Forma Integral das Equações Básicas para Volume de Controle
|
|
|
- Angélica de Mendonça Faro
- 9 Há anos
- Visualizações:
Transcrição
1 Núcleo de Engenhaia Témica e Fluidos Mecânica dos Fluidos (SEM5749) Pof. Osca M. H. Rodiguez Foma Integal das Equações Básicas paa olume de Contole Fomulação paa vs Fomulação paa volume de contole: fluidos são capazes de distoção e de defomação contínua, assim é difícil de identifica e acompanha ceta massa de fluido na pática, muitas vezes estamos inteessados no efeito do movimento do fluido em alguma máquina de fluxo (bombas, tubinas, compessoes, etc.), num moto de combustão intena, ou numa estutua (tubulações, bocais, asas de aeoplanos, aeofólios de caos de coida, etc.), ente outos, e não no movimento da massa fluida em si. Assim, muitas vezes é mais conveniente aplica as leis básicas a um volume fixo de espaço, ao invés de a uma massa fixa e definida de fluido.
2 Núcleo de Engenhaia Témica e Fluidos Mecânica dos Fluidos (SEM5749) Pof. Osca M. H. Rodiguez As leis Básicas do Sistema (como equações de taxas) 1- Consevação da massa: A massa, M, de um é constante dm 0 onde : M massa dm ( ) ( ρ d ) 2- Segunda Lei de Newton: Paa um movendo-se elativo a um efeencial inecial, a soma de todas as foças extenas atuando no é igual à taxa de vaiação da quantidade de F onde P movimento linea do com o tempo dp P é a quantidade de movimento linea dm ρd massa (, ) ( )
3 Núcleo de Engenhaia Témica e Fluidos Mecânica dos Fluidos (SEM5749) Pof. Osca M. H. Rodiguez 3- Pimeia Lei da Temodinâmica Lei da consevação da enegia de um δ Q δ W de, como equação de taxa : Q& W& de onde a enegia total do é dada po : E massa ( edm ) ( e ρ ) d onde : e u gz
4 Núcleo de Engenhaia Témica e Fluidos Mecânica dos Fluidos (SEM5749) Pof. Osca M. H. Rodiguez Relação ente as Deivadas do Sistema e a Fomulação do olume de Contole N: qualque popiedade extensiva do h: popiedade intensiva (po unidade de massa) do Assim: N massa ηdm ( ) ( ) d Potanto: N N M P,, então então η η 1 N E, então η e
5 Núcleo de Engenhaia Témica e Fluidos Mecânica dos Fluidos (SEM5749) Pof. Osca M. H. Rodiguez Passagem da fomulação de Sistema à Fomulação de olume de Contole (.C.) Como massa cuza as fonteias do volume de contole, vaiações no tempo da popiedade extensiva N associadas ao.c. envolvem o fluxo de massa e as popiedades tanspotadas (po convecção) pelo fluxo de massa. Uma foma conveniente de leva em conta o fluxo de massa é aplica um pocesso limite envolvendo um e um volume de contole coincidentes em um ceto instante. A equação final elaciona a taxa de vaiação da popiedade extensiva abitáia, N, paa um com as vaiações no tempo dessa popiedade associadas com um volume de contole.
6 Núcleo de Engenhaia Témica e Fluidos Mecânica dos Fluidos (SEM5749) Pof. Osca M. H. Rodiguez DERIAÇÃO Configuação do e do volume de contole
7 Núcleo de Engenhaia Témica e Fluidos Mecânica dos Fluidos (SEM5749) Pof. Osca M. H. Rodiguez Cont. ista ampliada da sub-egião (3)
8 Núcleo de Engenhaia Témica e Fluidos Mecânica dos Fluidos (SEM5749) Pof. Osca M. H. Rodiguez Cont. ista ampliada da sub-egião (1)
9 Núcleo de Engenhaia Témica e Fluidos Mecânica dos Fluidos (SEM5749) Pof. Osca M. H. Rodiguez Foma Integal das Equações Básicas paa olume de Contole (cont.) Teoema do Tanspote de Reynolds: Relação fundamental ente a taxa de vaiação de qualque popiedade extensiva abitáia, N, de um e as vaiações dessa popiedade associadas com um volume de contole dn t C d + SC da (1) - O Teoema do tanspote de Reynolds foi deduzido no instante em que o e o volume de contole coincidem; isto é vedade pois quando t 0 o e o volume de contole ocupam o mesmo volume e tem as mesmas fonteias. - Esta fomulação é válida paa volume de contole fixo e não defomável.
10 Núcleo de Engenhaia Témica e Fluidos Mecânica dos Fluidos (SEM5749) Pof. Osca M. H. Rodiguez Intepetação Física dn : é a taxa de vaiação total de qualque popiedade extensiva abitáia do t C d : é a taxa de vaiação no tempo da popiedade extensiva abitáia, N, dento do volume de contole: η é a popiedade intensiva coespondente a N (po unidade de massa) ρd é um elemento de massa contido no volume de contole d é a quantidade total da C popiedade extensiva, N, contida dento do volume de contole SC da : é a taxa líquida de fluxo da popiedade extensiva N atavés da supefície de contole: ρ da é a taxa de fluxo de massa atavés do elemento de áea da po unidade de tempo da é a taxa de fluxo da popiedade extensiva N atavés da áea da
11 Núcleo de Engenhaia Témica e Fluidos Mecânica dos Fluidos (SEM5749) Pof. Osca M. H. Rodiguez Dois pontos impotantes sobe o Teoema do Tanspote de Reynolds 1. A velocidade na equação (1) é medida em elação ao volume de contole 2. Paa o desenvolvimento da equação (1) consideamos um volume de contole fixo em elação às coodenadas de efeência x, y e z. Potanto, a vaiação da popiedade extensiva abitáia, N, dento do volume de contole deve se avaliada po um obsevado fixo no volume de contole Teoema do tanspote de Reynolds paa o caso de um volume de contole movendo-se com velocidade unifome: dn onde : d + t C SC SC ( ) da Teoema do tanspote de Reynolds paa o caso de um.c. defomável e movendo-se abitaiamente: dn onde : d t C + SC ( ) da ( ) ( ) x, y, z, t x, y, z, t SC
12 Núcleo de Engenhaia Témica e Fluidos Mecânica dos Fluidos (SEM5749) Pof. Osca M. H. Rodiguez Avaliação da integal de supefície do Teoema do Tanspote paa o caso especial do Escoamento Unifome Escoamento unifome numa seção implica que as popiedades e velocidade são constantes sobe toda a áea da seção. Supondo que na seção: ρ é constante e η é um escala e é constante: A n da n n A n η ± ρ [ ] A n n n (Quado nego)
Forma Integral das Equações Básicas para Volume de Controle (cont.)
EOLA DE ENGENHARIA DE SÃO CARLOS Núcleo de Egehaia Témica e Fluidos Foma Itegal das Equações Básicas paa Volume de Cotole (cot.) Teoema do Taspote de Reyolds: elação geal ete a taxa de vaiação de qq. popiedade
IMPULSO E QUANTIDADE DE MOVIMENTO
AULA 10 IMPULSO E QUANTIDADE DE MOVIMENTO 1- INTRODUÇÃO Nesta aula estudaemos Impulso de uma foça e a Quantidade de Movimento de uma patícula. Veemos que estas gandezas são vetoiais e que possuem a mesma
Modelagem Matemática de Sistemas Mecânicos Introdução às Equações de Lagrange
Modelagem Matemática de Sistemas Mecânicos Intodução às Equações de Lagange PTC 347 Páticas de Pojeto de Sistemas de Contole º semeste de 7 Buno Angélico Laboatóio de Automação e Contole Depatamento de
Equações de Conservação
Equações de Consevação Equação de Consevação de Massa (continuidade) Equação de Consevação de Quantidade de Movimento Linea ( a Lei de Newton) Equação de Benoulli Equação de Enegia (1 a Lei da temodinâmica)
. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E
7. Potencial Eléctico Tópicos do Capítulo 7.1. Difeença de Potencial e Potencial Eléctico 7.2. Difeenças de Potencial num Campo Eléctico Unifome 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas
UFABC - Física Quântica - Curso Prof. Germán Lugones. Aula 14. A equação de Schrödinger em 3D: átomo de hidrogénio (parte 2)
UFABC - Física Quântica - Cuso 2017.3 Pof. Gemán Lugones Aula 14 A equação de Schödinge em 3D: átomo de hidogénio (pate 2) 1 Equação paa a função adial R() A equação paa a pate adial da função de onda
Exercícios e outras práticas sobre as aplicações da Termodinâmica Química 1 a parte
5 Capítulo Capítulo Execícios e outas páticas sobe as aplicações da emodinâmica Química 1 a pate Só queo sabe do que pode da ceto Não tenho tempo a pede. (leta da música Go Back, cantada pelo gupo itãs.
Mecânica. Conceito de campo Gravitação 2ª Parte Prof. Luís Perna 2010/11
Mecânica Gavitação 2ª Pate Pof. Luís Pena 2010/11 Conceito de campo O conceito de campo foi intoduzido, pela pimeia vez po Faaday no estudo das inteacções elécticas e magnéticas. Michael Faaday (1791-1867)
REGRESSÃO LINEAR MÚLTIPLA Correlação múltipla
REGRESSÃO LINEAR MÚLTIPLA Coelação múltipla Coeficiente de coelação múltipla: indicado de quanto da vaiação total da vaiável dependente é explicado pelo conjunto das vaiáveis independentes (explicativas)
PROCESSO SELETIVO TURMA DE 2013 FASE 1 PROVA DE FÍSICA E SEU ENSINO
PROCESSO SELETIVO TURM DE 03 FSE PROV DE FÍSIC E SEU ENSINO Cao pofesso, caa pofessoa esta pova tem 3 (tês) questões, com valoes difeentes indicados nas pópias questões. pimeia questão é objetiva, e as
II MATRIZES DE RIGIDEZ E FLEXIBILIDADE
Cuso de nálise Maticial de stutuas II MTIZS D IGIDZ FXIBIIDD II.- elação ente ações e deslocamentos II.. quação da oça em temos do deslocamento F u Onde a igidez da mola () é a oça po unidade de deslocamento,
Teo. 5 - Trabalho da força eletrostática - potencial elétrico
Teo. 5 - Tabalho da foça eletostática - potencial elético 5.1 Intodução S.J.Toise Suponhamos que uma patícula qualque se desloque desde um ponto até em ponto sob a ação de uma foça. Paa medi a ação dessa
Energia no movimento de uma carga em campo elétrico
O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.
( z) Fluido Perfeito/Ideal Força Exercida por um Escoamento Plano em Torno de um Sólido Escoamento em torno de um cilindro circular com circulação Γ
Aeodinâmica I Fluido Pefeito/Ideal Foça Execida po um Escoamento Plano em Tono de um Sólido Escoamento em tono de um cilindo cicula com ciculação Γ - Potencial complexo W V - Velocidade complexa dw Mestado
Consideremos um ponto P, pertencente a um espaço rígido em movimento, S 2.
1 1. Análise das elocidades Figua 1 - Sólido obseado simultaneamente de dois efeenciais Consideemos um ponto P, petencente a um espaço ígido em moimento, S 2. Suponhamos que este ponto está a se isto po
Campo Gravítico da Terra
Campo Gavítico da Tea 3. otencial Gavítico O campo gavítico é um campo vectoial (gandeza com 3 componentes) Seá mais fácil tabalha com uma gandeza escala, que assume apenas um valo em cada ponto Seá possível
Aula Invariantes Adiabáticos
Aula 6 Nesta aula, iemos inicia o estudo sobe os invaiantes adiabáticos, finalizando o capítulo 2. Também iniciaemos o estudo do capítulo 3, onde discutiemos algumas popiedades magnéticas e eléticas do
Asas Finitas Escoamento permamente e incompressível
Escoamento pemamente e incompessível Caacteização geomética da asa - Espessua finita muito meno do que a envegadua e a coda - Foma geomética deteminada po: a) Planta (vaiação de coda e ângulo de flecha)
LOQ Fenômenos de Transporte I
LOQ 4083 - Fenômenos de Transporte I FT I 07 Equações básicas na forma integral para o volume de controle Prof. Lucrécio Fábio dos Santos Departamento de Engenharia Química LOQ/EEL Atenção: Estas notas
MECÂNICA DOS MEIOS CONTÍNUOS. Exercícios
MECÂNICA DO MEIO CONTÍNUO Execícios Mecânica dos Fluidos 1 Considee um fluido ideal em epouso num campo gavítico constante, g = g abendo que p( z = 0 ) = p a, detemine a distibuição das pessões nos casos
Eletromagnetismo I Instituto de Física - USP: 2ª Aula. Elétrostática
Eletomagnetismo I Instituto de Física - USP: ª Aula Pof. Alvao Vannucci Elétostática Pimeias evidências de eletização (Tales de Mileto, Gécia séc. VI AC): quando âmba (electon, em gego) ea atitado em lã
CÁLCULO DIFERENCIAL E INTEGRAL II 014.2
CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do
Física II F 228 2º semestre aula 2: gravimetria, matéria escura, energia potencial gravitacional e a expansão do universo
Física II F 8 º semeste 01 aula : gavimetia, matéia escua, enegia potencial gavitacional e a expansão do univeso Revendo a aula passada: pincípio de supeposição (e coigindo um eo) m F F 1 z M b a M 1 Discussão
7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais
7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas Pontuais Ao estabelece o conceito de potencial eléctico, imaginamos coloca uma patícula de pova num campo eléctico poduzido po algumas cagas
ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade:
ESCOAMENTO POTENCIAL Escoamento de fluido não viso, Equação de Eule: DV ρ ρg gad P Dt Escoamento de fluido incompessível cte Equação da continuidade: divv Escoamento Iotacional ot V V Se o escoamento fo
Aula 2 de Fenômemo de transporte II. Cálculo de condução Parede Plana Parede Cilíndrica Parede esférica
Aula 2 de Fenômemo de tanspote II Cálculo de condução Paede Plana Paede Cilíndica Paede esféica Cálculo de condução Vamos estuda e desenvolve as equações da condução em nível básico paa egime pemanente,
Aula 2 de Fenômemo de transporte II. Cálculo de condução Parede Plana Parede Cilíndrica Parede esférica
Aula 2 de Fenômemo de tanspote II Cálculo de condução Paede Plana Paede Cilíndica Paede esféica Cálculo de condução Vamos estuda e desenvolve as equações da condução em nível básico paa egime pemanente,
Electricidade e magnetismo
Electicidade e magnetismo Campo e potencial eléctico 2ª Pate Pof. Luís Pena 2010/11 Enegia potencial eléctica O campo eléctico, tal como o campo gavítico, é um campo consevativo. A foça eléctica é consevativa.
carga da esfera: Q. figura 1 Consideramos uma superfície Gaussiana interna e outra superfície externa á esfera.
Detemine o módulo do campo elético em todo o espaço geado po uma esfea maciça caegada com uma caga distibuída unifomemente pelo seu volume. Dados do poblema caga da esfea:. Esuema do poblema Vamos assumi
Transmissão de Calor Introdução
Tansmissão de Calo Intodução P.J. Oliveia Depatamento Engenhaia Electomecânica, UBI, Setembo 2014 Temodinâmica: ciência que estuda a enegia, a inteacção ente enegia e matéia, e os pocessos de convesão
carga da esfera: Q densidade volumétrica de carga: ρ = r.
Detemine o módulo do campo elético em todo o espaço geado po uma esfea maciça caegada com uma caga distibuída com uma densidade volumética de caga dada po ρ =, onde α é uma constante ue tona a expessão
DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA
ELETROMAGNETIMO I 18 DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA.1 - A LEI DE GAU APLICADA A UM ELEMENTO DIFERENCIAL DE VOLUME Vimos que a Lei de Gauss pemite estuda o compotamento do campo
Buracos Negros. Óscar Dias 4ª EAG. 1. BNs em Relatividade Geral. Universidade de Barcelona & Centro de Física do Porto (Univ.
Buacos Negos 1. BNs em Relatividade Geal Ósca Dias Univesidade de Bacelona & Cento de Física do Poto (Univ. Poto) 4ª EAG v < v Conceito Newtoniano de Buaco Nego Tudo o que sobe cai de seguida... se esc
a velocidade de propagação da onda ao quadrado. Combinando-se qualquer uma das expressões e i(kx-wt) ou e -i(kx-wt) 2 2 2
Depatamento de Física Pof. Césa Augusto Zen Vasconcellos hamônicas pogessivas; a necessidade de uma equação de onda; popiedades da equação de SCHRÖDINGER; equação de SCHRÖDINGER de patícula live em uma
- Física e Segurança no Trânsito -
- Física e Seguança no Tânsito - - COLISÕES E MOMENTUM LINEAR - COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES O QUE É MELHOR: - Se atopelado
Quasi-Neutralidade e Oscilações de Plasma
Quasi-Neutalidade e Oscilações de Plasma No pocesso de ionização, como é poduzido um pa eléton-íon em cada ionização, é de se espea que o plasma seja macoscopicamente uto, ou seja, que haja tantos elétons
3. Estática dos Corpos Rígidos. Sistemas de vectores
Secção de Mecânica Estutual e Estutuas Depatamento de Engenhaia Civil e Aquitectua ESTÁTICA Aquitectua 2006/07 3. Estática dos Copos ígidos. Sistemas de vectoes 3.1 Genealidades Conceito de Copo ígido
NOTAS DE AULA DE ELETROMAGNETISMO
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA NOTAS DE AULA DE ELETROMAGNETISMO Pof. D. Helde Alves Peeia Maço, 9 - CONTEÚDO DAS AULAS NAS TRANSPARÊNCIAS -. Estágio
Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos.
Instituto de Física de São Calos Laboatóio de Eleticidade e Magnetismo: Nesta pática vamos estuda o compotamento de gandezas como campo elético e potencial elético. Deteminaemos as supefícies equipotenciais
CAPÍTULO 7: CAPILARIDADE
LCE000 Física do Ambiente Agícola CAPÍTULO 7: CAPILARIDADE inteface líquido-gás M M 4 esfea de ação molecula M 3 Ao colocamos uma das extemidades de um tubo capila de vido dento de um ecipiente com água,
Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia)
Univesidade de Évoa Depatamento de Física Ficha de eecícios paa Física I (Biologia) 4- SISTEMA DE PARTÍCULAS E DINÂMICA DE ROTAÇÃO A- Sistema de patículas 1. O objecto epesentado na figua 1 é feito de
UPM/EE/DEM/FT-II-5C/Profa. Dra. Míriam Tvrzská de Gouvêa/2004-2S UPM/EE/DEM&DEE/FT-II-4E/F/Profa. Dra. Esleide Lopes Casella/2004-2S
Questão paa eflexão: em sítios, não é incomum nos fogões a lenha te-se uma tubulação que aquece água, a qual é conduzida paa os chuveios e toneias sem o uso de bombas. Explique o po quê. (figua extaída
Geodésicas 151. A.1 Geodésicas radiais nulas
Geodésicas 151 ANEXO A Geodésicas na vizinhança de um buaco nego de Schwazschild A.1 Geodésicas adiais nulas No caso do movimento adial de um fotão os integais δ (expessão 1.11) e L (expessão 1.9) são
Dinâmica de Gases. Capítulo 10 Escoamento cônico
Dinâmica e Gases Capítulo 10 Escoamento cônico 1 10.1 Intoução Cones são fequentemente empegaos na aeoinâmica e mísseis supesônicos, ifusoes e aviões supesônicos e expeimentos e pesquisa sobe os escoamentos
Apostila de álgebra linear
Apostila de álgeba linea 1 Matizes e Sistemas de Equações Lineaes 1.1 Matizes Definição: Sejam m 1 e n 1 dois númeos inteios. Uma matiz A de odem m po n, (esceve-se m n) sobe o copo dos númeos eais (R)
