo função foi primeiramente usado para denotar a dependência entre uma quantidade e outra. A função é usualmente denotada por uma única letra,,,... Definição: Dado dois

Leia mais

Escrita correta de resultados em notação

Escrita correta de resultados em notação Notas de Aula Laboratório de Física 1 e A Escrita correta de resultados em notação científica e confecção de gráficos 1 Prof. Alexandre A. C Cotta 1 Departamento de Física, Universidade Federal de Lavras,

Leia mais

Biomatemática - Prof. Marcos Vinícius Carneiro Vital (ICBS UFAL) - Material disponível no endereço

Biomatemática - Prof. Marcos Vinícius Carneiro Vital (ICBS UFAL) - Material disponível no endereço Universidade Federal de Alagoas Instituto de Ciências e Biológicas e da Saúde BIOB-003 Biomatemática Prof. Marcos Vinícius Carneiro Vital - Por si só, boa parte do conteúdo desta aula pode parecer mais

Leia mais

Estatística (MAD231) Turma: IGA. Período: 2018/2

Estatística (MAD231) Turma: IGA. Período: 2018/2 Estatística (MAD231) Turma: IGA Período: 2018/2 Aula #04 de Probabilidade: 26/10/2018 1 Variáveis Aleatórias Contínuas De modo informal as variáveis aleatórias são contínuas quando resultam de algum tipo

Leia mais

Elementos de Matemática Finita ( ) Exercícios resolvidos

Elementos de Matemática Finita ( ) Exercícios resolvidos Elementos de Matemática Finita (016-017 Exercícios resolvidos Ficha 7-1. ( ( 30 10 0 10. Ficha 7 -. 4 10 ( 4 10. Ficha 7-3. A resposta à primeira pergunta é (5 3 ( 5 6. A probabilidade de acertar exactamente

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 59070 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 6 00 Superposição de Movimentos Periódicos Há muitas situações em física que envolvem a ocorrência simultânea de duas ou mais

Leia mais

Centro Estadual de Educação de Jovens e Adultos de Votorantim O CONCEITO DE PROBABILIDADE

Centro Estadual de Educação de Jovens e Adultos de Votorantim O CONCEITO DE PROBABILIDADE Centro Estadual de Educação de Jovens e Adultos de Votorantim O CONCEITO DE PROBABILIDADE 2 Veja outros exemplos de experimentos aleatórios: 1 ) O lançamento de uma moeda Não se pode determinar o resultado,

Leia mais

Termo-Estatística Licenciatura: 3ª Aula (06/03/2013)

Termo-Estatística Licenciatura: 3ª Aula (06/03/2013) Termo-Estatística Licenciatura: 3ª Aula (06/03/2013) Prof. Alvaro Vannucci RELEMBRANDO Probabilidade condicional: P( X / Y) P( X Y) PY ( ) Se dois eventos (A e B) forem independentes: P( A B) P( A) P(

Leia mais

Ciclo 3 Encontro 2 PROBABILIDADE. Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr.

Ciclo 3 Encontro 2 PROBABILIDADE. Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr. 1 Ciclo 3 Encontro 2 PROBABILIDADE Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr. Probabilidade 2 Texto: Módulo Introdução à Probabilidade O que é probabilidade? parte 1 de Fabrício Siqueira

Leia mais

Aula 1. Wilson Correa. June 27, 2017

Aula 1. Wilson Correa. June 27, 2017 Aula 1 Definições Básicas Wilson Correa June 27, 2017 Série de Tempo Definição Uma série de tempo é qualquer conjunto de observações ordenadas no tempo. Podem ser: Discretas. Ex: Valores Diários de Poluição,

Leia mais

Obviamente não poderíamos ter um número negativo de livros. Também não poderíamos imaginar alguém falando: Tenho 3,4231 livros na minha estante.

Obviamente não poderíamos ter um número negativo de livros. Também não poderíamos imaginar alguém falando: Tenho 3,4231 livros na minha estante. Conjunto dos Números Naturais A noção de um número natural surge com a pura contagem de objetos. Ao contar, por exemplo, os livros de uma estante, temos como resultado um número do tipo: N = {0,1,2,3 }

Leia mais

Funções ortogonais e problemas de Sturm-Liouville. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE

Funções ortogonais e problemas de Sturm-Liouville. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Funções ortogonais e problemas de Sturm-Liouville Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Série de Fourier Soma de funções ortogonais entre si Perguntas: -existem outras bases ortogonais que podem

Leia mais

Material Teórico - Módulo Progressões Geométricas. A Soma dos Termos de uma PG Ininita. Primeiro Ano

Material Teórico - Módulo Progressões Geométricas. A Soma dos Termos de uma PG Ininita. Primeiro Ano Material Teórico - Módulo Progressões Geométricas A Soma dos Termos de uma PG Ininita Primeiro Ano Autor: Prof. Ulisses Lima Parente Autor: Prof. Antonio Caminha M. Neto A soma dos termos de uma PG finita

Leia mais