Exercícios de aplicação de frações.
|
|
|
- Nina Weber de Escobar
- 9 Há anos
- Visualizações:
Transcrição
1 Exercícios de aplicação de frações. 01 Com 12 litros de leite, quantas garrafas de 2/3 de litros poderão ser cheias? 02 Coriolano faz um cinto com 3/5 de um metro de couro. Quantos cintos poderão ser feitos com 18 metros de couro? 03 Qual é o número cujos 4/5 equivalem a 108? 04 Distribuíram-se 3 1/2 quilogramas de bombons entre vários meninos. Cada um recebeu 1/4 de quilograma. Quantos eram os meninos? 05 Para ladrilhar 2/3 de um pátio empregaram-se ladrilhos. Para ladrilhar 5/8 do mesmo pátio, quantos ladrilhos seriam necessários? 06 Dona Solange pagou R$ 5.960,00 por 4/7 de um terreno. Quanto pagaria por 4/5 desse terreno? 07 Luciano fez uma viagem de km, sendo 7/11 de aeroplano; 2/5 do resto, de trem, 3/8 do novo resto, de automóvel e os demais quilômetros, a cavalo. Calcular quantos quilômetros percorreu a cavalo? 08 A terça parte de um número adicionado a seus 3/5 é igual a 28. Calcule a metade desse número? 09 Carolina tinha R$ 175,00. Gastou 1/7 de 1/5 dessa importância. Quanto sobrou? 10 Que número é necessário somar a um e três quartos para se obter cinco e quatro sétimos? 11 A soma de dois números é 850. Um vale 12/5 do outro. Quais são eles? 12 Se dos 2/3 de um número subtrairmos seus 3/7, ficaremos com 45. Qual é o número? 13 A soma de três números é 30. O primeiro corresponde aos 2/3 do segundo e este, aos 3/5 do terceiro. Calcular o produto destes três números. 14 Se 7/8 de um terreno valem R$ ,00, qual é o valor de 5/48 do mesmo terreno? 15 Qual é o número que se da metade subtrairmos 8 unidades ficaremos com 1/3 dele mesmo? 16 Da terça parte de um número subtraindo-se 12, fica-se com 1/6 do mesmo número. Que número é esse? 17 Qual é o número que retirando 48 unidades de sua metade, encontramos a sua oitava parte? 18 A diferença entre dois números é 90; um é 3/13 do outro. Calcular os números. 19 A soma de dois números é 345; um é 12/11 do outro. Calcule-os. 20 Seu Áureo tendo gasto 4/7 do dinheiro que possuía, ficou com 1/3 dessa quantia mais R$ 164,00. Quanto tinha o velho Áureo?
2 21 Divida R$ 1590,00 em três partes de modo que a primeira seja 3/4 da segunda e esta 4/5 da terceira. 22 Se eu tivesse apenas 1/5 do que tenho, mais R$ 25,00. teria R$ 58,00. Quanto tenho? 23 A nona parte do que tenho aumentada de R$ 17,00 é igual a R$ 32,50. Quanto possuo? 24 Zé Augusto despendeu o inverso de 8/3 de seu dinheiro e ficou com a metade mais R$ 4,30. Quanto possuía? 25 Repartir 153 cards em três montes de forma que o primeiro contenha 2/3 do segundo o qual deverá ter 3/4 do terceiro. 26 Distribuir tijolos por três depósitos de tal maneira que o primeiro tenha 3/4 do segundo e este 5/6 do terceiro. 27 O diretor de um colégio quer distribuir os 105 alunos da 4ª série em três turmas de modo que a 1ª comporte a terça parte do efetivo; a 2ª, 6/5 da 1ª, menos 8 estudantes e a 3ª, 18/17 da 2ª. Quantos alunos haverá em cada turma? 28 Dividiu-se uma certa quantia entre três pessoas. A primeira recebeu 3/5 da quantia, menos R$ 100,00; a segunda, 1/4, mais R$ 30,00 e a terceira, R$ 160,00. Qual era a quantia? 29 Um número é tal que, se de seus 2/3 subtrairmos 1.036, ficaremos com 4/9 do mesmo. Que número é esse? 30 Das laranjas de uma caixa foram retirados 4/9, depois 3/5 do resto, e ficaram 24 delas. Quantas eram as laranjas? 31 Marieta tinha R$ 240,00. Gastou um quinto dessa quantia, e, depois, a terça parte do resto. Com quanto ficou? 32 Repartir R$ 671,00 entre três pessoas de modo que a primeira seja contemplada com 2/5 do que receber a segunda e esta, 3/8 do receber a terceira. 33 Dividir R$ 480,00 por três pessoas, de modo que as partes da primeira e da segunda sejam, respectivamente, 1/3 e 4/5 da parte a ser recebida pela terceira 34 Argemiro tinha R$ 375,00. Despendeu 2/5, menos R$ 6,00; depois a terça parte do resto, mais R$ 18,00. Quanto sobrou? 35 Um reservatório é alimentado por duas torneiras. A primeira pode enchê-lo em 15 horas e a segunda, em 12 horas. Que fração do reservatório encherão em uma hora, as duas juntas? 36 Uma torneira enche um reservatório em 2 horas e outra em 3 horas. Ambas, em que tempo enchê-lo-ão? 37 Uma torneira enche uma cisterna em 1/8 da hora e uma válvula o esvazia em 1/4 da hora. Abertas, em que tempo o reservatório ficará completamente cheio? 38 Uma torneira enche um depósito d água em 1/14 da hora enquanto uma válvula pode esvaziálo em 1/9 da hora. Trabalhando juntas, em quanto tempo o líquido contido no depósito atingirá seus 5/6?
3 39 Um reservatório é alimentado por duas torneiras. A primeira pode enchê-lo em 15 horas e a segunda, em 10 horas. A primeira é conservada aberta durante 2/3 da hora e a segunda durante 1/2 hora. Que fração do reservatório ficará cheia? 40 Claudia fez 2/9 de um trabalho em 12 horas e Mariana, 4/7 do resto em 8 horas. Quantas horas levarão para fazer a mesma obra, se trabalharem juntas? 41 Taninha fez 2/5 de um bordado em 8 horas e Clarisse, 1/3 do resto em 6 horas. Em quanto tempo poderão concluí-lo, se trabalharem juntas? 42 Vó Marieta é capaz de fazer um bordado em 16 horas e tia Celeste, 5/7 do resto em 15 horas. Em quanto tempo aprontarão o bordado todo, se operarem juntas? 43 Roberval, um investidor no mercado de capitais, perdeu a quarta parte de um capital. Em outros negócios, ganhou o quíntuplo de R$ ,00. Sendo a fortuna atual o dobro do capital inicial. Que capital era esse? 44 Um quitandeiro vendeu ao primeiro freguês 3/5 das melancias que tinha, mais quatro, e ao segundo, 1/3, também do total. Tendo o primeiro ficado com mais duas dúzias de melancias do que o outro, pergunta-se quantas melancias o comerciante possuía e com quantas ficou? 45 Andréa tem 2/9 do dinheiro necessário para comprar um apartamento, e seu marido, 3/11 dessa quantia. Se a essa importância o casal adicionar R$ 3.500,00 poderão comprar a casa própria. Qual é o preço do imóvel? Quanto tem cada um deles? 46 Uma torneira enche um reservatório em 6 horas e outra, em 2 horas. Ambas, funcionando conjuntamente, em que tempo encherão o reservatório? 47 Uma torneira enche um tanque em duas horas e outra o esvazia em dez horas. O tanque estando vazio e abrindo-se as duas torneiras, em que tempo ficará ele completamente cheio? 48 Silvana executa um bordado em nove horas de trabalho e Fernanda, em doze horas. Com auxílio de Eliane, aprontam-no em quatro horas. Calcular o tempo em que Eliane faria o mesmo bordado sozinha. 49 Alfredo pode pintar uma casa em sete horas de trabalho e seu irmão, em cinco horas. Juntos, que fração do trabalho executarão em uma hora? Em quanto tempo farão todo a pintura da casa? 50 Um trem partiu do Rio com um certo número de passageiros. Na primeira parada, saltaram 3/7 dos passageiros e na quarta entraram 40 pessoas. Em outras estações saltaram 5/8 dos passageiros restantes. O trem chegou à estação final com 36 passageiros. Com quantos passageiros o trem partiu do Rio? 51 Um número vale 8/5 de um segundo ou 2/3 de um terceiro. Calcular os três números sabendo que sua soma é igual a Cuidadosamente, Severina, a empregada dos Cavalcante arruma uma bela cesta de maçãs. O patriarca ao ver as maçãs toma para si 1/6 das frutas, sua esposa pega 1/5 das restantes, o filho mais velho pega para si 1/4 do restante, o filho do meio e o mais novo pegam, respectivamente 1/3 e 1/2 dos restantes. Quando Severina chega e percebe o cesto praticamente vazio, fica magoada com a gulodice dos patrões e decide pegar para si as 3 frutas restantes. Quantas eram as maçãs arrumadas
4 originalmente por Severina? Resolução dos problemas 01) 18 garrafas 02) 30 cintos 03) ) 14 meninos 05) ) R$ 8.344,00 07) 165 km 08) 15 09) R$ 170,00 10) 11) 600 e ) ) ) R$ 2.500,00 15) 48 16) 72 17) ) 117 e 27 19) 180 e ) R$ 1.722,00 21) R$ 397,50, R$ 530,00 e R$ 662,50 22) R$ 165,00 23) R$ 139,50 24) R$ 34,40 25) 34, 51 e 68 26) 945, 1260 e ) 35, 34 e 36 28) R$ 600,00 29) ) ) R$ 128,00 32) R$ 66,00, R$ 165,00 e R$ 440,00 33) R$ 75,00, R$ 180,00 e R$ 225,00 34) R$ 136,00 35) 3/20 36) 1 horas e 12 minutos 37) 1/4 h ou 15 min 38) 1/6 h ou 10 min 39) 17/180 40) 13 h 30 min 41) 12 h 42) h 43) R$ ,00
5 44) 75 e 1 45) R$ 6.930,00, R$ 1.540,00 e R$ 1.890,00 46) 1h 30 min 47) 2 h 30 min 48) 18 horas 49) 12/35 e 2 h 55 min 50) 98 51) 160, 100 e ) 18 maçãs
Veremos agora outra série de exemplos resolvidos envolvendo números racionais (fracionários) 1º Exemplo Um automóvel percorreu 3 de uma estrada de 240 km. Quantos quilômetros ele percorreu? 4 4 240km (inteiro,
EXERCÍCIOS Frações. 1 -Observe as figuras e diga quanto representa cada parte da figura e a parte pintada:
Frações 1 -Observe as figuras e diga quanto representa cada parte da figura e a parte pintada: a) b) c) 2 Com 12 litros de leite, quantas garrafas de 2/3 de litros poderão ser cheias? 3 Coriolano faz um
Deixando de odiar Matemática Parte 6
Deixando de odiar Matemática Parte 6 Restante 2 Produção x Tempo 4 Exercícios Propostos 0 Gabaritos dos exercícios propostos 2 Restante O conceito de fração restante é muito importante em vários tópicos
COLÉGIO EQUIPE DE JUIZ DE FORA. 7º ano - Matemática LISTÃO DE FÉRIAS
LISTÃO DE FÉRIAS 1. Resolva os seguintes problemas: a) A empresa Cami S.A. teve, em janeiro de 2012, um prejuízo de R$ 36.000,00 mas, em fevereiro, recuperou-se e teve um lucro de R$ 210.000,00. Qual foi
ROTEIRO DE RECUPERAÇÃO DO 3º BIMESTRE MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO DO 3º BIMESTRE MATEMÁTICA Nome: Nº 6ºAno Data: / / 2016 Professores: Leandro e Décio Nota: (Valor 2,0) 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 3º ANO - ENSINO FUNDAMENTAL
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 3º ANO - ENSINO FUNDAMENTAL 01- Juliana foi à praia e contou 135 guarda-sóis. Desses, 46 eram guarda-sóis brancos e os demais eram coloridos.
SE18 - Matemática. LMAT1B1 - Frações. Questão 1. , simplificando ao máximo o resultado: e) não sei. Questão 2. e) não sei.
SE18 - Matemática LMAT1B1 - Frações Questão 1 Calcule o valor de Questão 2 Calcule o valor de Questão 3 Calcule o valor de Questão 4 Calcule Questão 5 Calcule Questão 6 Calcule Questão 7 Calcule Questão
EXERCÍCIOS. Questão 01 Se em 5 dias uma máquina produz pregos, quantos pregos produzirá em 3 dias?
EXERCÍCIOS Questão 01 Se em 5 dias uma máquina produz 12.000 pregos, quantos pregos produzirá em 3 dias? Questão 02 Uma olaria fabrica 1200 tijolos em 5 dias. Quantos tijolos seriam fabricados em 8 dias?
EXERCÍCIOS. Questão 03 (INSS) A razão entre o número de homens e de mulheres, funcionários de uma firma, é de 5
EXERCÍCIOS Questão 01 (Banco do Brasil) Uma empresa possui atualmente.100 funcionários. Se a relação entre o número de efetivos e contratados é de 5 para, quantos são os efetivos? a) 600 b) 1.000 c) 1.500
Prof. Marcelo Renato
016 CUSO DE NIVELAMENTO Problemas de 1º grau Prof. Marcelo enato 1) Pedro propõe 16 problemas a um de seus amigos, informando que lhe dará 5 pontos por problema resolvido e lhe tirará pontos por problema
Chamamos de número racional a todo número que pode ser representado na. a = d
II. NÚMEROS RACIONAIS Chamamos de número racional a todo número que pode ser representado na forma b a (fração com a e b números inteiros e b 0). a. b Exemplos: 7 ; ; ; O número a é chamado de numerador
UMA SEQUÊNCIA DIDÁTICA NAS AULAS DE MATEMÁTICA: FRAÇÕES IARA DA SILVA SUCUPIRA GISELLE FAUR DE C. CATARINO
UMA SEQUÊNCIA DIDÁTICA NAS AULAS DE MATEMÁTICA: FRAÇÕES IARA DA SILVA SUCUPIRA GISELLE FAUR DE C. CATARINO 1ª Edição Editora UNIGRANRIO 2017 IARA DA SILVA SUCUPIRA GISELLE FAUR DE CASTRO CATARINO UMA
(09) Uma prova de matemática contém 50 questões. Um aluno acertou 7/10 das questões. Quantas questões esse aluno errou? (a) 35
Lista 05 2014 Exercícios Razão e Proporção (01) Uma fração equivalente a 15/24, cuja soma dos termos seja 78, é: (a) 48/30 (b) 20/58 (c) 40/38 (d) 30/48 (02) Doze rapazes cotizaram-se para comprar um barco.
Simulado Aula 03 CEF MATEMÁTICA. Prof. Dudan
Simulado Aula 03 CEF MATEMÁTICA Prof. Dudan Matemática 1. Se em um reservatório foram colocados 48000 litros de água, o que representa a 2/5 de sua capacidade total podemos afirmar que a quantidade de
SIMULADO DE MATEMÁTICA FUNDAMENTAL. a) ( ) x = 01; b) ( ) x = 10; c) ( ) x = 05; d) ( ) x = 04;
NOME: DATA DE ENTREGA: / / SIMULADO DE MATEMÁTICA FUNDAMENTAL 1) Assinale a sentença correta: a) ( ) 31 ao conjunto dos números pares; b) ( ) {1, 3, 5 } { números ímpares}; c) ( ) 4 C { números pares};
Matemática do Zero REGRA DE TRÊS COMPOSTA E DIVISÃO PROPORCIONAL
Matemática do Zero REGRA DE TRÊS COMPOSTA E DIVISÃO PROPORCIONAL Regra de Três Composta A regra de três composta é utilizada em problemas com mais de duas grandezas, direta ou inversamente proporcionais.
Roteiro B. Nome do aluno: Número: Revisão
Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Roteiro B Nome do aluno: Número: Periodo: Grupo: Revisão Tópicos Tarefa Pesquisar história da fórmula de Bhaskara: descobrir
03- Bruno levou 163 cocos para vender na praia. Em apenas duas horas ele vendeu 57 cocos. Com quantos cocos ele ficou?
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 3º ANO - ENSINO FUNDAMENTAL ========================================================================== 01- Juliana foi à praia e contou
Matemática do Zero CONVERSÃO DE UNIDADES
Matemática do Zero CONVERSÃO DE UNIDADES Veja a tabela a seguir na qual agrupamos as principais unidades de medida, seus múltiplos e submúltiplos do Sistema Métrico Decimal, segundo o Sistema Internacional
Módulo Frações, o Primeiro Contato. 6 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Frações, o Primeiro Contato Exercícios sobre Frações ano EF Professores Cleber Assis e Tiago Miranda Frações, o Primeiro Contato Exercícios sobre Frações Exercícios Introdutórios Exercício a) +
NEEJA: NÚCLEO ESTADUAL DE EDUCAÇÃO DE JOVENS E ADULTOS CONSTRUINDO UM NOVO MUNDO
NEEJA: NÚCLEO ESTADUAL DE EDUCAÇÃO DE JOVENS E ADULTOS CONSTRUINDO UM NOVO MUNDO PROFESSOR:Ardelino R Puhl Ano 2015 MÓDULO- 3 ( QUINTA SÉRIE ) PROBLEMAS ENVOLVENDO AS QUATRO OPERAÇÕES 1-A um teatro compareceram
Módulo Frações, o Primeiro Contato. 6 o ano/e.f.
Módulo Frações, o Primeiro Contato Frações como Razões. 6 o ano/e.f. Frações, o Primeiro Contato. Frações como Razões. Exercícios Introdutórios Exercício. Sabendo que velocidade média é a razão entre a
Módulo Frações, o Primeiro Contato. 6 o ano/e.f.
Módulo Frações, o Primeiro Contato Frações como Razões. 6 o ano/e.f. Frações, o Primeiro Contato. Frações como Razões. Exercícios Introdutórios Exercício. Sabendo que velocidade média é a razão entre a
Matemática do Zero. EQUAÇÃO de 1 GRAU
Matemática do Zero EQUAÇÃO de 1 GRAU DEFINIÇÃO EQUAÇÃO de 1 GRAU A equação de 1 grau é a equação na forma ax + b = 0, onde a e b são números reais e x é a variável (incógnita). O valor da incógnita x é.
s: damasceno.info www. damasceno.info damasceno.
1. Introdução. Regra de três e percentagem. 1 1.1 Regra de três simples. Regra de três simples é um processo prático para resolver problemas que envolvam quatro valores dos quais conhecemos três deles.
Colégio FAAT Ensino Fundamental e Médio
Colégio FAAT Ensino Fundamental e Médio Lista de exercícios de Matemática - º Bimestre Nome: Ano: 6º A / B Prof. Adriana Bueno N.: / /7 Frações; Ideias relacionadas ás frações, números mistos, frações
Matemática Guarda Municipal de Curitiba. Prof.: Braian Azael da Silva
Matemática Guarda Municipal de Curitiba Prof.: Braian Azael da Silva CONJUNTOS NUMÉRICOS Exercício A sequência abaixo foi criada repetindo-se as letras da palavra JANEIRO na mesma ordem: J A N E I R O
MATEMÁTICA BÁSICA. a) 4 b) 6 c) 10 d) 12 e) 18
MATEMÁTICA BÁSICA 01.(Anpad) Deseja-se dividir dois rolos de fita medindo 72m e 104m, cada um. Se os pedaços de fita devem ser todos de mesmo comprimento e o maior possível, então a soma da quantidade
(07) Uma lanchonete vende cada pastel por 50 centavos e cada refresco por 80
CURSO DE NIVELAMENTO EM MATEMÁTICA Lista de exercícios 05 Sistemas de equações do primeiro grau. Equação do segundo grau. Distância e Valor absoluto. Potenciação. Q01) Resolver os seguintes sistemas de
PROBLEMAS COM DIAGRAMAS
PROLEMS OM DIGRMS 1) (NLIST/TRT) s atividades físicas têm sido recomendadas como forma de se obter uma boa qualidade de vida. Uma pesquisa realizada com médicos que residem na região oceânica de uma determinada
30 s. Matemática Volume 2
30 s Matemática Volume 2 1. Questão Se 760 litros de uma mistura contêm álcool e água na razão 14:5, então o número de litros de álcool na mistura é: a) 200 b) 360 c) 480 d) 560 2. Questão A quarta proporcional
Colégio Santa Dorotéia
Colégio Santa Dorotéia Disciplina: Matemática / ORIENTAÇÃO DE ESTUDOS - RECUPERAÇÃO Ano: 4º - Ensino Fundamental - Data: 11 / 9 / 2018 CONTEÚDO DE ESTUDO: Problemas envolvendo as quatro operações; Fatos,
Colégio Zaccaria TELEFAX: (0 XX 21)
Colégio Zaccaria TELEFAX: (0 XX 21) 3235-9400 www.zaccaria.g12.br Data: EXERCÍCIO DE MATEMÁTICA Aluno(a): N.º Turma: 13. Turno: Tarde Professor(a): Gabriel é uma criança como você. Ele estuda no 3º ano
Matemática do Zero REGRA DE TRÊS COMPOSTA E DIVISÃO PROPORCIONAL
Matemática do Zero REGRA DE TRÊS COMPOSTA E DIVISÃO PROPORCIONAL Regra de Três Composta A regra de três composta é utilizada em problemas com mais de duas grandezas, direta ou inversamente proporcionais.
Áreas, Perímetros e Volumes
Áreas, Perímetros e Volumes Grupo I Escolha Múltipla 1. A área de um rectângulo com 10cm de comprimento e 2dm de largura é: 20cm 2 20dm 2 200dm 2 2dm 2 2. O perímetro de uma circunferência de diâmetro
PROBLEMAS SOBRE EQUAÇÕES DO 1º GRAU. 1 O dobro de um número, aumentado de 15, é igual a 49. Qual é esse número?
1 PROBLEMAS SOBRE EQUAÇÕES DO 1º GRAU Prof. Sérgio Mélega 1 O dobro de um número, aumentado de 15, é igual a 49. Qual é esse 2 A soma de um número co o seu triplo é igual a 48. 3 A idade de um pai é igual
a) Alice b) Beatriz c) Carlos d) Daniel
Razão e Proporção II Prof. Hugo Gomes EXERCÍCIOS 1. Em um exame de seleção concorreram 4800 candidatos para 240 vagas. A razão entre o número de vagas e o número de candidatos foi de: a) 1. 2000 b) 1.
Sumário BLOCO Problemas Aritiméticos...
Sumário BLOCO 01.... 2 Problemas Aritiméticos... BLOCO 01. Problemas Aritiméticos EXERCÍCIOS - ARITMÉTICA 01. Se x = ( 2) 3 ( 1) 2 + ( 3) 2 ( 2) 2, então: x 8 8 x 5 5 x 1 1 x 7 x 7 02. O valor a) 3,75
Matemática OS 70 TONS DE MATEMÁTICA
Matemática OS 70 TONS DE MATEMÁTICA FRAÇÕES COMO A FCC COBRA ISSO? AL - 2013 O resultado de 3/7 + 7/3 é: a) 10/10 b) 10/21 c) 58/21 d) 42/10 e) 42/21 Sabendo que x dividido por y é igual a 12, então o
Lista de Fixação Equações do 1 grau. 01- Dois amigos têm juntos 80 selos. O mais velho possui o triplo do mais novo. O mais velho possui:
Lista de Fixação Equações do 1 grau Leia as situações abaixo e resolva. 01- Dois amigos têm juntos 80 selos. O mais velho possui o triplo do mais novo. O mais velho possui: a) 20 selos b) 30 selos c) 40
indica em quantas partes iguais foi dividido o bolo indica quantas partes do todo se pretende destacar ou referir
Tema de vida: A Europa somos cidadãos europeus Nome do Formando: Data: / / Este bolo de aniversário está dividido em oito partes iguais. Quantas dessas partes têm a letra A? é uma fracção.. é o denominador..
Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta.
1 Prezado(a) candidato(a): Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta. Nº de Inscrição Nome PROVA D E M
Regra de Três Exercícios Resolvidos
Regra de Três Exercícios Resolvidos 01. Uma gravura de forma retangular, medindo 20 cm de largura por 35 cm de comprimento, deve ser ampliada para 1,2 m de largura. O comprimento correspondente será: a)
7º ANO. Lista extra de exercícios
7º ANO Lista extra de exercícios 1. Se um termômetro estiver marcando 8 o C, quantos graus vai marcar: a) se a temperatura diminuir três graus? b) se a temperatura aumentar seis graus? c) se a temperatura
Aula 3 (Concurso) Razão e Proporção
Resumo Teórico Razão dado dois números a e b, com b 0, chama-se razão o quociente entre eles, indicado por a/b, lê-se a está para b. Exemplo: Numa sala de aula há 20 meninos e 30 meninas. Encontre a razão
LINGUAGEM NOS PROBLEMAS MATEMÁTICOS
UNIVERSIDADE FEDERAL FLUMINENSE INSTITUTO DE EDUCAÇÃO DE ANGRA DOS REIS DISCIPLINA: LINGUAGEM MATEMÁTICA 2016.2 LINGUAGEM NOS PROBLEMAS MATEMÁTICOS (PROBLEMAS PROPOSTOS PELA TURMA) Prof. Adriano Vargas
04) Escreva os números inteiros associados às letras representadas na reta numérica. A = 3 B = +1 C = +7 D = 6 E = +5
GABARITO DO CADERNO DE RECUPERAÇÃO 1º SEMESTRE 7º ANO MATEMÁTICA 01) Se um termômetro estiver marcando 8 C, quantos graus vai marcar: a) se a temperatura diminuir três graus? 5 C b) se a temperatura aumentar
RESOLUÇÃO A metade de 1356 é 678, pois e 678 = ,5, uma vez que 0 678
Nome: N.º: Endereço: Data: Telefone: E-mail: Colégio PARA QUEM CURSARÁ O 7 Ọ ANO DO ENSINO FUNDAMENTAL EM 208 Disciplina: MATEMÁTICA Prova: DESAFIO NOTA: QUESTÃO 6 Para encontrar a metade de 356, posso
Colégio Santa Dorotéia
Colégio Santa Dorotéia Disciplina: Matemática / ORIENTAÇÃO DE ESTUDOS - RECUPERAÇÃO Ano: 4º - Ensino Fundamental - Data: 9 / 5 / 2018 INSTRUÇÕES: 1) Este é um instrumento para auxiliá-lo em seu estudo
1º Trimestre MATEMÁTICA Atividade Extra Ensino Fundamental 8º ano: Prof. Ândrea Nome: nº..
º Trimestre MATEMÁTICA Atividade Extra Ensino Fundamental 8º ano: Prof. Ândrea Nome: nº... Os bancos oferecem a seus clientes um serviço denominado cheque especial. Com ele, pode retirar mais dinheiro
Alugaram-se 8 autocarros para uma ida ao Oceanário. Cada camionista levou 57 alunos acompanhados do seu professor. Não foram ao passeio 18 alunos.
Alugaram-se 8 autocarros para uma ida ao Oceanário. Cada camionista levou 57 alunos acompanhados do seu professor. Não foram ao passeio 18 alunos. Quantos alunos havia na escola? Contando com os motoristas,
SIMULADO SARESP - MATEMÁTICA
SIMULADO SARESP - MATEMÁTICA Nome:...N 0 :... 6 a série... 01- Os números 2 e 1 ocupam na reta numérica abaixo as posições indicadas respectivamente pelas letras: (A) P, Q (B) Q, P (C) R, S (D) S, R 02.
MATEMÁTICA BÁSICA 1. Número primo: Um número inteiro é primo, quando possuir exatamente quatro divisores inteiros.
Conjuntos Numéricos 1) Números Naturais: os números naturais são aqueles que aprendemos NATURALMENTE, depois inclua o ZERO. 0;1;2;3;... 2) Números Inteiros: Um número é dito Inteiro, se o mesmo NÃO for
2 de um muro são necessários 6 latas de tinta, a fração desse muro que é pintada com o COLÉGIO ARQUIDIOCESANO MATEMÁTICA BÁSICA.
... Dividir um número N por 0,06 é equivalente a multiplicá-lo por: 6 d) e). Se para pintar de um muro são necessários 6 latas de tinta, a fração desse muro que é pintada com o conteúdo de uma lata é:
ACLÉSIO MOREIRA MATEMÁTICA
ACLÉSIO MOREIRA MATEMÁTICA 1. (VUNESP-2017) Em um terreno retangular ABCD, que tem 15 m de frente para a Avenida Sumaré e uma medida x, em metros, da frente até o fundo, a diagonal AC mede 25 m, conforme
Soluções FICHA 1 FICHA Livro: = 62. R.: Ficaram 62 morangos na caixa = 66. R.: Ao todo, colheu 66 frutos.
Soluções Barrinhas 2 FICHA. 20 Laranjas Maçãs 3 27 3 + 27 = 5 Ficaram Comeram-se 20 5 = 2 R.: Ficaram 2 morangos na caia. R.: Ao todo, colheu frutos.. 730 Sábado Domingo 354 25 37 Ficaram Colheram-se 25
CURSO ANUAL DE MATEMÁTICA AULA 1 Prof Raul Brito
MMC, MDC, Múltiplos e Divisores CURSO ANUAL DE MATEMÁTICA AULA Prof Raul Brito SISTEMA DE NUMERAÇÃO DECIMAL O sistema de numeração que usamos é o sistema de numeração decimal, pelo fato de contarmos os
Prova da primeira fase - Nível 1
Prova da primeira fase - Nível Instruções: O tempo de duração da prova é de uma hora e trinta minutos. Este é um teste de múltipla escolha. Cada questão é seguida por cinco opções (a, b, c, d, e). Somente
Operações com Números na Forma Decimal. 6 ano/e.f.
Módulo Operações Básicas Operações com Números na Forma Decimal. 6 ano/e.f. Operações Básicas. Operações com Números na Forma Decimal. 1 Exercícios Introdutórios Exercício 1. Escreva os números decimais
Matemática Básica para ENEM
Matemática Básica para ENEM Júlio Sousa I - Frações Fração também pode ser chamada de razão e é escrita da seguinte forma: a b onde a é o numerador e b o denominador, e devemos ter a Є N e b Є N* Obs:
Aula 1. Objetivo: Relembrar alguns conhecimentos prévios relevantes à aprendizagem dos conceitos de fração.
Aula 1 Objetivo: Relembrar alguns conhecimentos prévios relevantes à aprendizagem dos conceitos de fração. Com vistas à aprendizagem do conceito de fração é importante identificar se os estudantes têm
CENPRO - CONCURSOS MILITARES E TÉCNICOS 3ª REVISÃO DE MATEMÁTICA - CURSO PREPARATÓRIO CMBH Nome Completo: 18/10/12
ª REVISÃO DE MATEMÁTICA - CURSO PREPARATÓRIO CMBH 201 Nome Completo: 18/10/12 Instruções ao candidato: * Esta prova é composta de 20 questões de múltipla escolha; * A duração da prova é de 2 horas, incluindo
Nome: nº Data: / /2013 9º ano manhã Professora: CLAUDIA FRANCHI Atividade para Nivelamento (Recuperação) - IFEM - Nota:
Nome: nº Data: / /0 9º ano manhã Professora: CLAUDIA FRANCHI Atividade para Nivelamento (Recuperação) - IFEM - Nota:. Classifique as variáveis em qualitativas ou quantitativas (contínuas ou discretas);
Lista de Exercícios 8 ano- Matemática VC Professora: Vanessa Vianna Macedo
Lista de Exercícios 8 ano- Matemática VC Professora: Vanessa Vianna Macedo 1) Resolva as equações a seguir: a)18x - 43 = 65 b) 23x - 16 = 14-17x c) 10y - 5 (1 + y) = 3 (2y - 2) 20 d) x(x + 4) + x(x + 2)
NEEJA: NÚCLEO ESTADUAL DE EDUCAÇÃO DE JOVENS E ADULTOS CONSTRUINDO UM NOVO MUNDO MÓDULO - 3 ( QUINTA SÉRIE ) PROFESSOR:Ardelino R Puhl
NEEJA: NÚCLEO ESTADUAL DE EDUCAÇÃO DE JOVENS E ADULTOS CONSTRUINDO UM NOVO MUNDO MÓDULO - 3 ( QUINTA SÉRIE ) PROFESSOR:Ardelino R Puhl PROBLEMAS ENVOLVENDO AS QUATRO OPERAÇÕES 1-A um teatro compareceram
Prova Escrita de Matemática. 3.º Ciclo do Ensino Básico 8.ºAno de Escolaridade
ESCOLA SECUNDÁRIA C/3º CICLO DO ENSINO BÁSICO DE LOUSADA Prova Escrita de Matemática 3.º Ciclo do Ensino Básico 8.ºAno de Escolaridade Versão 1 Duração da Prova: 90 minutos Data: /10/2010 A PREENCHER PELO
FICHA DE MATEMÁTICA 3º ANO NOME: DATA: AVALIAÇÃO:
FICHA DE MATEMÁTICA 3º ANO NOME: DATA: AVALIAÇÃO: 1 -. Completa os quadros de acordo com os exemplos. 2456 2 Milhares + 4 centenas + 5 dezenas + 6 unidades 10345 1 Dezena de milhar + 2 Dezenas de milhar
RACIOCÍNIO LÓGICO QUANTITATIVO PARA AFRFB PROFESSOR: GUILHERME NEVES
Aula 6 Parte 1 Problemas do 1º grau... 2 Relação das questões comentadas... 22 Gabarito... 27 Prof. Guilherme Neves www.pontodosconcursos.com.br 1 Olá pessoal! Aprenderemos a resolver os chamados problemas
Aula Atividades sugeridas para identificar e revisar conhecimentos prévios ao ensino de fração
Aula 1 Conteúdo: Identificação de conhecimentos prévios Objetivo: Identificar a compreensão dos estudantes quanto a alguns conhecimentos prévios relevantes à aprendizagem dos conceitos de fração. Com vistas
Lista de exercícios I - regra de três simples
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA (MAF) MATEMÁTICA PARA NEGÓCIOS PROFESSOR: MS SAMUEL LIMA PICANÇO Lista de exercícios I - regra de três simples 1 Uma roda dá
LISTA DE EXERCÍCIOS II - 3 O BIMESTRE. FRAÇÕES: conceito, classificação, números mistos, fração de quantidade e equivalência
NOME: Nº. - 6 o ANO - E.F.II DATA: / / 2016 PROF. MARCO MALZONE - MATEMÁTICA I LISTA DE EXERCÍCIOS II - 3 O BIMESTRE FRAÇÕES: conceito, classificação, números mistos, fração de quantidade e equivalência
CONCURSO DE ADMISSÃO 2015/2016 PROVA DE MATEMÁTICA (Prova 1) 1º Ano / Ensino Médio
EM CADA UMA DAS 20 QUESTÕES A SEGUIR, ASSINALE A ÚNICA ALTERNATIVA CORRETA. Questão 01 Em um restaurante, uma garrafa e sua tampa custam juntas R$ 110,00. Considere que a garrafa custa R$ 100,00 a mais
Regra de três. suficiente para um mês. Se 16 pessoas forem embora, para quantos dias ainda haverá alimento?
A UUL AL A 5 Regra de três Num acampamento, há 48 pessoas e alimento suficiente para um mês. Se 6 pessoas forem embora, para quantos dias ainda haverá alimento? Para pensar Observe a seguinte situação:
Matemática. Aula: 02/10. Prof. Pedrão. Visite o Portal dos Concursos Públicos
Matemática Aula: 02/10 Prof. Pedrão UMA PARCERIA Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.BR Visite a loja virtual www.conquistadeconcurso.com.br MATERIAL DIDÁTICO EXCLUSIVO PARA ALUNOS
2010 PORCENTAGEM NA 1ª FASE (ALGUMAS QUESTÕES)
LISTA 2-2010 2 2010 PORCENTAGEM NA 1ª FASE (ALGUMAS QUESTÕES) 1) [Fuvest 77] Um vendedor ambulante vende seus produtos com um lucro de 50% sobre o preço de venda. Então seu lucro sobre o preço de custo
01- TEXTO 1 EMÍLIA E AS FRAÇÕES
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 4º ANO - ENSINO FUNDAMENTAL ================================================================= 0- TEXTO EMÍLIA E AS FRAÇÕES Dona Benta levantou-se
Exercícios de Revisão para a Prova Final 8º ano Matemática Profª Tatiane
Exercícios de Revisão para a Prova Final 8º ano Matemática Profª Tatiane 1) Determine os valores numéricos de x, y, z na figura abaixo: 2) Determine o valor de x nos seguintes casos: a) b) 3) As semiretas
LISTA DE EXERCÍCIOS-MATEMÁTICA BÁSICA
1. As idades de duas pessoas estão na razão de 7 para 6. Admitindo-se que a diferença das idades seja igual a 8 anos, calcular a idade de cada uma. 2. Um caminhão vai ser carregado com 105 sacos de batata
CENTRO EDUCACIONAL NOVO MUNDO Matemática
Desafio de Matemática 3 ano EF 4D 2014 1/ 6 CENTRO EDUCACIONAL NOVO MUNDO www.cenm.com.br 4 o DESAFIO CENM - 2014 Matemática 1. Observe a informação sobre o peso da roupa do astronauta. Direção: Ano: 3
BANCO DE. multiplicação.) pacotes. Do total folhas. ela ainda tem? que ela. Página 1 de 10 03/10/1114:46
PROFESSOR: EQUIPEE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 3º ANO - ENSINO FUNDAMENTAL ======== ========= ========= ========= ========= ========= ======== ======== ========= == 01- Uma caixa de
Conteúdos Exame Final 2018
Componente Curricular: Matemática Ano: 7º ANO Turmas: 17 A, B, C, D e E. Professoras: Fernanda, Kelly e Suziene Conteúdos Exame Final 2018 1. Números Racionais 2. Área e perímetro de figuras planas 3.
Nome do(a) Aluno(a): Turma: RECOMENDAÇÕES IMPORTANTES
TURMA 40-4º SIMULADO / 2016 2ª ETAPA - MATEMÁTICA.1..1. Nome do(a) Aluno(a): Turma: RECOMENDAÇÕES IMPORTANTES 01) Verifique o total de folhas (09) deste Simulado. Ele contém 25 (vinte e cinco) questões
I OLIMPÍADA MASSARANDUBENSE DE MATEMÁTICA SOLUÇÕES DA PROVA DE SEGUNDA FASE DA OMM - NÍVEL 1
I OLIMPÍADA MASSARANDUBENSE DE MATEMÁTICA SOLUÇÕES DA PROVA DE SEGUNDA FASE DA OMM - NÍVEL 1 1. A) Para encontrarmos quanto ela gastará, primeiro iremos calcular quanto ela gasta com cada fruta: Maçã:
Nivelamento em Matemática Básica
Nivelamento em Matemática Básica Prof a. Juliana Castanon Xavier e Prof a. Simone Alves da Silva Monitores: João Fernando da Silva Costa e Jaqueline Elisabete Savoia Departamento Acadêmico de Matemática
Resoluções das atividades
Resoluções das atividades 2 Operações Abertura de capítulo com números naturais Dudu tinha uma coleção com 250 lápis de cor. No seu aniversário, sua mãe lhe deu 60 lápis. Qual é a operação matemática que
Centro Educacional Juscelino Kubitschek
Centro Educacional Juscelino Kubitschek ALUNO: DATA: / / 2011. ENSINO: Fundamental SÉRIE: 7 ª TURMA: TURNO: DISCIPLINA: Matemática PROFESSOR(A): Equipe de Matemática Valor da Lista: 3,0 Valor Obtido: LISTA
Questão 05 Desenvolver as expressões numéricas a seguir (continuação):
Questão 01 Resolver as expressões numéricas Questão 02 Transformar as seguintes frações em decimais: Questão 03 Desenvolver as expressões numéricas a seguir: Questão 04 Desenvolver as expressões numéricas
Lista de exercícios de equações do 1º Grau
IVIDDES 2014 luno(a): Série: 6ª/7 ano Data: / / Lista de exercícios de equações do 1º Grau 1) Resolva as equações a seguir: a)18x - 43 = 65 (R: x = 6) b) 23x - 16 = 14-17x (R: x = ¾) c) 10y - 5 (1 + y)
a) 7 c) 9 2 a) 2 3 = 30 b) = 20 c) = b)
p: João Alvaro w: www.matemaniacos.com.br e: [email protected] Lista de exercícios de Matemática LISTA 00 FATORAÇÃO. Escreva no caderno, a fatoração completa dos seguintes números: 6 0 60 80. Utilizando
Trabalho de Recuperação 16 6º ano 4º bimestre
Trabalho de Recuperação 16 6º ano 4º bimestre 1 Construí o esqueleto do cubo de palitos. Cada aresta é um palito e cada palito mede 3,8 cm. O comprimento total dos palitos utilizados é mais ou menos que
2º Ano Matemática Básica Estudo das Frações Página 1
Frações Impróprias: É aquela em que o numerador é maior do que o denominador: exemplos:. Frações Aparentes: É aquela em que o numerador é múltiplo do denominador: exemplos:. Há aproximadamente 5000 anos,
SIMULADO OBJETIVO S4
SIMULADO OBJETIVO S4 6º ano - Ensino Fundamental 3º Trimestre Matemática Dia: 07/1 - sexta-feira Nome completo: Turma: Unidade: 018 ORIENTAÇÕES PARA APLICAÇÃO DA PROVA OBJETIVA - 3º TRI 1. A prova terá
Operando com vírgulas - Prof. Mitchell
ADIÇÃO DE NÚMEROS DECIMAIS Geralmente realizar uma adição de números decimais é mias simples porque a técnica do algoritmo da adição: Utilizaremos o exemplo da adição de 23,5+ 100, 22 Devemos colocar vírgula
Prova da primeira fase - Nível I
Instruções: O tempo de duração da prova é de uma hora e trinta minutos. Este é um teste de múltipla escolha. Cada questão é seguida por cinco opções (a, b, c, d, e). Somente uma resposta é correta. Marque
Colégio Jardim Paulista
Colégio Jardim Paulista Nome: Nº Série: Profª:_ Roberto Salgado Período: 4º Bimestre Data: / / Trabalho de Matemática 7º ano A Nota Razão e proporção: 1) Júlia, Pati e Mateus decidiram fazer bijuterias
PROFESSOR: VINÍCIUS CAMARGO DISCIPLINA: MATEMÁTICA SÉRIE: 6º LISTA DE EXERCÍCIOS DE MATEMÁTICA RECUPERAÇÃO SEMESTRAL II
GOIÂNIA, / / 07 PROFESSOR: VINÍCIUS CAMARGO DISCIPLINA: MATEMÁTICA SÉRIE: 6º ALUNO(: No Anhanguera você é + Enem LISTA DE EXERCÍCIOS DE MATEMÁTICA RECUPERAÇÃO SEMESTRAL II. Uma prova de matemática tem
FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR 2 TRAÇO DE FRAÇÃO DENOMINADOR. DENOMINADOR Indica em quantas partes o todo foi dividido.
FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR TRAÇO DE FRAÇÃO DENOMINADOR DENOMINADOR Indica em quantas partes o todo foi dividido. NUMERADOR - Indica quantas partes foram consideradas. TRAÇO DE FRAÇÃO Indica
Mat. Alex Amaral Monitor: Roberta Teixeira
1 Mat. Professor: Luanna Ramos Alex Amaral Monitor: Roberta Teixeira 2 Cones 08/10 ago RESUMO Cone: Elementos e classificação. Cone é um solido geométrico caracterizado pela reunião de todos os segmentos
