Circuitos Elétricos Senoides e Fasores
|
|
|
- Manuel de Barros Barreto
- 10 Há anos
- Visualizações:
Transcrição
1 Circuitos Elétricos Senoides e Fasores Alessandro L. Koerich Engenharia de Computação Pontifícia Universidade Católica do Paraná (PUCPR)
2 Introdução Corrente contínua x corrente alternada. Ver War of Currentes Análise de circuitos onde a fonte de tensão ou corrente varia no tempo. Em particular, nosso interesse é em fontes variantes no tempo de forma senoidal. Uma senoide é um sinal que tem a forma de uma função seno ou coseno.
3 Introdução Uma corrente senoidal é normalmente chamda de corrente alternada (ca) (alternating current ac). A corrente é revertida em intervalos de tempo regulares e tem, alternadamente, valores positivos e negativos.
4 Senóides Considere a tensão senoidal = onde V m = amplitude da senóide ω = frequência angular em radianos/s ωt = argumento da senóide A senóide se repete a cada T segundos, logo T é chamado de período da senóide. Temos a relação: = 2
5 Senóides Como v(t) se repete a cada T segundos: Uma função periódica é aquele que satisfaz para todo t e para todos inteiros n. Vamos considerar agora uma expressão mais geral para a senoide: onde é o argumento e é a fase.
6 Senóides Considerando duas senóides: ocorre primeiro tempo. Portanto 2 está na frente de 1 por ϕ ou 1 está atrasada de 2 por ϕ.
7 Senóides Se 0, 1 e 2 estão fora de fase. Se =0, 1 e 2 estão em fase. Uma senoide pode ser expressa tanto na forma de seno e cosseno. Podemos usar as seguintes identidades trigonométricas: ± = cos ± cos ± = cos cos sen Com estas identidades ± 180 ± 180 ± 90 ± 90 = = = ± =
8 Senóides Para adicionar duas senoides de mesma frequência: onde 2 2
9 Fasores Senoides podem ser expressar em termos de fasores, que são convenientes para trabalhar com funções seno e cosseno. Fasor é um número complexo que representa a amplitude e fase de uma senoide. Um número complexo z pode ser escrito na forma retangular como: onde ; x é a parte real de z; y é a parte imaginária de z.
10 Fasores O número complexo z pode ser escrito na forma polar como: = = onde r é a magnitude de z e ϕ é a fase de z. z pode ser representado em três formas: retangular: = + polar: = exponencial: = Se conhecemos x e y, a relação entre a forma polar e retangular é: = =
11 Fasores Se conhecemos r e ϕ, podemos obter x e y: Então, z pode ser escrito como:
12 Fasores Operações: OBS: notar que =
13 Fasores A idéia da representação por fasores é baseada na identidade de Euler: ± O que mostra que podemos tratar e como as partes real e imaginária de. Podemos escrever: Dada uma senoide, podemos expressá-la por:
14 Fasores ou então onde = Re( ) = Re( ) = = V é portanto a representação fasorial da senoide v(t).
15 Fasores Suprimindo o fator tempo, transformamos a senoide do dominio do tempo para o dominio do fasor: Note que fator foi suprimido e a frequencia não aparece no fasor, pois é constante, porém a resposta depende dela, por isso, o domínio fasor é também conhecido como domínio da frequencia.
16 Fasores
17 Fasores Das equações anteriores temos: então: = Re = + = + = =Re ω =Re Isso mostra que: Do mesmo modo:
18 Fasores As equações anteriores são úteis para encontrar a solução em regime permanente, sem precisar conhecer as condições iniciais das variáveis envolvidas. As diferenças entre v(t) e V são: 1. v(t) é a representação instantânea ou no domínio do tempo, enquanto V é a representação fasor ou no domínio da frequencia. 2. v(t) é dependente do tempo, enquanto V não é. 3. v(t) é sempre real sem termo complexo, enquanto V é geralmente complexo. Atenção! A análise de fasores somente se aplica quando a frequência é constante e é a mesma para dois ou mais sinais senoidais.
19 Fasores e Elementos de Circuitos Transformar a relação tensão-corrente do domínio do tempo para o domínio da frequência. Novamente, assumimos a convenção de sinais para os elementos passivos. Para o resistor, assumindo que a corrente através dele é, a tensão sobre ele será: = = + = Mas a representação fasor da corrente é =, então: =
20 Fasores e Elementos de Circuitos Relação tensão-corrente para o RESISTOR no domínio do tempo e da frequência. Diagrama de fasores para o RESISTOR:
21 Fasores e Elementos de Circuitos Para o indutor, assumindo que a corrente através dele é, a tensão sobre ele será: = = + = o Sendo a representação fasor: = ( ) = = +90 o Mas a representação fasor da corrente é = e =, então: =
22 Fasores e Elementos de Circuitos Relação tensão-corrente para o INDUTOR no domínio do tempo e da frequência. Diagrama de fasores para o INDUTOR:
23 Fasores e Elementos de Circuitos Para o capacitor, assumindo que a tensão sobre ele é, a corrente sobre ele será: = Seguindo os mesmos passos anteriores, temos a representação fasor: = =
24 Fasores e Elementos de Circuitos Relação tensão-corrente para o CAPACITOR no domínio do tempo e da frequência. Diagrama de fasores para o CAPACITOR:
25 Fasores e Elementos de Circuitos Resumo das relações tensão-corrente:
26 Impedância e Admitância A partir da relação tensão-corrente para os três elementos passivos: temos: = = = = = = Podemos então obter a lei de Ohm na forma fasor para qualquer tipo de elemento, como: = ou = onde Z é uma quantidade dependente da frequencia conhecida como impedância, medida em ohms (Ω).
27 Impedância e Admitância A impedância Z de um circuito é a relação entre a tensão fasor V e a corrente fasor I, medida em ohms (Ω). Da tabela, temos que para =0( =0, ) e para (, =0), assim:
28 Impedância e Admitância Sendo uma quantidade complexa, a impedância pode ser expressa na forma retangular: = + onde =Re( )é a resistência e =Im( ) é a reatância. Observe que a reatância pode ser positiva (reatância indutiva) ou negativa (reatância capacitiva), pois: então: = = + (reatância indutiva corrente atrasada em relação a tensão) = (reatância capacitiva corrente adiantada em relação a tensão) A impedância Z pode também ser escrita na forma polar: =
29 Impedância e Admitância onde: = + = e: = + = = = As vezes é conveniente utilizar o reciproco da impedância, chamada de admitância.
30 Impedância e Admitância A admitância Y é reciproca à impedância, medida em siemens (S). = 1 = e pode ser escrita: = + onde = Re( ) é a condutância e = Im( ) é a susceptância. Relacionando Y e Z: + = 1 + temos os termos real e imaginário: = + = +
31 Leis de Kirchhoff no Domínio da Frequência Para analisar circuitos no domínio da frequência devemos expressar as Leis de Kirchhoff no domínio da frequência: No regime permanente senoidal: =0 cos ( + )+ cos ( + )+ + cos ( + )=0 Re( )+Re( )+ +Re( )=0 Se =, então: Como 0, então: Re[( ) ]=0 Re[( ) ]= =0 uu seja, a LTK se mantém para fasores.
32 Leis de Kirchhoff no Domínio da Frequência Podemos adotar um procedimento similar para mostrar que a LCK se mantém para fasores: =0 Se I 1, I 2,, I n são a forma fasor das senoides i 1, i 2,, i n, então: =0 que é a LCK no domínio da frequência.
33 Combinação de Impedâncias Em série: = =0 Em paralelo: = = =0
34 Combinação de Impedâncias Transformações Delta-Y e Y-Delta:
Circuitos Elétricos Análise de Potência em CA
Introdução Circuitos Elétricos Análise de Potência em CA Alessandro L. Koerich Engenharia de Computação Pontifícia Universidade Católica do Paraná (PUCPR) Potência é a quantidade de maior importância em
Eletrotécnica. Relações Fasoriais para R, L e C; Conceitos de Impedância e Admitância; Associações de impedâncias e/ou admitâncias.
Eletrotécnica Relações Fasoriais para R, L e C; Conceitos de Impedância e Admitância; Associações de impedâncias e/ou admitâncias. Joinville, 28 de Fevereiro de 2013 Escopo dos Tópicos Abordados Relações
Aula 7 Reatância e Impedância Prof. Marcio Kimpara
ELETRIIDADE Aula 7 Reatância e Impedância Prof. Marcio Kimpara Universidade Federal de Mato Grosso do Sul 2 Parâmetros da forma de onda senoidal Vp iclo Vpp omo representar o gráfico por uma equação matemática?
Circuitos Elétricos Resposta em Frequência Parte 1
Introdução Circuitos Elétricos Resposta em Frequência Parte 1 Alessandro L. Koerich Engenharia de Computação Pontifícia Universidade Católica do Paraná (PUCPR) Na análise de circuitos CA estudamos como
Circuitos Elétricos Circuitos de Segunda Ordem Parte 1
Circuitos Elétricos Circuitos de Segunda Ordem Parte 1 Alessandro L. Koerich Engenharia de Computação Pontifícia Universidade Católica do Paraná (PUCPR) Introdução Circuitos que contem dois elementos armazenadores
Aula 8 Análise de circuitos no domínio da frequência e potência em corrente alternada
ELETRICIDADE Aula 8 Análise de circuitos no domínio da frequência e potência em corrente alternada Prof. Marcio Kimpara Universidade Federal de Mato Grosso do Sul Associação de impedâncias As impedâncias
Laboratório de Circuitos Elétricos II
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ ESCOLA POLITÉCNICA CURSO DE ENGENHARIA DE COMPUTAÇÃO DISCIPLINA DE CIRCUITOS ELÉTRICOS II NOME DO ALUNO: Laboratório de Circuitos Elétricos II Prof. Alessandro
Circuito RLC-Série em Regime CA
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ ESCOLA POLITÉCNICA CURSO DE ENGENHARIA DE COMPUTAÇÃO DISCIPLINA DE CIRCUITOS ELÉTRICOS II Prof. Alessandro L. Koerich Circuito RLC-Série em Regime CA Objetivo
Retificadores (ENG - 20301) Lista de Exercícios de Sinais Senoidais
Retificadores (ENG - 20301) Lista de Exercícios de Sinais Senoidais 01) Considerando a figura abaixo, determine: a) Tensão de pico; b) Tensão pico a pico; c) Período; d) Freqüência. 02) Considerando a
REPRESENTAÇÃO FASORIAL DE SINAIS SENOIDAIS
REPRESENTAÇÃO FASORIAL DE SINAIS SENOIDAIS Neste capítulo será apresentada uma prática ferramenta gráfica e matemática que permitirá e facilitará as operações algébricas necessárias à aplicação dos métodos
Potência e Fator de Potência. Fernando Soares dos Reis, Dr. Eng.
Potência e Fator de Potência, Dr. Eng. Sumário Introdução; Objetivos; Revisão de Conceitos Fundamentais de Potência C.C. Potência Instantânea; Potência Média ou Ativa; Transferência Máxima de Potência
Circuitos Elétricos Circuitos Magneticamente Acoplados
Introdução Circuitos Elétricos Circuitos Magneticamente Acoplados Alessandro L. Koerich Engenharia de Computação Pontifícia Universidade Católica do Paraná (PUCPR) Os circuitos que estudamos até o momento
Circuitos Elétricos Capacitores e Indutores
Introdução Circuitos Elétricos e Alessandro L. Koerich Engenharia de Computação Pontifícia Universidade Católica do Paraná (PUCPR) e indutores: elementos passivos, mas e indutores não dissipam energia
Técnico em Eletrotécnica
Técnico em Eletrotécnica Caderno de Questões Prova Objetiva 2015 01 Em uma corrente elétrica, o deslocamento dos elétrons para produzir a corrente se deve ao seguinte fator: a) fluxo dos elétrons b) forças
Números Complexos. Note com especial atenção o sinal "-" associado com X C. Se escrevermos a expressão em sua forma mais básica, temos: = 1
1 Números Complexos. Se tivermos um circuito contendo uma multiplicidade de capacitores e resistores, se torna necessário lidar com resistências e reatâncias de uma maneira mais complicada. Por exemplo,
3 - Sistemas em Corrente Alternada. 1 Considerações sobre Potência e Energia. Carlos Marcelo Pedroso. 18 de março de 2010
3 - Sistemas em Corrente Alternada Carlos Marcelo Pedroso 18 de março de 2010 1 Considerações sobre Potência e Energia A potência fornecida a uma carga à qual está aplicada um tensão instantânea u e por
EA-513 Circuitos Elétricos Turma A 1º Semestre/2014
EA513 Circuitos Elétricos Turma A 1º Semestre/2014 Prof.: Renato Baldini Filho sala 324 [email protected] www.decom.fee.unicamp.br/~baldini/ea513.htm Horário: Terças (16:00 h às 17:40 h) Quintas
Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 4
Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica Módulo 4 Faraday Lenz Henry Weber Maxwell Oersted Conteúdo 4 - Capacitores e Indutores...1 4.1 - Capacitores...1 4.2 - Capacitor
Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL420. Módulo 2
Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL420 Módulo 2 Thévenin Norton Helmholtz Mayer Ohm Galvani Conteúdo 2 Elementos básicos de circuito e suas associações...1 2.1 Resistores lineares
1 a Lista de Exercícios Exercícios para a Primeira Prova
EE.UFMG - ESCOLA DE ENGENHARIA DA UFMG CURSO DE GRADUAÇÃO EM ENGENHARIA ELÉTRICA ELE 0 - CIRCUITOS POLIFÁSICOS E MAGNÉTICOS PROF: CLEVER PEREIRA 1 a Lista de Exercícios Exercícios para a Primeira Prova
Princípios de Eletricidade e Eletrônica. Aula 2 Reatância. Prof. Marcio Kimpara
1 Princípios de Eletricidade e Eletrônica Aula 2 Reatância Universidade Federal de Mato Grosso do Sul FAENG / Engenharia Elétrica Campo Grande MS 2 Para relembrar (aula passada)... Tensão e Corrente Alternada
Princípios de Corrente Alternada
Capítulo 2 Princípios de Corrente Alternada 2.1 Porque corrente alternada? No final do séc. XIX com o crescimento econômico e as novas invenções em máquinas elétricas, foram propostas duas formas de distribuição
Circuitos Capacitivos
CEFET BA Vitória da Conquista Análise de Circuitos Circuitos Capacitivos Prof. Alexandre Magnus Conceito Um capacitor é um dispositivo elétrico formado por 2 placas condutoras de metal separadas por um
Circuitos Elétricos III
Circuitos Elétricos III Prof. Danilo Melges ([email protected]) Depto. de Engenharia Elétrica Universidade Federal de Minas Gerais A Transformada de Laplace em análise de circuitos parte 1 A resistência
Transformada de Laplace. Parte 3
Transformada de Laplace Parte 3 Elementos de circuito no domínio da frequência O resistor no domínio da frequência Pela lei de OHM : v= Ri A transformada da equação acima é V(s) = R I(s) O indutor no domínio
Circuitos Elétricos Leis Básicas
Circuitos Elétricos Leis Básicas Alessandro L. Koerich Engenharia de Computação Pontifícia Universidade Católica do Paraná (PUCPR) Introdução Como determinar os valores de tensão, corrente e potência em
5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 15
Ondas (continuação) Ondas propagando-se em uma dimensão Vamos agora estudar propagação de ondas. Vamos considerar o caso simples de ondas transversais propagando-se ao longo da direção x, como o caso de
EXPERIÊNCIA 8 TRANSFORMADORES, CIRCUITOS EM CORRENTE ALTERNADA E FATOR DE POTÊNCIA
EXPEÊNA 8 ANSFOMADOES, UOS EM OENE AENADA E FAO DE POÊNA 1 NODUÇÃO O transformador é um dispositivo elétrico que permite modificar a amplitude de tensões e correntes onsiste basicamente de duas bobinas
1 - Formas de ondas alternadas senoidais
1 - Formas de ondas alternadas senoidais OBJETIVOS Familiarizar-se com as características de uma forma de onda senoidal, incluindo seu formato geral, valor médio e valor eficaz. Ser capaz de determinar
3 Faltas Desbalanceadas
UFSM Prof. Ghendy Cardoso Junior 2012 1 3 Faltas Desbalanceadas 3.1 Introdução Neste capítulo são estudados os curtos-circuitos do tipo monofásico, bifásico e bifase-terra. Durante o estudo será utilizado
Trabalho Prático Nº 6.
Trabalho Prático Nº 6. Título: Carga Predominantemente Resistiva, Carga Predominantemente Indutiva e Carga Resistiva e Indutiva em paralelo. Objetivo: Este trabalho prático teve como objetivo montar três
Modelagem no Domínio do Tempo. Carlos Alexandre Mello. Carlos Alexandre Mello [email protected] 1
Carlos Alexandre Mello 1 Modelagem no Domínio da Frequência A equação diferencial de um sistema é convertida em função de transferência, gerando um modelo matemático de um sistema que algebricamente relaciona
Filtro Passa-Baixa. Figura 1 Circuito do Filtro Passa Baixa
ASSOCIAÇÃO EDUCACIONAL DOM BOSCO FACULDADE DE ENGENHARIA DE RESENDE ENGENHARIA ELÉTRICA ELETRÔNICA Disciplina: Laboratório de Circuitos Elétricos Circuitos em Corrente Alternada 1. Objetivo Entre os filtros
APLICAÇÕES DE NÚMEROS COMPLEXOS
http://hermes.ucs.br/ccet/deme/emsoares/inipes/complexos/ APLICAÇÕES DE NÚMEROS COMPLEXOS Silvia Carla Menti Propicio Universidade de Caxias do Sul Centro de Ciências Exatas e Tecnologia Departamento de
São componentes formados por espiras de fio esmaltado numa forma dentro da qual pode ou não existir um núcleo de material ferroso.
Luciano de Abreu São componentes formados por espiras de fio esmaltado numa forma dentro da qual pode ou não existir um núcleo de material ferroso. É um dispositivo elétrico passivo que armazena energia
UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE ENGENHARIA CAMPUS DE ILHA SOLTEIRA DEPARTAMENTO DE ENGENHARIA ELÉTRICA. Eletricidade
UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE ENGENHARIA CAMPUS DE ILHA SOLTEIRA DEPARTAMENTO DE ENGENHARIA ELÉTRICA Eletricidade Análise de Circuitos alimentados por fontes constantes Prof. Ilha Solteira,
APOSTILA DO EXAME SOBRE RADIOAELETRICIDADE
APOSTILA DO EXAME SOBRE RADIOAELETRICIDADE 01)A força elétrica que provoca o movimento de cargas em um condutor é: A ( ) A condutância B ( ) A temperatura C ( ) O campo elétrico D ( ) A tensão elétrica
Caracterização temporal de circuitos: análise de transientes e regime permanente. Condições iniciais e finais e resolução de exercícios.
Conteúdo programático: Elementos armazenadores de energia: capacitores e indutores. Revisão de características técnicas e relações V x I. Caracterização de regime permanente. Caracterização temporal de
Circuitos Elétricos 1 - Análise Senoidal e Propriedades Gerais dos Circuitos em C.A. Impedância Elétrica
Circuitos Elétricos 1 - Análise Senoidal e Propriedades Gerais dos Circuitos em C.A. Impedância Elétrica Na disciplina de Eletricidade constatou-se que a análise no tempo de um circuito com condensadores
Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello [email protected] 1
Modelagem no Domínio da Frequência Carlos Alexandre Mello 1 Transformada de Laplace O que são Transformadas? Quais as mais comuns: Laplace Fourier Cosseno Wavelet... 2 Transformada de Laplace A transf.
Laboratório de Circuitos Elétricos 1 2015/2. Experiência N o 02: Medidas AC
Laboratório de Circuitos Elétricos 1 2015/2 Experiência N o 02: Medidas C I - Objetivos Familiarização com os equipamentos de laboratório: gerador de funções, osciloscópio e multímetro. II - Introdução
Filtros de sinais. Conhecendo os filtros de sinais.
Filtros de sinais Nas aulas anteriores estudamos alguns conceitos importantes sobre a produção e propagação das ondas eletromagnéticas, além de analisarmos a constituição de um sistema básico de comunicações.
Experimento 8 Circuitos RC e filtros de freqüência
Experimento 8 Circuitos RC e filtros de freqüência 1. OBJETIVO O objetivo desta aula é ver como filtros de freqüência utilizados em eletrônica podem ser construídos a partir de um circuito RC. 2. MATERIAL
Aula 3 OS TRANSITÒRIOS DAS REDES ELÉTRICAS
Aula 3 OS TRANSITÒRIOS DAS REDES ELÉTRICAS Prof. José Roberto Marques (direitos reservados) A ENERGIA DAS REDES ELÉTRICAS A transformação da energia de um sistema de uma forma para outra, dificilmente
Movimentos Periódicos: representação vetorial
Aula 5 00 Movimentos Periódicos: representação vetorial A experiência mostra que uma das maneiras mais úteis de descrever o movimento harmônico simples é representando-o como uma projeção perpendicular
Circuitos Elétricos I
Universidade Federal do ABC Eng. De Instrumentação, Automação e Robótica Circuitos Elétricos I Prof. Dr. José Luis Azcue Puma Excitação Senoidal e Fasores Impedância Admitância 1 Propriedades das Senóides
QUESTÕES DA PROVA DE RÁDIO ELETRICIDADE- PARTE - 1
QUESTÕES DA PROVA DE RÁDIO ELETRICIDADE- PARTE - 1 QUESTÕES DE SIMPLES ESCOLHA - PARTE 1 PRÓXIMA => QUESTÃO 1 a. ( ) Fonte de corrente alternada. b. ( ) Fonte de tensão contínua. c. ( ) Fonte de corrente
Potência e rendimento de geradores e receptores
Potência e rendimento de geradores e receptores 1 Fig.26.1 26.1. No circuito da Fig. 26.1, a potência transformada em calor é igual a: A) 15 watts. B) 36 watts. C) 51 watts. D) 108 watts. E) 121 watts.
TRANSFORMADORES ADRIELLE C. SANTANA
TRANSFORMADORES ADRIELLE C. SANTANA Aplicações As três aplicações básicas dos transformadores e que os fazem indispensáveis em diversas aplicações como, sistemas de distribuição de energia elétrica, circuitos
5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 1
597 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Movimentos Periódicos Para estudar movimentos oscilatórios periódicos é conveniente ter algum modelo físico em mente. Por exemplo, um
Corrente Alternada Transformadores Retificador de Meia Onda
Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Eletrônica Básica e Projetos Eletrônicos Corrente Alternada Transformadores Retificador de Meia Onda Clóvis Antônio Petry,
CIRCUITOS ELÉTRICOS II
CIRCUITOS ELÉTRICOS II Prof.: Helder Roberto de O. Rocha Engenheiro Eletricista Doutorado em Computação Corrente Elétrica Quantidade de carga elétrica deslocada por unidade de tempo As correntes elétricas
Casamento de Impedância
Disciplina: Ondas e ropaação Universidade do Estado de Santa Catarina Centro de Ciências Tecnolóicas CCT Departamento de Enenharia Elétrica aboratório de Eletromanetismo E-3 Casamento de Impedância O casamento
O AMPLIFICADOR LOCK-IN
O AMPLIFICADOR LOCK-IN AUTORES: RAFAEL ASTUTO AROUCHE NUNES MARCELO PORTES DE ALBUQUERQUE MÁRCIO PORTES DE ALBUQUERQUE OUTUBRO 2007-1 - SUMÁRIO RESUMO... 3 INTRODUÇÃO... 4 PARTE I: O QUE É UM AMPLIFICADOR
Curso Técnico em Eletrotécnica Impedância e o Diagrama de Fasores. Vitória-ES
INICIAÇÃO À PRÁTICA PROFISSIONAL INSTALAÇÕES ELÉTRICAS PREDIAIS ELETRICIDADE BÁSICA Impedância e o Diagrama de Fasores -1-19. 9 Curso Técnico em Eletrotécnica Impedância e o Diagrama de Fasores Circuitos
Introdução aos circuitos seletores de frequências. Sandra Mara Torres Müller
Introdução aos circuitos seletores de frequências Sandra Mara Torres Müller Aqui vamos estudar o efeito da variação da frequência da fonte sobre as variáveis do circuito. Essa análise constitui a resposta
O que você deve saber sobre
O que você deve saber sobre Além de resistores, os circuitos elétricos apresentam dispositivos para gerar energia potencial elétrica a partir de outros componentes (geradores), armazenar cargas, interromper
4. Estudo da Curva de Carga
4 4. Estudo da Curva de Carga 4..Introdução No capítulo anterior foi introduzido o conceito de casamento de potencia de um gerador genérico que tem uma resistência interna e está conectado a uma carga
II OLIMPÍADA DE CIRCUITOS ELÉTRICOS - II OLIMCIRELE REGULAMENTO
REGULAMENTO A II OLIMPÍADA DE CIRCUITOS ELÉTRICOS DO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO CEARÁ ( II OLIMCIRELE IFCE ) é um dos eventos que compõe a programação das comemorações do aniversário
Aula 05. Resistores em Série e em Paralelo Leis de Kirchhoff- Parte I
Aula 05 Resistores em Série e em Paralelo Leis de Kirchhoff- Parte I Circuito Elétrico Básico e suas componentes. \ Resistores em Série Em uma associação de resistores em série, a corrente elétrica ( contínua)
Eletrônica Básica - Curso Eletroeletrônica - COTUCA Lista 4 Análise de circuitos a diodos c.a.
Eletrônica Básica - Curso Eletroeletrônica - COTUCA Lista 4 Análise de circuitos a diodos c.a. 1. A Figura abaixo apresenta o oscilograma da forma de onda de tensão em um determinado nó de um circuito
PRINCÍPIOS DA CORRENTE ALTERNADA PARTE 1. Adrielle C. Santana
PRINCÍPIOS DA CORRENTE ALTERNADA PARTE 1 Adrielle C. Santana Vantagem da Corrente Alternada O uso da corrente contínua tem suas vantagens, como por exemplo, a facilidade de controle de velocidade de motores
Geradores elétricos GERADOR. Energia dissipada. Símbolo de um gerador
Geradores elétricos Geradores elétricos são dispositivos que convertem um tipo de energia qualquer em energia elétrica. Eles têm como função básica aumentar a energia potencial das cargas que os atravessam
Experimento 1 Medidas Elétricas
_ Procedimento 1 Medida de resistência Experimento 1 Medidas Elétricas Código de R teórico R/R teórico R R medida1 R medida2 *Desvio **Desvio cores rel. Desvio * Desvio = ValorMedido ValorTeórico
Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia
Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações 1. Movimento Oscilatório. Cinemática do Movimento Harmônico Simples (MHS) 3. MHS e Movimento
Circuitos Elétricos I
Universidade Federal do ABC Eng. De Instrumentação, Automação e Robótica Circuitos Elétricos I Prof. José Azcue; Dr. Eng. Excitação Senoidal e Fasores Impedância Admitância 1 Propriedades das Senóides
Linhas de Transmissão
Linhas de Transmissão 1. Objetivo Medir a capacitância, indutância e a impedância num cabo coaxial. Observar a propagação e reflexão de pulsos em cabos coaxiais. 2. Introdução Uma linha de transmissão
CIRCUITOS ELÉTRICOS RESOLUÇÃO DE CIRCUITOS TRANSITÓRIOS NO DOMÍNIO DA FREQÜÊNCIA
1 CIRCUITOS ELÉTRICOS RESOLUÇÃO DE CIRCUITOS TRANSITÓRIOS NO DOMÍNIO DA FREQÜÊNCIA Simulação de chaves utilizando a função degrau a) Fonte de tensão que entra em operação em t = 0 Substituindo a chave
Resposta Transitória de Circuitos com Elementos Armazenadores de Energia
ENG 1403 Circuitos Elétricos e Eletrônicos Resposta Transitória de Circuitos com Elementos Armazenadores de Energia Guilherme P. Temporão 1. Introdução Nas últimas duas aulas, vimos como circuitos com
3) IMPORTÂNCIA DESTE PROGRAMA DE APRENDIZAGEM NA FORMAÇÃO PROFISSIONAL, NESTE MOMENTO DO CURSO
PROGRAMA DE APRENDIZAGEM NOME: SEL0302 Circuitos Elétricos II PROFESSORES: Azauri Albano de Oliveira Junior turma Eletrônica PERÍODO LETIVO: Quarto período NÚMERO DE AULAS: SEMANAIS: 04 aulas TOTAL: 60
Laboratório de Conversão Eletromecânica de Energia B
Laboratório de Conversão Eletromecânica de Energia B Prof a. Katia C. de Almeida 1 Obtenção Experimental dos Parâmetros do Circuito Equivalente do Motor de Indução Monofásico 1.1 Introdução 1.1.1 Motores
Números complexos são aqueles na forma a + bi, em que a e b são números reais e i é o chamado número imaginário.
10. NÚMEROS COMPLEXOS 10.1 INTRODUÇÃO Números complexos são aqueles na forma a + bi, em que a e b são números reais e i é o chamado número imaginário. O número a é denominado parte real do número complexo
Aula 4 Análise Circuitos Elétricos Prof. Marcio Kimpara
ELETICIDADE Aula 4 Análise Circuitos Elétricos Prof. Marcio Kimpara Universidade Federal de Mato Grosso do Sul 2 Fonte elétrica As fontes elétricas mantém a diferença de potencial (ddp) necessária para
Aplicações com OpAmp. 1) Amplificadores básicos. Amplificador Inversor
225 Aplicações com OpAmp A quantidade de circuitos que podem ser implementados com opamps é ilimitada. Selecionamos aqueles circuitos mais comuns na prática e agrupamos por categorias. A A seguir passaremos
6. Geometria, Primitivas e Transformações 3D
6. Geometria, Primitivas e Transformações 3D Até agora estudamos e implementamos um conjunto de ferramentas básicas que nos permitem modelar, ou representar objetos bi-dimensionais em um sistema também
ESCOLA SECUNDÁRIA/3 RAINHA SANTA ISABEL- ESTREMOZ MATEMÁTICA A 12ºANO ANO LETIVO 2015/2016 OBJECTIVOS ESPECÍFICOS
PROBABILIDADES E COMBINATÓRIA ESCOLA SECUNDÁRIA/3 RAINHA SANTA ISABEL- ESTREMOZ MATEMÁTICA A 12ºANO ANO LETIVO 2015/2016 Introdução ao cálculo Conhecer terminologia das probabilidades de Probabilidades
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA UNIDADE ACADEMICA DE ENGENHARIA ELÉTRICA ELETRÔNICA
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA UNIDADE ACADEMICA DE ENGENHARIA ELÉTRICA ELETRÔNICA LISTA DE EXERCÍCIOS #11 (1) O circuito a seguir é usado como pré-amplificador
LABORATÓRIO DE ELETROTÉCNICA GERAL I EXPERIÊNCIA: ENERGIA, POTÊNCIA E FATOR DE POTÊNCIA (EP)
LABORATÓRIO DE ELETROTÉCNICA GERAL I EXPERIÊNCIA: ENERGIA, POTÊNCIA E FATOR DE POTÊNCIA (EP) NOTA RELATÓRIO -.... Grupo:............ Professor:...Data:... Objetivo:............ 1 - Considerações gerais
Fontes senoidais. Fontes senoidais podem ser expressar em funções de senos ou cossenos A função senoidal se repete periodicamente
Aula 23 Fasores I Fontes senoidais Exemplo de representações de fontes senoidais Fontes senoidais podem ser expressar em funções de senos ou cossenos A função senoidal se repete periodicamente v t = V
EXPERIMENTS MANUAL Manual de Experimentos Manual de Experimentos 1
SEMICONDUCTOR III Semiconductor III Semicondutor III M-1105A *Only illustrative image./imagen meramente ilustrativa./imagem meramente ilustrativa. EXPERIMENTS MANUAL Manual de Experimentos Manual de Experimentos
ELETRICIDADE 2 EL2A2
MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SÃO PAULO CAMPUS DE PRESIDENTE EPITÁCIO ELETRICIDADE 2 EL2A2 CURSO: TÉCNICO EM AUTOMAÇÃO INDUSTRIAL MÓDULO: SEGUNDO PROFESSOR:
Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Departamento de Informática
Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Departamento de Informática Francisco Erberto de Sousa 11111971 Saulo Bezerra Alves - 11111958 Relatório: Capacitor, Resistor, Diodo
Disciplina Eletrônica de Potência (ENGC48) Tema: Conversores de Corrente Contínua para Corrente Alternada (Inversores)
Universidade Federal da Bahia Escola Politécnica Departamento de Engenharia Elétrica Disciplina Eletrônica de Potência (ENGC48) Tema: Conversores de Corrente Contínua para Corrente Alternada (Inversores)
AULA #4 Laboratório de Medidas Elétricas
AULA #4 Laboratório de Medidas Elétricas 1. Experimento 1 Geradores Elétricos 1.1. Objetivos Determinar, experimentalmente, a resistência interna, a força eletromotriz e a corrente de curto-circuito de
DESTAQUE: A IMPORTÂNCIA DOS TRANSFORMADORES EM SISTEMAS DE ENERGIA ELÉTRICA
Capítulo 0 Transformadores DESTAQE: A IMPORTÂNCIA DOS TRANSFORMADORES EM SISTEMAS DE ENERGIA ELÉTRICA Os geradores elétricos, que fornecem tensões relativamente baixas (da ordem de 5 a 5 kv), são ligados
EXPERIÊNCIA Nº 2 1. OBJETIVO
Universidade Federal do Pará - UFPA Faculdade de Engenharia da Computação Disciplina: Laboratório de Eletrônica Analógica TE - 05181 Turma 20 Professor: Bruno Lyra Alunos: Adam Dreyton Ferreira dos Santos
Aritmética Binária e. Bernardo Nunes Gonçalves
Aritmética Binária e Complemento a Base Bernardo Nunes Gonçalves Sumário Soma e multiplicação binária Subtração e divisão binária Representação com sinal Sinal e magnitude Complemento a base. Adição binária
Números Complexos. Capítulo 1. 1.1 Unidade Imaginária. 1.2 Números complexos. 1.3 O Plano Complexo
Capítulo 1 Números Complexos 11 Unidade Imaginária O fato da equação x 2 + 1 = 0 (11) não ser satisfeita por nenhum número real levou à denição dos números complexos Para solucionar (11) denimos a unidade
Capítulo 04. Geradores Elétricos. 1. Definição. 2. Força Eletromotriz (fem) de um Gerador. 3. Resistência interna do gerador
1. Definição Denominamos gerador elétrico todo dispositivo capaz de transformar energia não elétrica em energia elétrica. 2. Força Eletromotriz (fem) de um Gerador Para os geradores usuais, a potência
2. Função polinomial do 2 o grau
2. Função polinomial do 2 o grau Uma função f: IR IR que associa a cada IR o número y=f()=a 2 +b+c com a,b,c IR e a0 é denominada função polinomial do 2 o grau ou função quadrática. Forma fatorada: a(-r
4 Impedância de Transferência entre Geradores e Carga
50 4 Impedância de Transferência entre Geradores e Carga 4.1. O procedimento nesta seção é baseado no cálculo de correntes de curtocircuito, comumente encontrado em livros de análise de sistemas de potência
Indutor e Capacitor. Prof. Mário Henrique Farias Santos, M.Sc. 31 de Julho de 2009
Indutor e Capacitor Prof. Mário Henrique Farias Santos, M.Sc. 3 de Julho de 2009 Introdução A partir deste momento introduziremos dois elementos dinâmicos de circuitos: indutor e capacitor. Porque são
RADIOELETRICIDADE. O candidato deverá acertar, no mínimo: Classe B 50% Classe A 70% TESTE DE AVALIAÇÃO
RADIOELETRICIDADE O candidato deverá acertar, no mínimo: Classe B 50% Classe A 70% TESTE DE AVALIAÇÃO Fonte: ANATEL DEZ/2008 RADIOELETRICIDADE TESTE DE AVALIAÇÃO 635 A maior intensidade do campo magnético
Capítulo 1: Eletricidade. Corrente continua: (CC ou, em inglês, DC - direct current), também chamada de
Capítulo 1: Eletricidade É um fenômeno físico originado por cargas elétricas estáticas ou em movimento e por sua interação. Quando uma carga encontra-se em repouso, produz força sobre outras situadas em
Circuitos Elétricos. Elementos de Circuitos Parte 1
Circuitos Elétricos Elementos de Circuitos Parte 1 Resistor Um elemento de dois terminais (bipolo) é chamado resistor se, a qualquer instante t, sua tensão v(t) e sua corrente i(t) satisfizerem uma relação
Sinais Senoidais. A unidade de freqüência no SI é o Hertz (Hz) e o tempo é dado em segundos (s).
Campus Serra COORDENADORIA DE AUTOMAÇÂO INDUSTRIAL Disciplina: ELETRÔNICA BÁSICA Professor: Vinícius Secchin de Melo Sinais Senoidais Os sinais senoidais são utilizados para se representar tensões ou correntes
Notas sobre os instrumentos
8 ircuitos de corrente alternada Notas sobre os instrumentos A. Precisão de alguns instrumentos: Antes de desperdiçar tempo querendo medir com mais precisão do que os instrumentos permitem, tenha presente
Aula 5 Componentes e Equipamentos Eletrônicos
Aula 5 Componentes e Equipamentos Eletrônicos Introdução Componentes Eletrônicos Equipamentos Eletrônicos Utilizados no Laboratório Tarefas INTRODUÇÃO O nível de evolução tecnológica evidenciado nos dias
EXPERIÊNCIA 6 CAPACITOR E INDUTOR EM CORRENTE CONTÍNUA E ALTERNADA
EXPERIÊNCIA 6 CAPACITOR E INDUTOR EM CORRENTE CONTÍNUA E ALTERNADA 1. INTRODUÇÃO TEÓRICA 1.1 CAPACITOR O capacitor é um dispositivo utilizado nos circuitos elétricos que apresenta um comportamento em corrente
