Fenómenos Transitórios

Tamanho: px
Começar a partir da página:

Download "Fenómenos Transitórios"

Transcrição

1 Fnónos Transóros Dfnção fnónos ransóros São fnónos q ocorr crcos lécrcos nr os saos rg rann. Noraln, os fnónos ransóros ocorr crcos lécrcos ran as anobras abrra fcho nrrors. Po abé aconcr vo a oras casas, as coo lgaçõs fosas. Noraln ss fnónos ra algns écos, cnésos o lésos sgno. Fnónos Transóros Os fnónos ransoros ra saln algns écos, cnésos o lésos sgno, cono o s so é oran, os osra co ancênca qal o ano rgoso nsão o nnsa a corrn q o ocorrr váras scçõs crco lécrco. análs os fnónos ransóros r abé rvr as sorçõs nas as ona o al os snas qano assa aravés alfcaors, flros o oros lnos. Fg. Fcho abrra nrror NS D TOS_24 NS D TOS_24 2 s a coação Fnónos Transóros Sob qasqr conçõs ransóras o saconáras há os ascos báscos a consrar: a corrn aravés a nânca a nsão aravés a caaca não o varas brscan. ª a coação corrn aravés a nânca aan ans a coação é gal à corrn aravés a sa nânca aan os a coação. 2ª a coação Fnónos Transóros nsão aravés a caaca aan ans a coação é gal à nsão aravés a sa caaca aan os a coação. onçõs ncas c c c s conçõs ncas são lzaas ara a rnação as consans nas solçõs as qaçõs frncas. Para a rnação as consans são alcaas as ls a coação. NS D TOS_24 3 NS D TOS_24 4

2 Méoos cálclo rocssos ransóros Para o cálclo crcos rg ransóros v sr rsolvas qaçõs frncas lnars. rsolção as qaçõs o sr fa or rês éoos:. lássco 2. Oraconal 3. ngral Dhal No nosso so alcaros o éoo clássco, q conss :. onsr as qaçõs frncas ara o crco lécrco os a coação 2. Drnar a solção gral coo a soa as coonns: a. oonn saconára o çaa q corrson à solção arclar a qação frncal não hoogéna, qano. NS D TOS_24 5 Méoos cálclo rocssos ransóros b. oonn lvr q corrson à solção gral a qação frncal hoogéna. Solção cola é consa or as coonns: s 3. Drnar as razs as qaçõs caracríscas. 4. Drnar as consans ngração sano as conçõs ncas. Ns caso o crco é analsao ans a coação. lv NS D TOS_24 6 Fnónos Transóros Procssos ransóros no crco co fon conína scrvaos a qação a 2ª l Krchoff ara o crco a fgra aa, co o nrror fchao: Traa-s a qação frncal lnar co cofcns consans, os são consans. NS D TOS_24 7 Fnónos Transóros sosa çaa naral Da aáca sab-s q a solção gral a qação frncal lnar é a soa a solção arclar a qação não hoogéna co a solção gral a qação hoogéna. solção arclar çaa é: çaa qação hoogéna obé-s galano o sgno bro a zro é: NS D TOS_24 8 2

3 Fnónos Transóros sosa çaa naral solção a qação hoogéna é a fnção xonncal a a: Fazno: lvr rsolvno a qação hogna or a, obos: onsraos q ara oos os fnónos ransóros o o = corrson ao nsan q o nrror é lvao a osção a ora. são consans nnns o o. NS D TOS_24 9 Fnónos Transóros sosa çaa naral ss a solção cola a qação frncal srá: lv onsan o: [s] Drnação a consan ngração: NS D TOS_24 Fnónos Transóros Procssos ransóros no crco co fon alrnaa snsoal scrvaos a qação a 2ª l Krchoff ara o crco a fgra aa, co o nrror fchao: sn Traa-s a qação frncal lnar co cofcns consans, os são consans. NS D TOS_24 Fnónos Transóros sosa çaa naral Ns caso a rsosa çaa ara a obnção sa solção, vos analsar crco corrn alrnaa snsoal onofásca: çaa Z j X 2 2 sn Z X Z qação hoogéna obé-s galano o sgno bro a zro é: NS D TOS_24 2 3

4 Fnónos Transóros sosa çaa naral Fnónos Transóros Drnação a consan ngração: solção a qação hoogéna é a fnção xonncal a a: lvr sn sn solção cola, srá: sn sn sn lv onsan o: [s] NS D TOS_24 3 NS D TOS_24 4 Fnónos Transóros Dslgação crco a fon conína scrvaos a qação a 2ª l Krchoff ara o crco a fgra aa, co o nrror fchao: on: Fnónos Transóros Drnação a consan ngração: solção sa qação hoogéna é a fnção xonncal a a: NS D TOS_24 5 NS D TOS_24 6 4

5 Fnónos Transóros NS D TOS_24 7 on: Drnação a consan ngração: Procssos ransóros nos crcos - NS D TOS_24 8 c lv s lv s Drnação a consan ngração: Procssos ransóros nos crcos - NS D TOS_24 9 Drnação a raíz a qação caracrísca: s, rans 5 3 rans Procssos ransóros nos crcos - NS D TOS_24 2 Dscarga consnsaor aravés a rssênca: c lv lv lv s

6 Procssos ransóros nos crcos - NS D TOS_24 2 s,

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1/3

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1/3 FICHA d AVALIAÇÃO d MATEMÁTICA A.º Ano Vrsão / Nom: N.º Trma: Aprsn o s raciocínio d orma clara, indicando odos os cálclos q ivr d ar odas as jsiicaçõs ncssárias. Qando, para m rslado, não é pdida ma aproimação,

Leia mais

2 Modelagem de uma Colisão

2 Modelagem de uma Colisão Moag a osão Moag a osão Ns aaho opo-s po oa son o íco a ão. Tano a psa qano o an q cca a ão não foa aaos. ncsão ss faos naa afaá o agoo ozação q coo sco no póo capío é oso spoa anças no pogaa sação s q

Leia mais

Aula 6. Sistemas mecânicos discretos e contínuos. Oscilador linear de um grau de liberdade (OL1GL) Princípio de D Alembert. Equação de equilíbrio.

Aula 6. Sistemas mecânicos discretos e contínuos. Oscilador linear de um grau de liberdade (OL1GL) Princípio de D Alembert. Equação de equilíbrio. Ala 6 Ssmas mcâcos scros coíos. Osclaor lar m ra lbra OLGL rcípo Almbr. Eqação qlíbro. m lvr amorco. NL FCT EC Ehara Sísmca / sposávl: João. Blé Srra Acao 3 r r r r f m ; rcípo Almbr Força aca f f f f

Leia mais

r R a) Aplicando a lei das malhas ao circuito, temos: ( 1 ) b) A tensão útil na bateria é: = 5. ( 2 ) c) A potência fornecida pela fonte é: .

r R a) Aplicando a lei das malhas ao circuito, temos: ( 1 ) b) A tensão útil na bateria é: = 5. ( 2 ) c) A potência fornecida pela fonte é: . Aula xploraóra 07. Qusão 0: Um rssor d Ω é lgado aos rmnas d uma bara com fm d 6V rssênca nrna d Ω. Drmn: (a) a corrn; (b) a nsão úl da bara (so é, V V ); a b (c) a poênca forncda pla fon da fm ; (d) a

Leia mais

EXPERIÊNCIA 7 MEDIDA DE INDUTÂNCIA POR ONDA RETANGULAR

EXPERIÊNCIA 7 MEDIDA DE INDUTÂNCIA POR ONDA RETANGULAR UMCCE Eng. Elérca m - ab. Crco Elérco Prof. Wlon Yamag EXPEÊNC 7 MEDD DE NDUÂNC PO OND ENGU NODUÇÃO O objvo báco da xprênca é mdr a ndânca a rênca d ma bobna zando ma onda ranglar. O prncípo da mdção é

Leia mais

Novo Espaço Matemática A, 12.º ano Proposta de teste de avaliação [março 2019]

Novo Espaço Matemática A, 12.º ano Proposta de teste de avaliação [março 2019] Nom: Ao / Trma: Nº: Data: - - Não é prmitido o so d corrtor Dvs riscar aqilo q prtds q ão sja classificado A prova icli m formlário As cotaçõs dos its cotram-s o fial do ciado da prova CADERNO (É prmitido

Leia mais

y z CC2: na saída do reator: z = 1: 0. Pe dz Os valores característicos do problema são as raízes de: Da Pe 0 Pe Pe

y z CC2: na saída do reator: z = 1: 0. Pe dz Os valores característicos do problema são as raízes de: Da Pe 0 Pe Pe COQ-86 Méodos Nuércos para Ssas Dsrbuídos Explos Ilusravos d EDO co Problas d Valors o Cooro -) Modlo sacoáro do raor co dsprsão soérco Coo o obvo ds sudo d caso é lusrar o ovo procdo avalar o su dspo

Leia mais

( ) π π. Corolário (derivada da função inversa): Seja f uma função diferenciável e injectiva definida num intervalo I IR.

( ) π π. Corolário (derivada da função inversa): Seja f uma função diferenciável e injectiva definida num intervalo I IR. Capítlo V: Drivação 9 Corolário (drivada da nção invrsa): Sja ma nção dirnciávl injctiva dinida nm intrvalo I IR Sja I tal q '( ), ntão ( é drivávl m y ) ' ( ) ( y ) '( ) Ercício: Dtrmin a drivada d ()

Leia mais

MODELAGEM DE FENÔMENOS ACOPLADOS EM MEIOS POROSOS

MODELAGEM DE FENÔMENOS ACOPLADOS EM MEIOS POROSOS MOLAGM FNÔMNOS ACOLAOS M MOS OROSOS Morno, Rosângla Zanon rvsan, Osvar Val Unvrsa saal Camnas, Fala ngnhara Mâna C.. 605 308-970 Camnas, S, Brasl Rsmo. s rabalho arsna ma srra onssn ara o so nômnos ros

Leia mais

EEN300-MÉTODOS MATEMÁTICOS EM ENGENHARIA NAVAL. Série No. 2

EEN300-MÉTODOS MATEMÁTICOS EM ENGENHARIA NAVAL. Série No. 2 N3-MÉODOS MAMÁICOS M NGNHARIA NAVAL Sér No.. Faça ma aáls d sabldad lar d vo Nma o sqma crado plíco mosrado abao lzado para rsolvr a qação da oda m ma dmsão drm o rvalo do úmro d CFL para a sabldad ds

Leia mais

Dinâmica das Estruturas

Dinâmica das Estruturas Dnâca das Esrras Dnâca das Esrras Redção a Ssea co Gra de Lberdade Dnâca das Esrras Dnâca das Esrras Vbrações e Sseas co Gra de Lberdade lvres não - aorecdas aorecdas c forçadas não - aorecdas aorecdas

Leia mais

EEL-001 CIRCUITOS ELÉTRICOS ENGENHARIA DA COMPUTAÇÃO

EEL-001 CIRCUITOS ELÉTRICOS ENGENHARIA DA COMPUTAÇÃO L IRUITOS LÉTRIOS 8 UNIFI,VFS, Re. BDB PRT L IRUITOS LÉTRIOS NGNHRI D OMPUTÇÃO PÍTULO 5 PITORS INDUTORS: omporameno com Snas onínuos e com Snas lernaos 5. INTRODUÇÃO Ressor elemeno que sspa poênca. 5.

Leia mais

( ) Novo Espaço Matemática A 11.º ano Proposta de Teste [abril 2018] V x =, 3. CADERNO 1 (É permitido o uso de calculadora gráfica) π x 0, 2 0, 2

( ) Novo Espaço Matemática A 11.º ano Proposta de Teste [abril 2018] V x =, 3. CADERNO 1 (É permitido o uso de calculadora gráfica) π x 0, 2 0, 2 Novo Espaço Matmática A 11.º ao Proposta d Tst [abril 018] Nom: Ao / Trma: N.º: Data: - - Não é prmitido o so d corrtor. Dvs riscar aqilo q prtds q ão sja classificado. A prova icli m formlário. As cotaçõs

Leia mais

Novo Espaço Matemática A 11.º ano Proposta de teste de avaliação [novembro 2018]

Novo Espaço Matemática A 11.º ano Proposta de teste de avaliação [novembro 2018] Novo Espaço Matmática A.º ao Proposta d tst d avaliação [ovmbro 08] Nom: Ao / Trma: N.º: Data: - - Não é prmitido o so d corrtor. Dvs riscar aqilo q prtds q ão sja classificado. A prova icli m formlário.

Leia mais

A formulação representada pelas equações (4.1)-(4.3) no método de elementos finitos é denominada de formulação forte (strong formulation).

A formulação representada pelas equações (4.1)-(4.3) no método de elementos finitos é denominada de formulação forte (strong formulation). 4. Fomlção Mcl o Méoo Elmos Fos s cpílo sá ps fomlção mcl o méoo lmos fos pos plcção o méoo lv ssms lgécos q pom s ogzos fom mcl p poso solção po éccs mécs pops p c po qção fcl: lípc pólc o hpólc. O poo

Leia mais

ESZO Fenômenos de Transporte

ESZO Fenômenos de Transporte Univridad Fdral do ABC ESZO 001-15 Fnôno d Tranpor Profa. Dra. Ana Maria Prira No [email protected] Bloco A, orr 1, ala 637 1ª Li da Trodinâica para olu d Conrol ESZO 001-15_Ana Maria Prira No 1ª Li da

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Escola Básica Scdária Dr. Âglo Agsto da Silva Tst d MATEMÁTICA A 1º Ao Dração: 9 mitos Março/ 9 Nom Nº T: Classificação O Prof. (Lís Abr) 1ª PARTE Para cada ma das sgits qstõs d scolha múltipla, slccio

Leia mais

Equações de Conservação

Equações de Conservação Eqaçõs d Consação Toma d Tanspo d Rnolds Eqação d Consação d Massa (conndad) Eqação d Consação d Qandad d Momno Lna ( a L d Non) Eqação d Na-Soks Eqação d Enga Mcânca Eqação d Consação d Qandad d Momno

Leia mais

PMR Mecânica Computacional para Mecatrônica. Elemento Isoparamétrico de 4 nós

PMR Mecânica Computacional para Mecatrônica. Elemento Isoparamétrico de 4 nós PMR3 - Mcâca opacoal para Mcarôca Elo Isoparaérco d ós osdros cal a fção rpoladora para lo raglar osrado a fgra: 3 sdo a arál d sado os cofcs as arás dpds. osdrado os alors dssa fção os ós do râglo os:

Leia mais

Vieiras com palmito pupunha ao molho de limão

Vieiras com palmito pupunha ao molho de limão Vs o to nh o oho d ão Oá, ss ntd fo ns dos tos fz s gost. Aé d nd dd, obnção d sbos sson té os s xgnts. A t s dfí v s onsg vs fss. Ingdnts: 1 to nh; 3 dúzs d vs; s nt t; d do. Modo d fz: t s tbhos é bs

Leia mais

CARGA E DESCARGA DE CAPACITORES

CARGA E DESCARGA DE CAPACITORES ARGA E DESARGA DE APAITORES O assuno dscudo ns argo, a carga a dscarga d capacors, aparcu dos anos conscuvos m vsbulars do Insuo Mlar d Engnhara ( 3). Ns sudo, srão mosradas as dduçõs das uaçõs d carga

Leia mais

A DERIVADA DE UM INTEGRAL

A DERIVADA DE UM INTEGRAL A DERIVADA DE UM INTEGRAL HÉLIO BERNARDO LOPES Rsumo. O cálculo o valor a rivaa um ingral ocorr com cra frquência na via profissional físicos, químicos, ngnhiros, conomisas ou biólogos. É frqun, conuo,

Leia mais

# D - D - D - - -

# D - D - D - - - 1 [ \ 2 3 4 5 Tl Como um Fcho 6 7 8 # Willim W Phlps (Ltr) nónimo / Erik Sti (Músic) rrnj por J shly Hll, 2007 9 10 11 12 [ \ [ \ # (Sopr) # (lto) # # Q Q [ \ # # # # # # # # # # # # 13 14 15 16# 17 18

Leia mais

Integrais de Funções Trigonométricas. Integrais de Funções Trigonométricas

Integrais de Funções Trigonométricas. Integrais de Funções Trigonométricas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. As seis integrais

Leia mais

Novo Espaço Matemática A 11.º ano Proposta de teste de avaliação [maio 2019]

Novo Espaço Matemática A 11.º ano Proposta de teste de avaliação [maio 2019] Novo Espaço Matmática A º ao Nom: Ao / Trma: Nº: Data: - - Não é prmitido o so d corrtor Dvs riscar aqilo q prtds q ão sja classificado A prova icli m formlário As cotaçõs dos its cotram-s o fial do ciado

Leia mais

Capítulo 6 Decaimento Radioativo

Capítulo 6 Decaimento Radioativo Física das Radiaçõs Dosimria Capíulo 6 Dcaimno Radioaivo Dra. Luciana Tourinho Campos Programa acional d Formação m Radiorapia Inrodução Inrodução Consan d dcaimno Vida-média mia-vida Rlaçõs nr núclo pai

Leia mais

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0.

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0. 0 d º) Equação do tipo: f ) d Solução: d d d d f ) f ) d f ) d. Intgrando ambos os mmbros d d d d vm: d d f ) d C d [ f ) d C ]d [ f ) d C] d C d E: Rsolva a quação 6 7 0 d d d º) Equação do tipo f ) :

Leia mais

E S T A T U T O D O C L U B E D E R E G A T A S B R A S I L

E S T A T U T O D O C L U B E D E R E G A T A S B R A S I L E S T A T U T O D O C L U B E D E R E G A T A S B R A S I L H I N O O F I C I A L J a y m e d e A l t a v i l a I A o r e m o! Po i s n o s s o n o r t e D e g l ó r i a s t r a ç a d o e s t á. F a ç

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Teste de MATEMÁTICA A 12º Ano

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Teste de MATEMÁTICA A 12º Ano Escola Básica Scdária Dr. Âglo Agsto da Silva Tst d MATEMÁTICA A º Ao Dração: 9 mitos Maio/ Nom Nº T: ª PARTE Para cada ma das sgits qstõs d scolha múltipla, slccio a rsposta corrcta d tr as altrativas

Leia mais

Capítulo 6. Misturas de Gases

Capítulo 6. Misturas de Gases Caítlo 6 stras de Gases Objetvos Desenvolver regras ara se estdar as roredades de stras de gases não-reatvos co base no conhecento da coosção da stra e das roredades dos coonentes ndvdas Defnr grandezas

Leia mais

UNIVERSIDADE CATÓLICA DE BRASÍLIA

UNIVERSIDADE CATÓLICA DE BRASÍLIA UNIVERSIDADE CATÓLICA DE BRASÍLIA PRÓ-REITORIA DE GRADUAÇÃO TRABALHO DE CONCLUSÃO DE CURSO Crso d Físa OSCILADORES ACOPLADOS: SISTEMA COM DOIS GRAUS DE LIBERDADE Aor: Danl d Carvalho Olvra Ornador: Prof.

Leia mais

Ainda há Tempo, Volta

Ainda há Tempo, Volta Ainda há empo, Volta Letra e Música: Diogo Marques oprano ontralto Intro Envolvente (q = 60) enor aixo Piano Ó Œ. R.. F m7 2 A b 2 E b.. 2 Ó Œ É 2 Ó Œ F m7 2.. 2 2 A b 2 2 Ainda há empo, Volta Estrofe

Leia mais

Análise e Processamento de Bio-Sinais Mestrado Integrado em Engenharia Biomédica. Sinais e Sistemas Licenciatura em Engenharia Física

Análise e Processamento de Bio-Sinais Mestrado Integrado em Engenharia Biomédica. Sinais e Sistemas Licenciatura em Engenharia Física Análise e Processameno e Bio-Sinais Mesrao Inegrao em Engenaria Bioméica Sinais e Sisemas Licenciara em Engenaria Física Deparameno e Engenaria Elecroécnica e Compaores Faclae e Ciências e Tecnologia Universiae

Leia mais

Técnicas de Linearização de Sistemas

Técnicas de Linearização de Sistemas EA66 Pro. Vo Ze DCA/FEEC/Uc éccs e Lerzção e Sses Iroção ese óco vos recorrer reqüeeee éccs e lerzção e sse ão-ler e oro e oo e oerção. Iso ere qe o sse ler resle se lso co se s oeross erres e álse váls

Leia mais

(Às Co missões de Re la ções Exteriores e Defesa Na ci o nal e Comissão Diretora.)

(Às Co missões de Re la ções Exteriores e Defesa Na ci o nal e Comissão Diretora.) 32988 Quarta-feira 22 DIÁRIO DO SENADO FEDERAL Ou tu bro de 2003 Art. 3º O Gru po Parlamentar reger-se-á pelo seu regulamento in ter no ou, na falta deste, pela decisão da ma i o ria absoluta de seus mem

Leia mais

Análise de Sensibilidade. Fernando Nogueira Análise de Sensibilidade 1

Análise de Sensibilidade. Fernando Nogueira Análise de Sensibilidade 1 Análise de Sensibilidade Fernando Nogeira Análise de Sensibilidade Consiste em esqisar a estabilidade da solção em vista de ossíveis variações dos arâmetros a ij, b i e c j tilizados na Programação Linear,

Leia mais

A solução mais geral da equação anterior tem a forma: α 2 2. Aplicando estes resultados na equação do MHS, temos que:

A solução mais geral da equação anterior tem a forma: α 2 2. Aplicando estes resultados na equação do MHS, temos que: . qação para o MHS Qano o oino corpo cr a rajória, a parir cro inan coça a rpir a rajória, izo q oino é prióico. O po q o corpo gaa para olar a prcorrr o o pono a rajória é chaao príoo. No noo coiiano

Leia mais

Equações de Conservação

Equações de Conservação Eqaçõs d Consação Toma d Tanspo d Rnolds Eqação d Consação d Massa (conndad) Eqação d Consação d Qandad d Momno Lna ( a L d Non) Eqação d Na-Soks Eqação d Enga Mcânca Eqação d Consação d Qandad d Momno

Leia mais

Lista de exercícios Micro III 03/09/2008. Externalidades e Bens Públicos

Lista de exercícios Micro III 03/09/2008. Externalidades e Bens Públicos Lsta de exercícos Mcro III 03/09/008 Prof. Afonso A. de Mello Franco Neto Externaldades e Bens Públcos Exercícos Mas-Colell:.B a.b.5,.c.,.c.,.d. a.d.5,.d.7. QUESTÃO Nma economa exstem ma frma e dos consmdores.

Leia mais

P R O J E T O P E R S E U

P R O J E T O P E R S E U P R O J E T O P E R S E U U M A F E R R A M E N T A C O M P U T A C I O N A L P A R A A U X Í L I O N A R E D U Ç Ã O D E D O R T D E V I D O A O U S O D O C O M P U T A D O R A n a E s t h e r V i c t

Leia mais

(rad/s), onde f é frequência cíclica em Hz=1/s, período: Vibrações livres não-amortecidas Equação do movimento (equilíbrio dinâmico): m & u

(rad/s), onde f é frequência cíclica em Hz=1/s, período: Vibrações livres não-amortecidas Equação do movimento (equilíbrio dinâmico): m & u SISEMAS DE GRA DE IBERDADE êc ccl: π (/s, oe é êc cíclc e Hz/s, peíoo: Vções lves ão-oecs Eqção o oveo (lío âco: + k Solção: As( + Bcos(, A e B s coções cs: esloceo cl, v veloce cl v s( + cos( o ecee:

Leia mais

MECÂNICA APLICADA - Pilotagem Texto de apoio UNIDADES pag. 1 de 5

MECÂNICA APLICADA - Pilotagem Texto de apoio UNIDADES pag. 1 de 5 MECÂNICA APICADA - Piloage Texo de apoio UNIDADES pag. de 5 BREVE REFERÊNCIA AOS SISTEMAS DE UNIDADES 0 Generalidades U sisea de unidades copora: unidades undaenais unidades derivadas. A ixação das unidades

Leia mais

Novo Espaço Matemática A 11.º ano Proposta de Teste [março ]

Novo Espaço Matemática A 11.º ano Proposta de Teste [março ] Novo Espaço Matmática A.º ao Proposta d Tst [março - 08] Nom: Ao / Trma: N.º: Data: / / Não é prmitido o so d corrtor. Dvs riscar aqilo q prtds q ão sja classificado. A prova icli m formlário. As cotaçõs

Leia mais

CÁLCULO I. 1 Teorema do Confronto. Objetivos da Aula

CÁLCULO I. 1 Teorema do Confronto. Objetivos da Aula CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Ala n o 07: Teorema do Confronto. Limite Fndamental Trigonométrico. Teorema do Valor Intermediário.

Leia mais

!" # " $% $ : %. ( "- # 6 (( '.. '.. ( #5 (, (' 2!' 3 4 5 2 "! =!. # ( +!'! "!. # ( #! "!. # (9, 1( 9 1 9 + -. ' 6 "-! = 1( 9 1 9 % "(- ( E= + 2 F M. (( 6 (( 1 1 7 8 9 2; 22 # (' ' ". = 2 + 9 6 ( +

Leia mais

Ac esse o sit e w w w. d e ca c lu b.c om.br / es t u dos 2 0 1 5 e f a ç a s u a insc riçã o cl ica nd o e m Pa r t i c i p e :

Ac esse o sit e w w w. d e ca c lu b.c om.br / es t u dos 2 0 1 5 e f a ç a s u a insc riçã o cl ica nd o e m Pa r t i c i p e : INSCRIÇÕES ABERTAS ATÉ 13 DE JULH DE 2015! Ac esse o sit e w w w. d e ca c lu b.c om.br / es t u dos 2 0 1 5 e f a ç a s u a insc riçã o cl ica nd o e m Pa r t i c i p e : Caso vo cê nunca t e nh a pa

Leia mais

MATEMÁTICA ATUARIAL DE VIDA Modelos de Sobrevivência

MATEMÁTICA ATUARIAL DE VIDA Modelos de Sobrevivência EAC 44 Maáica Auaria II Ciêcia Auariai Nouro FEA USP Prof. Dr. Ricaro Pachco MAEMÁICA AUARIAL DE VIDA Moo Sobrvivêcia Uivria São Pauo º Sr 5 A ábua oraia u oo icro obrvivêcia. Daa a ábua Moraia hipoéica:

Leia mais

f (x) Antiderivadas de f (x) ; 3 8x ; 8

f (x) Antiderivadas de f (x) ; 3 8x ; 8 INTEGRAIS Definição: Uma fnção F é ma antierivaa e f em m intervalo I se F' ) f ) para too em I Chamaremos tamém F ) ma antierivaa e f ) eterminação e F, o F ), é chamao ANTIDIFERENCIAÇÃO O processo e

Leia mais

Medley Forró 4 Tenho Sede Dominguinhos e Anastácia

Medley Forró 4 Tenho Sede Dominguinhos e Anastácia TENOR Medley Forró 4 Tenho Sede Dominguinhos e Anastácia q # = 0 # # 4 # c. # n 8. iá. Lá lá lá iá lá iá lá lá iá lá iá lá iá lá iá... A iá Tra -ga me'um co - po dá - gua gan ta pe de'um pou te - nho -

Leia mais

Montagem de Redes de Distribuição Compacta Protegida ESTRUTURA DE TRANSIÇÃO N3 C3 NS PR

Montagem de Redes de Distribuição Compacta Protegida ESTRUTURA DE TRANSIÇÃO N3 C3 NS PR N C NS PR 855 10 OBS.: 1. Na tensão de 4,5 kv utilizar alça pré-formada para cabos de alumínio coberto 4,5 kv, 812155/59. Na tensão de 1,8 kv, alternativamente poderá ser utilizada alça pré-formada para

Leia mais

Actividade Laboratorial TL 01. Assunto: Força de atrito estático e cinético

Actividade Laboratorial TL 01. Assunto: Força de atrito estático e cinético Dparano d Maáia Ciênias Exprinais Curso d Eduação oração Tipo 6 Nívl Aividad Laboraorial TL 0 Assuno: orça d ario sáio inéio Objivo: Esudar as forças d ario sáio inéio drinando os faors d qu dpnd. Inrodução

Leia mais

Aerodinâmica. Aproximações de Camada Limite (Boundary-Layer) Equação Integral de von Kármán

Aerodinâmica. Aproximações de Camada Limite (Boundary-Layer) Equação Integral de von Kármán Arodinâmica Aproimaçõs d Camada Limit (Bondar-Lar) Eqação Intgral d von Kármán Intgrar qaçõs d camada limit na dircção normal à pard > Eqação da continidad v + d v d ( ) Mstrado Intgrado m Engnaria Mcânica

Leia mais

Representação de Curvas

Representação de Curvas CI8 Ssemas Gráfcos para Engenhara 5. Represenação e Crvas Lz Fernano Marha Anré Perera Baseao em maeral preparao por Marcelo Gaass Depo. e Informáca PUC-Ro aapao para a scplna CI8 Represenações e Crvas

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Escla Básica Scdária Dr. Âgl Agst da Silva Tst d MATEMÁTICA A º A Draçã: 9 mits Març/ Nm Nº T: Classificaçã O Prf. (Lís Abr) ª PARTE Para cada ma das sgits qstõs d sclha múltipla, slcci a rspsta crrcta

Leia mais

Universidade Federal de Santa Catarina UFSC. Centro de Ciências Físicas e Matemáticas CFM. Departamento de Matemática.

Universidade Federal de Santa Catarina UFSC. Centro de Ciências Físicas e Matemáticas CFM. Departamento de Matemática. Univrsidad Fdral d Sana Caarina UFSC. Cnro d Ciências Físicas Mamáicas CFM. Dparamno d Mamáica. Trabalo d Conclsão II TCC II. Problmas d ransmissão ópica gomérica Florianópolis, jlo d 9. Problmas d ransmissão

Leia mais