UFRGS - UNIVERSIDADE DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE

Tamanho: px
Começar a partir da página:

Download "UFRGS - UNIVERSIDADE DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE"

Transcrição

1 UFRGS - UNIVERSIDADE DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE PROJETO E CONSTRUÇÃO DE UM TROCADOR DE CALOR E DE UM MEDIDOR DE VAZÃO PARA O RESFRIAMENTO DE MOSTO DE CERVEJA por EDUARDO ANTONIO WINK DE MENEZES FRANCO TEDESCO DA SILVA MATEUS KLIEMANN MARCHIORO Trabalho Final da Disciplina de Medições Térmicas Prof. Paulo Smith Schneider e Prof. Cristiano Frandalozo Maidana PORTO ALEGRE 2011

2 EDUARDO ANTONIO WINK DE MENEZES FRANCO TEDESCO DA SILVA MATEUS KLIEMANN MARCHIORO PROJETO E CONSTRUÇÃO DE UM TROCADOR DE CALOR E DE UM MEDIDOR DE VAZÃO PARA O RESFRIAMENTO DE MOCHO DE CERVEJA Trabalho apresentado ao Departamento de Engenharia Mecânica da Escola de Engenharia da universidade Federal do Rio Grande Do Sul, como parte dos Requisitos para conclusão da disciplina Medições Térmicos. Orientadores: Prof. Paulo Smith Schneider Cristiano Frandalozo Maidana Porto Alegre 2011 AGRADECIMENTOS ENG03108 Medições Térmicas ii

3 Agradecemos ao laboratório de ensaios térmicos e aerodinâmicos (LETA) na figura dos professores Paulo Schneider e Cristiano Maidana e do técnico João Batista da Rosa pelo apoio e ensinamentos passados durante a realização deste trabalho. Agradecemos também ao Grande Amigo Norberto Jorge Antunes Hass pelas clarificantes elucidações a cerca do tema que desencadearam em importantes contribuições ao trabalho. Gostaríamos de agradecer também ao professor Jorge Rodolfo Silva Zabadal pelas excelentes aulas da disciplina de trocadores de calor, a qual foi de real importância para uma melhor compreensão do processo. ENG03108 Medições Térmicas iii

4 UMA CERVEJA ANTES DO ALMOÇO É MUITO BOM PRA FICA PENSANDO MELHOR! CHICO SCIENCE ENG03108 Medições Térmicas iv

5 MENEZES, E.A.W., SILVA, F.T., MARCHIORO, M.K. Projeto e Construção de um trocador de calor e de um medidor de vazão para o resfriamento de mocho de cerveja f. Trabalho de conclusão da disciplina de Medições Térmicas do curso de Engenharia Mecânica Departamento de Engenharia Mecânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RESUMO Com o intuito de simular o processo de fabricação de uma cervejaria, o ministrante da disciplina propôs aos discentes, visando à aplicação de conceitos desenvolvidos ao longo da disciplina de medições térmicas, que desenvolvessem um pasteurizador capaz de resfriar água, de forma a deixá-la o mais próximo possível da temperatura ambiente, sendo os alunos os únicos responsáveis pela medição de vazão na saída do mosto de cerveja. Devido às limitações físicas do Laboratório de Ensaios Térmicos e Aerodinâmicos (LETA) e por questões de segurança, ao invés do fluido ser inserido a uma temperatura próxima aos 100 C como durante o processo de fabricação da cerveja, foi inserido em média a 54 C, e saiu do trocador possuindo uma variação de temperatura de aproximadamente 18 C. O medidor de vazão foi graduado com instrumentos de precisão de forma a medir precisamente o volume de água na saída do trocador, de onde foi obtida a vazão com o auxílio de um cronômetro. PALAVRAS-CHAVE: Pasteurizador, trocador de calor, medidor de vazão. ENG03108 Medições Térmicas v

6 MENEZES, E.A.W., SILVA, F.T., MARCHIORO, M.K. Design and construction of a heat transfer and a flowmeter to cool beer wort f. Work completion of the subject Thermal Measurements from the Mechanical Engineering graduation Mechanical Engineering department, Universidade Federal do Rio Grande do Sul, Porto Alegre, ABSTRACT In order to simulate the manufacturer process of a brewery, the subject s professor proposed to his students, watching for the concepts application developed along the semester, the development of a pasteurizer able to cool water, in order to decrease its temperature as close as possible from the ambience temperature, being the students solely responsible by measuring the exit flow from the exchanger. Since the Laboratório de Ensaios Térmicos e Aerodinâmicos (LETA) has its physical limitations, and also due security factors, instead of the fluid be inserted at approximately 100 C as during a real beer manufacturing process, it was inserted at about 54 C, and the fluid left the exchange with an average temperature change of 18 C. The flow meter was calibrated with precision instruments in order to accurately measure the water volume at the the heat exchanger, from where is possible to obtain the flow with the aid of a chronometer. KEYWORDS: Pasteurizer, heat exchanger, flow meter. ENG03108 Medições Térmicas vi

7 SUMÁRIO AGRADECIMENTOS... II RESUMO... V ABSTRACT... VI SUMÁRIO... VII ÍNDICE DE FIGURAS... VIII ÍNDICE DE TABELAS...IX 1. INTRODUÇÃO REVISÃO BIBLIOGRÁFICA FUNDAMENTAÇÃO TEÓRICA TROCADOR DE CALOR CÁLCULO DA DIFERENÇA DE TEMPERATURA MÉDIA LOGARITMICA, Tml O COEFICIENTE GLOBAL DE TRANSFERÊNCIA DE CALOR CÁLCULO DO COEFICIENTE DE PELÍCULA DO ESCOAMENTO MEDIDOR DE VAZÃO METODOLOGIA PROJETO E CONSTRUÇÃO DO TROCADOR DE CALOR ANÁLISE TÉRMICA PROJETO MECÂNICO PRELIMINAR E PROJETO DE FABRICAÇÃO PROJETO E CONSTRUÇÃO DO MEDIDOR DE VAZÃO VALIDAÇÃO DO EXPERIMENTO CALIBRAÇÃO DO MEDIDOR DE VAZÃO INCERTEZA DE MEDIÇÃO RESULTADOS ABORDAGEM ECONÔMICA CONCLUSÃO REFERÊNCIAS APENDICE ENG03108 Medições Térmicas vii

8 ÍNDICE DE FIGURAS FIGURA 1 TROCADOR DE CALOR DO TIPO CASCO TUBO PROJETADO FIGURA 2 - DETALHE DA ÁREA DE TROCA DE CALOR E DOS ESPELHOS E CHICANAS FIGURA 3 - DETALHE INTERNO DO ESPELHO E CASCA FIGURA 4 - MEDIDOR DE VAZÃO DO TIPO TANQUE AFERIDO FIGURA 5 BALANÇA E RECIPIENTE UTILIZADOS NA MARCAÇÃO DO MEDIDOR FIGURA 6 ANÁLISE DA EFICIÊNCIA DO TROCADOR DE CALOR PARA VAZÃO DE 5 L/MIN DE LIQUIDO REFRIGERANTE FIGURA 7 ANÁLISE DA EFICIÊNCIA DO TROCADOR DE CALOR PARA VAZÃO DE 6 L/MIN DE LIQUIDO REFRIGERANTE FIGURA 8 ANÁLISE DA EFICIÊNCIA DO TROCADOR DE CALOR PARA VAZÃO DE 7 L/MIN DE LIQUIDO REFRIGERANTE FIGURA 9 ANÁLISE DA EFICIÊNCIA DO TROCADOR DE CALOR PARA VAZÃO DE 8 L/MIN DE LIQUIDO REFRIGERANTE ENG03108 Medições Térmicas viii

9 ÍNDICE DE TABELAS TABELA 1 - FATORES DE DEPOSIÇÃO REPRESENTATIVOS... 5 TABELA 2 - VALORES REPRESENTATIVOS DO COEFICIENTE GLOBAL DE TRANSFERÊNCIA DE CALOR... 5 TABELA 3 - CONSIDERAÇÕES PARA CÁLCULO DA ÁREA DO TROCADOR... 8 TABELA 4 DADOS PARA CÁLCULO DO TROCADOR DE CALOR... 8 TABELA 5 MEDIDAS DE TEMPO COM ROTÂMETRO MARCANDO 2 LITROS POR MINUTO TABELA 6 MEDIDAS DE TEMPO COM ROTÂMETRO MARCANDO 4 LITROS POR MINUTO TABELA 7 - MEDIDAS DE TEMPO COM ROTÂMETRO MARCANDO 4 LITROS POR MINUTO TABELA 8 - MÉDIAS, MEDIANA E ERRO ASSOCIADO ÀS MEDIÇÕES REALIZADAS TABELA 9 RESULTADOS COM AJUSTE DE CURVA TABELA 10 - DADOS DE TEMPERATURA E VAZÃO ADQUIRIDOS NO LABORATÓRIO ENG03108 Medições Térmicas ix

10 1. INTRODUÇÃO Trocadores de calor consistem em equipamentos responsáveis por promover a troca térmica de dois fluídos que possuem diferentes temperaturas. Estes equipamentos possuem a função útil de aquecer ou esfriar algum tipo de fluido e para isso ambos os fluidos (quente e frio) circulam em um circuito que facilita de alguma forma a troca de calor entre ambos, misturando ou não ambos fluidos. São largamente empregados em indústrias em geral, servindo como um básico componente para muitos processos de engenharia. É interessante observar que desde os primórdios, AC, quando surgiram as primeiras aldeias na Mesopotâmia, o homem já utilizava um dispositivo de troca de calor, a panela de cozinhar, E provavelmente o primeiro trocador de calor comercial de uso público foi proposto por Arquimedes de Siracusa ( AC), ao inventar um canhão a vapor. Arquimedes encheu com água um tubo fechado em uma extremidade, sendo a outra extremidade vedada com a bala. O tubo era então colocado no fogo até que a bala disparasse. Posteriormente Heron (120 AC) inventou outro trocador, a esfera girante. No Egito antigo já se destilava vinho para produzir o álcool, mas não há nenhum registro da descrição do equipamento usado. O uso de trocadores de calor efetivamente explodiu com a invenção da máquina a vapor de James Watt em Hoje tais equipamentos podem ser encontrados nos mais diversos ramos industriais, dentre eles a indústria petroquímica, usinas de geração de energia, refinarias, indústria automobilística, marítima, condicionadores de ar e cervejarias. Entre as muitas possibilidades para esse tipo de equipamento, os trocadores de casco e tubo são os mais versáteis devido às vantagens que apresentam tais como fabricação, custo, e principalmente, desempenho térmico. Neste trabalho, pretende-se construir um trocador de calor do tipo casco tubo com o objetivo de pasteurizar Mosto de cerveja utilizando a menor quantidade de fluído refrigerante possível e deixando o mosto o mais próximo possível da temperatura ambiente. A crescente preocupação da indústria em melhorar seus processos e minimizar custos, e fazer uso racional de energia serve como motivação em especial para o estudo deste tipo de componente. Outro equipamento de notável aplicação industrial é o medidor de vazão, cuja aplicação começa em residências no consumo de água e vai até a medição de gases e combustíveis no ramo industrial, sendo, segundo a revista Control Engineering a terceira grandeza mais medida no mundo. Foi construído um medidor de vazão para fazer as medidas das vazões que serão utilizadas no trocador para o resfriamento do mosto. Esta medição ocorre através de um recipiente aferido e de um cronômetro. O conhecimento da vazão é de fundamental importância para o projeto do trocador, assim como as temperaturas desejadas no processo. 2. REVISÃO BIBLIOGRÁFICA A construção do trocador de calor teve como base a formulação proposta por Kern, D. Q., 1950, que apresenta detalhadamente os componentes que constituem um trocador de calor contracorrente, propondo formas de distribuir os tubos metálicos em seu interior, alertando para as possíveis vantagens e desvantagens de cada forma. Kern introduz também formas de calcular a variação de temperatura de tal trocador especificamente para água, fluido aqui utilizado, fazendo com que os resultados atingidos se tornem mais precisos. Incropera ET. AL., 2008, também apresenta equações que tornaram possível não só verificar a temperatura de saída, como também dimensionar o trocador impondo a variação desejada. ENG03108 Medições Térmicas 1

11 3. FUNDAMENTAÇÃO TEÓRICA 3.1. TROCADOR DE CALOR Qualquer que seja o objetivo do aparelho de troca de calor, os fluidos devem estar em temperaturas diferentes e o calor trocado passa sempre do fluido mais quente para o fluido mais frio se não houver trabalho externo, conforme a segunda lei da termodinâmica. Os aparelhos de troca de calor podem ser classificados sob diversos aspectos: Pelo processo de transferência de calor; Pelo sentido de escoamento dos fluídos; Pelo número de vezes em que um fluido passa pelo outro fluido. As temperaturas de entrada e saída de um fluido num trocador de calor, chamadas de temperaturas terminais (nos extremos do trocador), dependem das exigências do processo. Elas, portanto, são em geral especificadas e vão determinar o valor do potencial térmico (a força motriz térmica) para promover a troca térmica. É importante especificar, além do valor nominal desejado, qual a faixa de tolerância dentro da qual o valor pode flutuar sem prejuízos ao processo, o que se reflete diretamente nos aspectos de operação, instrumentação e controle do processo. Por outro lado, se os valores das temperaturas terminais (ou os valores das diferenças entre elas) forem muito elevados, devem ser seguidas recomendações sobre o assunto: por exemplo, o uso de materiais de construção mais nobres, o uso de juntas de expansão etc. A velocidade de escoamento influi em quatro aspectos fundamentais: a eficiência de troca térmica, a perda de carga, a erosão e o depósito de sujeira. Quanto maior a velocidade de escoamento num trocador de calor, maior a intensidade de turbulência criada e melhor deve ser o coeficiente de transporte de energia. Consequentemente, a área do trocador necessária para uma dada carga térmica será menor. Nesse aspecto é desejável que a velocidade de escoamento seja alta. Um método comumente empregado para induzir a turbulência constitui na instalação de defletores ao longo do trocador. No entanto essa turbulência intensa também implica em um maior atrito e perda de carga, podendo até ultrapassar os valores máximos admissíveis. Nesse aspecto, não é desejável uma velocidade de escoamento exagerada. A necessidade de encontrar a turbulência ideal que aperfeiçoe a eficiência da troca térmica sem gerar uma perda de carga excessiva torna-se um dos principais objetivos a ser atingido ao longo do projeto. Além desses dois pontos, a velocidade de escoamento está ligada à erosão e ao depósito de sólidos. (Uma velocidade muito pequena pode favorecer o depósito de sujeira e a dificuldade da sua remoção. Por outro lado, uma velocidade exageradamente alta pode acarretar uma erosão intensa; se o fluido é corrosivo ou contém sólidos em suspensão, o efeito será mais danoso ainda. Então, novamente, a velocidade de escoamento não pode ser nem muito alta nem muito baixa. Outro fator que influi na erosão do depósito de sólidos é a distribuição dos tubos no interior do trocador, sendo tubos distribuídos de forma quadrangular mais acessíveis a limpeza externa quando comparados com triangulares. A queda de pressão (ou mais precisamente a variação de energia expressa em altura manométrica) entre a entrada e a saída é conhecida como a perda de carga num trocador de calor. Para cada fluido num dado processo, é estipulado um valor de perda de carga máximo ou perda de carga admissível, por várias razões. Uma perda de carga excessiva representa um consumo operacional de energia elevado, devendo portanto ser evitada. Além disso, não se deve esquecer que o trocador de calor é sempre um componente de uma unidade de processo. O fluido que sai dele muitas ENG03108 Medições Térmicas 2

12 vezes vai ainda passar por tubulações e outros equipamentos adiante, com suas respectivas perdas de carga; portanto na saída do trocador de calor o fluido precisa ter ainda uma pressão suficiente para vencer as perdas subseqüentes. Os problemas de projeto, análise e ou desenvolvimento de um trocador de calor para uma finalidade específica podem ser classificados em dois grupos principalmente: problema de projeto e problema de desempenho. A solução de um problema é facilitada pela adoção do método mais adequado a ele. O problema de projeto é o da escolha do tipo apropriado de trocador de calor e da determinação das suas dimensões, isto é, da área superficial de transferência de calor,a, necessária para se atingir a temperatura de saída desejada. A adoção do método da DTML é facilitada pelo conhecimento das temperaturas de entrada e saída dos fluidos quentes e frios, pois então a LMDT pode ser calculada sem dificuldade. O método da diferença de temperatura média logarítmica, LMDT, consiste na aplicação da Equação generalizada de taxa de transferência de calor em um problema puramente convectivo, mostrado pela Equação 1. Com este equacionamento pode-se estimar a taxa de transferência de calor global do trocador de calor conhecendo-se o coeficiente global de transferência térmica, U, a área representativa de troca térmica, A, e a diferença de temperatura média logarítmica, T ml CÁLCULO DA DIFERENÇA DE TEMPERATURA MÉDIA LOGARITMICA, Tml A diferença de temperatura média logarítmica, LMDT, é um valor de variação de temperatura que serve para modelar todo o trocador de calor via uma abordagem simplificativa unidirecional. Esta abordagem permite estimar a taxa de transferência de calor de um trocador de calor real por meio de um equacionamento algébrico simples. Para deduzir o cálculo da LMDT parte-se do conceito de taxa de transferência de calor em um fluido, ENG03108 Medições Térmicas 3 (1) (2) Onde estas temperaturas se referem às temperaturas médias nas localizações dos índices. Outra forma de calcular esta taxa é considerar, no entanto varia com a posição do trocador. Aplica-se um balanço de energia em cada um dos elementos diferenciais da Equação 2, (3) (4) Onde, C q e C f são, respectivamente, as taxas de capacidade calorífica dos fluidos quente e frio. As Equações 3 e 4 precisam ser integradas ao longo do comprimento do tubo para se obter a taxa de transferência de calor global do sistema onde, Sabendo que pode-se obter e substituindo na Equação 5 temos que, (5)

13 ( ) ( ) (6) Resolvendo esta equação diferencial chega-se na seguinte expressão, ( ) ( ) ( ) (7) Assim, (8) A temperatura média logarítmica pode ser escrita da seguinte forma, (9) fluxo paralelo. Onde { } para contracorrente e { } para O COEFICIENTE GLOBAL DE TRANSFERÊNCIA DE CALOR O coeficiente global de transferência de calor U é definido como o coeficiente de película global representativo do trocador de calor. Sabendo-se este coeficiente, a área representativa de troca térmica A e a diferença média logarítmica de temperatura T ml se pode calcular a taxa de transferência de calor global do trocador de calor através da Equação 10. (10) Para o caso do trocador de casco tubo o cálculo do coeficiente global de transferência de calor é feito usando-se o conceito de resistências térmicas que é uma simplificação unidimensional do problema de transferência de calor real. Nota-se nesta abordagem, porém, o calor trocado entre o fluido mais externo, normalmente o fluido frio, e o meio não é considerado. Com base nesta simplificação pode-se escrever o coeficiente global de transferência de calor como apresentado na Equação 11. (11) Onde h i é o coeficiente de película do escoamento interno do tubo interno e k é a condutividade térmica do material do tubo. É normal que durante o funcionamento o trocador de calor sofra deposição de impurezas e formação de produtos impurezas e formação de produtos oriundos de corrosão, desta forma deve-se acrescentar dois termos resistivos dois termos resistivos na resistência global do trocador, um referente ao escoamento interno e outro ao outro ao escoamento externo ao tubo interno. Sabendo-se disto recalcula-se um novo coeficiente global, U novo, coeficiente global, U novo, considerando-se estas resistências térmicas adicionais, conhecidas por fator de por fator de deposição, R d, que para alguns casos pode ser encontrado em tabelas, como a Tabela 11 transcrita abaixo. ENG03108 Medições Térmicas 4

14 Tabela 1 - Fatores de deposição representativos Fluido R d (m 2 K/W) Água do mar e água de alimentação tratada para caldeira (abaixo de 50 o C) 0,0001 Água do mar e água de alimentação tratada para caldeira (acima de 50 o C) Água de rio (abaixo de 50 o C) 0,0002 0,001 Óleo combustível Líquidos de refrigeração 0,0002 Vapor d água (sem arraste de óleo) 0,001 (12) Onde R di e R de são, respectivamente, os fatores de deposição do escoamento interno e externo e U 0 é o coeficiente global de transferência de calor para a condição de projeto que pode ser determinada pelas Equações 11 e 12 ou aproximando-se o valor por meio de tabelas para alguns casos, como na Tabela 22. Tabela 2 - Valores representativos do coeficiente global de transferência de calor Fluidos envolvidos Fluido Quente Fluido Frio U o (W/(m 2 K) Água Água Amônia Água Gases Água Orgânicos leves* Água Orgânicos pesados** Água Vapor d água Água Vapor d água Amônia Vapor d água Gases Vapor d água Orgânicos leves* Vapor d água Orgânicos pesados** Orgânicos leves* Orgânicos leves * Orgânicos pesados** Orgânicos pesados ** Orgânicos leves * Orgânicos pesados** Orgânicos pesados ** Orgânicos leves * *(μ< 0,0005 Kg/s m) ** (μ>0,001 Kg/s m) Quando se quer maior precisão na determinação do U o, utilizam-se os coeficientes de película, h, presentes no equacionamento proposto. Como h não é uma propriedade termodinâmica dos fluidos, este deve ser determinado via formulação empírica disponível na literatura. Em muitos casos o valor de U o é controlado por apenas um dos coeficientes de transferência de calor por convecção, h, uma vez que para estes casos a resistência térmica de condução é pequena comparada com as resistências de convecção. Desta forma, se um valor de h for significantemente menor que o outro valor, a tendência é que o h maior seja dominante na equação de U o, podendo ser escrito como, (no caso de hi ser dominante) (13) (no caso de he ser dominante) (14) ENG03108 Medições Térmicas 5

15 CÁLCULO DO COEFICIENTE DE PELÍCULA DO ESCOAMENTO O coeficiente de película h é definido como o coeficiente que permite o cálculo da taxa de calor unidimensional em um problema convectivo sabendo-se, apenas, a área de troca térmica, A, a temperatura da superfície t s, e a temperatura do ambiente ou do escoamento, t, que está livre da influência da temperatura da superfície. (15) O coeficiente h não é uma propriedade termodinâmica do fluido, ou seja, qualquer alteração de temperaturas, de área de troca e até de posicionamento espacial da área de troca alteram o comportamento do coeficiente de película. Sendo assim é comum se utilizar um número adimensional que permita correlacionar localmente h com uma propriedade termodinâmica do fluido chamada condutividade térmica, k, e um comprimento característico do escoamento, que neste caso é o diâmetro nominal do tubo interno. Este número é chamado de número de Nusselt local e é expresso pela Equação 16. Este é dito local por apresentar valores distintos ao longo do comprimento do duto interno. (16) O número de Nusselt local, Nu D,x, é obtido através de correlações empíricas disponíveis na literatura onde o tipo de escoamento, externo, interno e particularidades geométricas, o regime do escoamento, laminar ou turbulento, são levados em conta na escolha da correlação correta. Para se determinar, porém, o h referente ao escoamento em questão, necessita-se de um valor médio de coeficiente de película que seja representativo para todo o tubo. Assim define-se também um número de Nusselt médio, que é definido como o adimensional representativo para todo o comprimento do duto, L. (17) As correlações para o cálculo do número de Nusselt são funções empíricas dependentes do fator de atrito de Moody, f, obtido via diagrama de Moody, do número de Reynolds, Re D, adotando-se o diâmetro como comprimento característico e o número adimensional de Prandtl, Pr, que é obtido em tabelas de propriedades termofísicas dos materiais e depende apenas da temperatura, t. Como se pode perceber o cálculo de h do problema de troca térmica requererá um cálculo numérico iterativo e mesmo assim, não será o valor exato; apresentará um erro de exatidão associado à correlação empregada. Um exemplo de correlação para o número de Nusselt é a correlação de Gnielinski 1976, que é uma das mais utilizadas e é expressa como, (18) Esta correlação, porém, apresentam restrições na sua aplicação, estas são: Escoamento Turbulento plenamente desenvolvido; ; ; ; Propriedades calculadas a temperatura média obtida pela média das temperaturas de entrada e saída. ENG03108 Medições Térmicas 6

16 3.2. MEDIDOR DE VAZÃO Sendo considerado medidor de vazão todo dispositivo que de forma direta ou indireta é capaz de mensurar a relação entre o volume escoado por unidade de tempo, pode-se afirmar que a vazão é a terceira grandeza mais medida industrialmente, sendo sua medição aplicável tanto em residências para controlar o consumo de água quanto industrialmente para avaliar a vazão de gases e combustíveis. O princípio dos medidores de vazão nasceu de observações feitas por Leonardo da Vinci ao observar o escoamento em rios. Ele notou que mesmo em diferentes pontos ao longo do rio, não importando a variação na largura e profundidade do mesmo, a grandeza posteriormente nomeada de vazão se manteria constante ao longo do percurso. No entanto medidores de vazão foram efetivamente construídos somente quando surgiu a necessidade de seu uso na era industrial, principalmente através de trabalhos de Bernoulli e Pitot. Matematicamente a vazão pode ser expressa pela Equação 19. (19) Onde Q representa a vazão em m 3 /s (S.I.), V o volume e t o tempo. Em medidores é importante considerar a dissipação de energia por unidade de peso do fluído, ocasionada principalmente devido ao atrito entre o fluido e as paredes do tubo, doravante chamada de perda de carga, cujo coeficiente de perda pode ser calculado através da fórmula universal de Darcy Weisbach. (20) Onde h f é a perda de carga distribuída (diferença entre carga inicial e final), g é a gravidade, L o comprimento do tubo, D o diâmetro, e V a velocidade média do fluido. Em tubos retilíneos, de seção e velocidade constante, o princípio de Bernoulli permite que a perda de carga seja quantificada da seguinte forma: (21) Onde y 1 e y 2 representam as alturas inicial e final em relação à direção de atuação da gravidade, respectivamente, ρ a densidade do fluido e P 1 e P 2 as pressões ao longo da corrente. A dissipação de energia torna necessária uma calibração antes que qualquer medidor possa ser usado, e devido às diferenças entre viscosidade e densidade entre diferentes fluidos o medidor necessitará de nova calibração quando alterado fluido escoando em seu interior. 4. METODOLOGIA 4.1. PROJETO E CONSTRUÇÃO DO TROCADOR DE CALOR Tendo em vista que o trocador a ser projetado será utilizado na pasteurização de cerveja, o modelo escolhido de trocador foi o casco tubo devido ao seu potencial quanto a troca de calor e certa facilidade de construção. Também se pode dizer que a sua facilidade de limpeza visto que o mesmo deverá sofrer seguidas intervenções graças aos cereais que podem incrustar o aparelho diminuindo assim seu rendimento de troca de calor pode ser um motivo para escolha desse tipo de trocador. O projeto completo de um trocador de calor pode ser dividido em três partes principais: ENG03108 Medições Térmicas 7

17 Análise Térmica - se preocupa, principalmente, com a determinação da área necessária à transferência de calor para dadas condições de temperaturas e escoamentos dos fluidos. Projeto Mecânico Preliminar envolve considerações sobre as temperaturas e pressões de operação, as características de corrosão de um ou de ambos os fluidos, as expansões térmicas relativas e tensões térmicas e, a relação de troca de calor. Projeto de Fabricação requer a translação das características físicas e dimensões em uma unidade, que pode ser fabricada a baixo custo (seleção dos materiais, selos, invólucros e arranjo mecânico ótimos), e os procedimentos na fabricação devem ser especificados ANÁLISE TÉRMICA Para encontrar a área necessária para o trocador de calor foram feitas as seguintes considerações, apresentadas na Tabela 03 quanto a temperaturas e vazões do fluído refrigerante e do mosto de cerveja. Tabela 3 - Considerações para cálculo da área do Trocador. Temperatura de entrada Temperatura de entrada mosto ( C) 60 refrigerante ( C) Temperatura de saída mosto ( C) 40 Temperatura de saída refrigerante ( C) Vazão 3 Vazão 8 Utilizando o método da Temperatura Média Logarítmica, apresentado na seção da Fundamentação Teórica os dados encontrados para o trocador de calor são apresentados na Tabela 04. Transferência de Calor necessária no trocador de calor (W) Tabela 4 Dados para cálculo do trocador de calor Reinolds Coeficiente de Convecção (W/m²K) Coeficiente Global de Transferência de Calor (W/m²K) ENG03108 Medições Térmicas Fator de Atrito Temperatura Média Logaritmica ( C) Nusselt Com esses dados a disposição utilizando a equação 10 apresentada anteriormente encontra-se que o trocador de calor deve ter 22 metros de comprimento PROJETO MECÂNICO PRELIMINAR E PROJETO DE FABRICAÇÃO De posse dos dados de área e tendo escolhido o modelo de trocador de calor que iria se construir casco tubo, iniciou-se a modelagem do pasteurizador no software Solidworks visando facilitar a construção do modelo. O projeto do trocador de calor encontra-se no Apêndice I desde trabalho com todas as dimensões e materiais das peças utilizadas na construção do protótipo real, visando sempre à ajuda na construção do modelo, evitando assim problemas construtivos como interferências, incompatibilidades geométricas e também facilitar a construção de segundas gerações deste modelo. Por motivos econômicos e de transporte foi construído um trocador de calor de 600 mm de comprimento. O comprimento útil de troca de calor é de 6.5 metros e está dividido em

18 13 passagens. Foram colocadas chicanas ao longo dos trocadores, para causarem turbulência e assim melhorar a troca entre os tubos. O material utilizado para troca térmica foi cobre, um ótimo condutor de calor. O diâmetro nominal dos 13 tubos de cobre é 7 mm e da casca é 70 mm. O material utilizado na casca e conexões é PVC. Uma imagem do modelo computadorizado é apresentada na Figura 1 e algumas imagens da construção são apresentadas nas Figuras 2 e 3. Figura 1 Trocador de calor do tipo casco tubo projetado. Figura 2 - Detalhe da Área de Troca de calor e dos espelhos e chicanas. Figura 3 - Detalhe interno do espelho e casca. ENG03108 Medições Térmicas 9

19 4.2. PROJETO E CONSTRUÇÃO DO MEDIDOR DE VAZÃO Após o fluido quente e frio deixarem as extremidades do trocador será necessário medir a vazão com a qual os fluidos deixam o equipamento. Com o auxílio de um cronômetro digital e um tanque aferido será avaliada a vazão analisando a quantidade de líquido a deixar o trocador em certo intervalo de tempo, Δt, a ser mensurado pelo cronômetro. A razão entre o volume de líquido armazenado no tanque aferido e o tempo resultará na vazão. O tanque aferido, Figura 4, será um cano de PVC de 100 mm diâmetro. Devido ao fato do cano não ser transparente, a medição no interior do mesmo é inviável. Para solucionar tal problema foi utilizada o conhecimento de vasos comunicantes e foi acoplado ao tanque um nível paralela ao mesmo, cujo diâmetro é de 5/6, que possibilita a leitura fácil e direta do volume acumulado no tanque. Para não distorcer a leitura do volume, a entrada de fluído no medidor de vazão ocorre através de um cano interior que conduz o fluído até o fundo do tanque, evitando dessa maneira turbulências e oscilações na leitura, tornando esta mais precisa e exata, que mesmo dessa maneira existe um erro aleatório de paralaxe sempre associado. O medidor conta também com uma válvula acoplada ao tubo em PVC, de forma que o fluxo de saída possa ser facilmente obstruído e a medição efetivamente realizada. 5. VALIDAÇÃO DO EXPERIMENTO Figura 4 - Medidor de vazão do tipo tanque aferido 5.1. CALIBRAÇÃO DO MEDIDOR DE VAZÃO Para calibrar o medidor de vazão foram utilizados um recipiente aferido e uma balança disponibilizada pelo laboratório de Mecânica aplicada experimental. Iniciou-se a calibração do medidor de vazão fazendo a medição do peso do recipiente aferido e dessa maneira zerando a balança. Após despejou-se uma quantidade de água aleatória dentro do medidor de vazão para que fosse marcado um nível zero, onde será iniciada a medição do tempo. Após essa etapa foram adicionados 500g de água a temperatura ambiente e foi feita uma marcação ao ENG03108 Medições Térmicas 10

20 lado da escala Foram colocadas 8 medidas de 500 g totalizando 4 kg. Considerando a densidade da água igual a 1000 kg/m³ e que 1 litro é igual a 1 dcm³ considerou-se essa marcação como sendo 4 litros marcados de 500 em 500 ml. Dessa maneira poderão ser realizadas diversas tomadas de tempo das quais serão tiradas as médias para a medição de vazão. Após essas calibração de capacidade do instrumento de vazão utilizou-se o Rotâmetro disponibilizado pelo LETA para o instrumento passar por uma nova calibração. Desta maneira foram realizadas as tomadas de tempo apresentadas na Tabela 5, 6 e 7. Figura 5 Balança e recipiente utilizados na marcação do Medidor. Marcação medidor de vazão Tabela 5 Medidas de Tempo com Rotâmetro marcando 2 litros por minuto Vazão rotâmetro 2 litros por minuto Medição 1 (s) Medição 2 (s) Medição 3 (s) Medição 1 Medição 2 Medição 3 (m/min) Marcação medidor de vazão Tabela 6 Medidas de Tempo com Rotâmetro marcando 4 litros por minuto Vazão rotâmetro 4 litros por minuto Medição 1 (s) Medição 2 (s) Medição 3 (s) Medição 1 Medição 2 Medição 3 (m/min) ENG03108 Medições Térmicas 11

21 Marcação medidor de vazão Tabela 7 - Medidas de Tempo com Rotâmetro marcando 4 litros por minuto Vazão rotâmetro 6 litros por minuto Medição 1 (s) Medição 2 (s) Medição 3 (s) Medição 1 Medição 2 Medição 3 (m/min) Realizando um trabalho em cima das mensurações feitas calculando médias, medianas e erros chega-se aos resultados apresentados na Tabela 8. Tabela 8 - Médias, Mediana e erro associado às medições realizadas. Vazão Rotâmetro Vazão Rotâmetro Vazão Rotâmetro Média Medição 1 Média Medição 1 Média Medição Média Medição 2 Média Medição 2 Média Medição Média Medição 3 Média Medição 3 Média Medição Mediana 1.34 Mediana Mediana Erro da Medição 33.00% Erro da Medição 18.33% Erro da Medição 9.69% Com erros variando entre 9.69% e 33% foi necessário realizar um ajuste de curva para encontrar um polinômio que ajustasse as medições realizadas com os valores reais de vazão determinados pelo rotâmetro. Dessa maneira com a ajuda do software Excel e a ferramenta de ajuste de curva com pontos foi encontrado o polinômio, Equação 22, para a realização da calibração no instrumento de medição construído (22) Utilizando a equação 22 para correção das vazões já mensuradas encontramos os resultados apresentados na Tabela 9. Tabela 9 Resultados com ajuste de curva Vazão Rotâmetro Mediana Vazão Ajustada pelo Polinômio Erro % % % Dessa maneira o medidor de vazão fica calibrado para a faixa de vazões que irá se utilizar no trocador de calor INCERTEZA DE MEDIÇÃO Para pequenas amostras, como no presente caso, a incerteza de medição é dada por: (23) ENG03108 Medições Térmicas 12

22 Onde n é o número de amostras, t é um parâmetro a ser retirado da tabela t-student, baseado nos graus de liberdade expressos por n-1 e s é o desvio padrão obtido a partir das diferenças dos valores das amostras em relação à média. Utilizando esse método chegamos a uma incerteza máxima de ±0,2217 l/min com uma confiabilidade de 95%. Incertezas associadas ao cronometro, ao cronometrista e a calibração do volume do medidor já estão contidas nesta incerteza. Tendo sido nosso medidor de vazão calibrado através do rotâmetro disponível no laboratório de ensaios térmicos e aerodinâmicos está se torna a incerteza principal do instrumento de medição. Consultando manuais deste tipo de aparelho encontrou-se a incerteza como sendo de 2% do fundo de escala. Sendo assim a incerteza do instrumento de medição de vazão é de ± l/min. Vale ressaltar que essa incerteza é para faixas de vazões de 2, 4 e 6 l/min, pois o trocador tem sua maior eficiência dentro desta faixa, como será apresentado a seguir no trabalho. Sendo assim, esperam-se incertezas maiores para vazões fora deste range devido aos pontos usados para ajuste da curva. 6. RESULTADOS Tendo em vista que se busca a máxima eficiência levou-se o pasteurizador, para a bancada de testes do laboratório, LETA, para efetuar essas mensurações de temperatura e vazão. A metodologia utilizada para aquisição de dados foi fixar uma vazão de fluído refrigerante e variar a vazão de fluído refrigerado. Assim quando as temperaturas entrassem em regime estacionário os dados eram colhidos. Desta maneira foram colhidos os dados e apresentados na Tabela 10 para as vazões de 5, 6, 7 e 8 litros por minuto para líquido refrigerante. Para vazões menores que 5 e maior que 8 l/min não se obtiveram bons resultados e não serão apresentadas no trabalho. Medição Vazão Tabela 10 - Dados de temperatura e vazão adquiridos no Laboratório. Fluído refrigerante Fluído refrigerado Entrada de água ( C) Temperaturas Saída de água ( C) T f ( C) Vazão Entrada de água ( C) Temperaturas Saída de água ( C) T q ( C) ENG03108 Medições Térmicas 13

23 EFICIÊNCIA EFICIÊNCIA Visando a maior variação de temperatura de fluido refrigerado com a menor vazão de fluído refrigerante, utilizou-se como critério de eficiência do aparelho a razão entre essas grandezas, como apresentado na equação 23. Além disso, normalizaram-se estes valores tomando como referência o maior valor obtido entre a razão nos testes. Outro critério utilizado para análise dos dados foi relação de vazão de fluído refrigerante e fluído refrigerado, Equação 24. Este critério foi normalizada da mesma maneira utilizada na eficiência, em função da maior razão encontrada no teste. Com este critério buscava-se uma boa relação entre as vazões do trocador. (23) (24) Utilizando os critérios apresentados e que ajudarão a analisar a melhor relação para variação de temperaturas e vazões construiu-se os gráficos, apresentados a seguir nas Figuras 07, 08, 09 e 10 da eficiência pela vazão de fluído refrigerado para cada vazão de fluído refrigerante VAZÃO DE 5 DE LÍQUIDO REFRIGERANTE VAZÃO DE REFRIGERADO Figura 6 Análise da eficiência do trocador de calor para vazão de 5 l/min de liquido refrigerante. VAZÃO DE 6 DE FLUÍDO REFRIGERANTE VAZÃO DE REFRIGERADO Figura 7 Análise da eficiência do trocador de calor para vazão de 6 l/min de liquido refrigerante. EFICIÊNCIA VAZÃO EFICIÊNCIA VAZÃO ENG03108 Medições Térmicas 14

24 EFICIÊNCIA EFICIÊNCIA VAZÃO DE 7 DE FLUÍDO REFRIGERANTE VAZÃO DE REFRIGERADO Figura 8 Análise da eficiência do trocador de calor para vazão de 7 l/min de liquido refrigerante. VAZÃO DE 8 DE FLUIDO REFRIGERANTE VAZÃO DE REFRIGERADO Figura 9 Análise da eficiência do trocador de calor para vazão de 8 l/min de liquido refrigerante. EFICIÊNCIA VAZÃO EFICIÊNCIA VAZÃO Como se pode perceber não se consegue ter uma boa razão de vazão com uma boa relação de eficiência. Quando se tem uma ótima razão de vazão tem-se pouca troca de calor. De antemão o mesmo ocorre quando temos uma boa variação na temperatura temos uma pequena razão de vazões. Também se consegue notar nos gráficos apresentado a diminuição da eficiência do trocador com o aumento da vazão de fluído refrigerante. Uma das causas que podem levar o trocador a ter essa característica é a pouca perda de carga nele e também seu comprimento sendo inferior ao valor obtido na modelagem matemática apresentada anteriormente na seção Deste modo aumentando-se a perda de carga com válvulas reguladoras de vazão nas saídas do trocador devem ajudar a obter coeficientes melhores no processo de troca térmica. Outro detalhe importante que o critério adotado para avaliação dos resultados consegue transmitir é a intersecção das duas curvas. Este é o ponto de ótimo rendimento para cada uma das vazões de refrigerante testadas. Percebe-se que para o trocador construído a melhor vazão que se pode ter de fluído refrigerado é em torno de 2 l/min. Da utilização desses critérios pode-se dizer que com uma vazão de 5:2 tem-se os melhores resultados de eficiência para o trocador. Porém pode se ter ótimos resultados com ENG03108 Medições Térmicas 15

25 uma razão de 6:2.5, assim aumentando a produtividade do equipamento. Para as outras medidas como de 7 e 8 l/min, percebe-se uma grande perda de eficiência do equipamento. 7. ABORDAGEM ECONÔMICA Além de visar uma alta eficiência e precisão, o trocador e medidor aqui construídos também tiveram como objetivo buscar um equilíbrio com o custo. Por exemplo, se o comprimento do trocador fosse duplicado, o gasto com tubos de cobre que representam em torno de 40% do custo total seria praticamente dobrado. Obviamente é possível construir um trocador de calor contracorrente tão longo cuja temperatura de saída do líquido quente fosse equivalente à temperatura de entrada do líquido frio, como o presente trabalho busca apenas objetivos didáticos como a familiarização com instrumentos de medição, a construção de tal trocador desviar-se-ia do foco do trabalho. Os tubos de PVC para esgoto e água fria usados no trocador e medidor de vazão constituem menos de 20% do custo total, mas não são recomendáveis para temperaturas superiores a 45 C, sendo necessários tubos de CPVC, cujo custo é consideravelmente mais elevado. Como no presente caso os tubos não estarão expostos ao sol e não é exigida uma vida útil longa por parte dos equipamentos os tubos de PVC foram considerados aptos para exercerem suas funções. Outras peças do mesmo material têm valores irrisórios perto do valor geral do equipamento, como os adaptadores de água fria empregados no medidor e trocador para encaixe na bancada do laboratório. Para a união do cobre com o nylon dos defletores foi necessário o uso de colas à base de epóxi, cujo valor representa aproximadamente 20% do custo total. Outros materiais utilizados para união como silicone e cola de PVC tem um preço muito baixo mas devem ser levadas em conta. O custo total do trocador de calor foi de R$157,40, enquanto o medidor custou R$29,15 (menos de 20% em relação ao valor do trocador), totalizando R$186,55, valor este considerável viável pelo grupo. Isto que não se levam em conta o custo hora homem de projeto, nem o custo de mão e obra e nem o custo de transporte do material comprado. Estes representariam a maior parte do valor dos protótipos e são diluídos na fabricação dos seguintes equipamentos. ENG03108 Medições Térmicas 16

26 8. CONCLUSÃO O método utilizado para o dimensionamento do trocador de calor, diferença de temperatura média logarítmica, LMDT, consiste em se utilizar uma aproximação unidirecional do problema de transferência de calor real para se estimar a taxa de transferência de calor global do trocador. O inconveniente neste método é o fato de necessitar cálculos iterativos que ficam mais complexos de se resolver à medida que se deseja resultados mais confiáveis. O método em questão apresenta simplificações tais que podem chegar a erros de projeto muito grandes dependendo da aplicação, uma vez que não se considera a variação de propriedades dos fluidos, como a condutividade térmica, com o avanço dos escoamentos. A presença de erros associados a particularidades geométricas e de funcionamento também podem contribuir na perda de exatidão para estes cálculos. Por isso na etapa de projeto ou dimensionamento de um trocador de calor casco tubo deve-se ter ciência de que estas metodologias apresentam erros e, se for o caso de necessitar resultados mais exatos, deve-se recorrer a outras abordagens que pode ser tanto experimental como no caso do trabalho apresentado quanto através de modelos computacionais confiáveis. A construção do trocador de calor junto com o método utilizado para dimensionamento e testes experimentais acrescentou muito na formação dos alunos que realizaram o trabalho dando confiança para utilização destes para futuros trabalhos de dimensionamento e funcionamento de um trocador de calor, que até o momento eram apenas didáticos e agora foram colocados em prova desenvolvendo assim um conhecimento distinto frente ao obtido até então. Além do mais, percebe-se que o custo do trocador de calor que exige materiais com altas qualidades térmicas, quanto à condução, e resistência mecânica, quanto à dilatação que o equipamento sofre, é alto e que com orçamentos mais elásticos um trocador de calor com maior eficiência poderia ser montado. Já para a medição de vazão percebe-se a facilidade de construção de instrumentos para essa finalidade. O instrumento em questão, tanque aferido, apresentou um baixo custo, R$29,15 e facilidade de fabricação, objetivos traçados como meta durante o projeto, já que os custos com o trocador foram considerados altos. Desde que o instrumento seja calibrado corretamente pode ser utilizado para medições de vazão obtendo baixas incertezas quanto à medição. Como sugestão para futuros trabalhos, a simulação computacional poderia ser realizada já que o trocador fora construído e testado numa bancada de laboratório tendo informações suficientes para sua validação, ponto muito importante dentro nesse tipo de trabalho. ENG03108 Medições Térmicas 17

27 9. REFERÊNCIAS Bejan, A, Transferência de Calor. São Paulo: Edgard Blücher Ltda, Holman, J.P., Transferência de Calor. São Paulo: McGraw-Hill do Brasil Ltda., Incropera ET. AL., Fundamentos de Transferência de Calor e Massa, 6ª Edição, Kern, D. Q., Process Heat Transfer, International Student Edition, Schneider, P. S., Medição de Velocidade e Vazão de Fluído. Departamento de Engenharia Mecânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Schneider, P. S., Incerteza de Medição e Ajuste de Dados. Departamento de Engenharia Mecânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, ENG03108 Medições Térmicas 18

28 APENDICE ENG03108 Medições Térmicas 19

29 FOLHA DE AVALIAÇÃO DO CONCURSO Nome dos alunos: Eduardo Antonio Wink de Meneses Franco Tedesco da Silva Mateus Kliemann Marchioro Identificação do grupo (letra): Dados do ensaio Data: Temperatura ambiente T amb : C Trocador de calor: ( ) Corrente Paralelo; ( X ) Contra Corrente ENG03108 Medições Térmicas

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE CONSTRUÇÃO DE UM MEDIDOR DE VAZÃO UTILIZANDO UMA RESISTÊNCIA ELÉTRICA

Leia mais

Roteiro - Aula Prática Perda de carga:

Roteiro - Aula Prática Perda de carga: Laboratório de Hidráulica - Aula Prática de Perda de Carga 1 Roteiro - Aula Prática Perda de carga: 1. Objetivo do experimento: Estudo de perda de carga distribuída e localizada. Medição de velocidade

Leia mais

TRANSMISSÃO DE CALOR

TRANSMISSÃO DE CALOR INSTITUTO SUPERIOR TÉCNICO UNIVERSIDADE TÉCNICA DE LISBOA TRANSMISSÃO DE CALOR Guia do Laboratório: Estudo Experimental da Relação entre os Números de Nusselt, Reynolds e Prandtl Mário Manuel Gonçalves

Leia mais

Universidade Federal de Sergipe, Departamento de Engenharia Química 2

Universidade Federal de Sergipe, Departamento de Engenharia Química 2 ELABORAÇÃO DE FERRAMENTA DE CÁLCULO PARA A DETERMINAÇÃO DO COEFICIENTE CONVECTIVO EM EXPERIMENTOS DE CONVECÇÃO FORÇADA AO REDOR DE UM CORPO SUBMERSO E ALETAS TORRES, F. C. O. 1, BARBOSA NETO, A. M. 2 1

Leia mais

EN 2411 Aula 13 Trocadores de calor Método MLDT

EN 2411 Aula 13 Trocadores de calor Método MLDT Universidade Federal do ABC EN 24 Aula 3 Trocadores de calor Método MLDT Trocadores de calor São equipamentos utilizados para promover a transferência de calor entre dois fluidos que se encontram sob temperaturas

Leia mais

ÁREA DE ESTUDO: CÓDIGO 16 TERMODINÂMICA APLICADA, MECÂNICA DOS FLUIDOS E OPERAÇÕES UNITÁRIAS

ÁREA DE ESTUDO: CÓDIGO 16 TERMODINÂMICA APLICADA, MECÂNICA DOS FLUIDOS E OPERAÇÕES UNITÁRIAS INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO CEARÁ DIRETORIA DE GESTÃO DE PESSOAS COMISSÃO COORDENADORA DE CONCURSOS CONCURSO PÚBLICO PROFESSOR EFETIVO EDITAL Nº 10/DGP-IFCE/2010 ÁREA DE ESTUDO:

Leia mais

UNIVERSIDADE DE SÃO PAULO ENGENHARIA QUÍMICA LOQ4085 OPERAÇÕES UNITÁRIAS I

UNIVERSIDADE DE SÃO PAULO ENGENHARIA QUÍMICA LOQ4085 OPERAÇÕES UNITÁRIAS I UNIVERSIDADE DE SÃO PAULO ENGENHARIA QUÍMICA LOQ4085 OPERAÇÕES UNITÁRIAS I Profa. Lívia Chaguri E-mail: lchaguri@usp.br Conteúdo Bombas Parte 1 - Introdução - Classificação - Bombas sanitárias - Condições

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE TROCADOR DE CALOR PARA PASTEURIZAÇÃO DE CERVEJA por João Pedro Fão Felipe

Leia mais

Operações Unitárias II Lista de Exercícios 1 Profa. Dra. Milena Martelli Tosi

Operações Unitárias II Lista de Exercícios 1 Profa. Dra. Milena Martelli Tosi 1. Vapor d água condensado sobre a superfície externa de um tubo circular de parede fina, com diâmetro interno igual a 50 mm e comprimento igual a 6 m, mantém uma temperatura na superfície externa uniforme

Leia mais

11S.1 Método da Média Log das Diferenças de Temperatura para Trocadores de Calor com Múltiplos Passes e com Escoamento Cruzado

11S.1 Método da Média Log das Diferenças de Temperatura para Trocadores de Calor com Múltiplos Passes e com Escoamento Cruzado Capítulo 11 Material Suplementar 11S.1 Método da Média Log das Diferenças de Temperatura para Trocadores de Calor com Múltiplos Passes e com Escoamento Cruzado Embora as condições de escoamento em trocadores

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE OTIMIZAÇÃO DE GEOMETRIA PARA ACUMULADOR DE ENERGIA TÉRMICA por Diego

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Escoamento Interno - Parte 2 Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal

Leia mais

Tubo de Pitot. Usado para medir a vazão; Vantagem: Menor interferência no fluxo; Empregados sem a necessidade de parada;

Tubo de Pitot. Usado para medir a vazão; Vantagem: Menor interferência no fluxo; Empregados sem a necessidade de parada; Tubo de Pitot Usado para medir a vazão; Vantagem: Menor interferência no fluxo; Empregados sem a necessidade de parada; Desvantagem: Diversas tecnologias, o que dificulta a calibração do equipamento (de

Leia mais

TROCADOR DE CALOR BITUBULAR

TROCADOR DE CALOR BITUBULAR UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA QUÍMICA E PETRÓLEO INTEGRAÇÃO I TROCADOR DE CALOR BITUBULAR Alunos : Rodrigo da Silva Rosa Adriano Matielo Stulzer Niterói,

Leia mais

Mecânica dos Fluidos. Perda de Carga

Mecânica dos Fluidos. Perda de Carga Mecânica dos Fluidos Perda de Carga Introdução Na engenharia trabalhamos com energia dos fluidos por unidade de peso, a qual denominamos carga (H); No escoamento de fluidos reais, parte de sua energia

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE PROTÓTIPO DE ACUMULADOR DE CALOR DE RESINA POLIÉSTER por Augusto Majolo

Leia mais

Lista de exercícios Caps. 7 e 8 TMEC-030 Transferência de Calor e Massa Período especial 2017/2

Lista de exercícios Caps. 7 e 8 TMEC-030 Transferência de Calor e Massa Período especial 2017/2 Lista de exercícios Caps. 7 e 8 TMEC-030 Transferência de Calor e Massa Período especial 2017/2 1. (Incropera et al., 6 ed., 7.2) Óleo de motor a 100ºC e a uma velocidade de 0,1 m/s escoa sobre as duas

Leia mais

CENTRO UNIVERSITÁRIO PLANALTO DO DISTRITO FEDERAL ENGENHARIA CIVIL APOSTILA

CENTRO UNIVERSITÁRIO PLANALTO DO DISTRITO FEDERAL ENGENHARIA CIVIL APOSTILA UNIPLAN CENTRO UNIVERSITÁRIO PLANALTO DO DISTRITO FEDERAL ENGENHARIA CIVIL APOSTILA FENÔMENOS DE TRANSPORTE NP2 DANIEL PETERS GUSMÃO MEIRA 2018 Conteúdo FENÔMENOS DE TRANSPORTE... 1 CONTEÚDO PROGRAMÁTICO...

Leia mais

PROJETO DE BANCADA EXPERIMENTAL PARA ANALISAR O ESCOAMENTO BIFÁSICO LÍQUIDO-GÁS EM UMA TUBULAÇÃO HORIZONTAL

PROJETO DE BANCADA EXPERIMENTAL PARA ANALISAR O ESCOAMENTO BIFÁSICO LÍQUIDO-GÁS EM UMA TUBULAÇÃO HORIZONTAL PROJETO DE BANCADA EXPERIMENTAL PARA ANALISAR O ESCOAMENTO BIFÁSICO LÍQUIDO-GÁS EM UMA TUBULAÇÃO HORIZONTAL ANDRADE, Carlos Alberto Coelho de (IC²-Engenharia Mecânica-Unibrasil) MUREN, Maurício (IC²-Engenharia

Leia mais

) (8.20) Equipamentos de Troca Térmica - 221

) (8.20) Equipamentos de Troca Térmica - 221 onde: v = &m = Cp = h lv = U = A = T = t = volume específico vazão em massa (Kg/h) calor específico calor latente de vaporização coeficiente global de troca térmica área de transmissão de calor temperatura

Leia mais

UFPR - Setor de Tecnologia Departamento de Engenharia Mecânica TM Laboratório de Engenharia Térmica Data : / / Aluno :

UFPR - Setor de Tecnologia Departamento de Engenharia Mecânica TM Laboratório de Engenharia Térmica Data : / / Aluno : UFPR - Setor de Tecnologia Departamento de Engenharia Mecânica TM-58 - Laboratório de Engenharia Térmica Data : / / Aluno : Tabela de controle de presença e entrega de relatórios Data Assinatura Entrega

Leia mais

EDITAL DE TRABALHO FINAL DA DISCIPLINA MEDIÇÕES TÉRMICAS Edição

EDITAL DE TRABALHO FINAL DA DISCIPLINA MEDIÇÕES TÉRMICAS Edição UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA ENGENHARIA MECÂNICA E DE ENERGIA ENG 03108 Medições Térmicas (Energia e Fenômenos de Transporte) Prof. Paulo Smith Schneider EDITAL DE TRABALHO

Leia mais

ESTE Aula 2- Introdução à convecção. As equações de camada limite

ESTE Aula 2- Introdução à convecção. As equações de camada limite Universidade Federal do ABC ESTE013-13 Aula - Introdução à convecção. As equações de camada limite EN 41: Aula As equações de camada limite Análise das equações que descrevem o escoamento em camada limite:

Leia mais

EXPERIMENTO 03. Medidas de vazão de líquidos, utilizando Rotâmetro, Placa de orifício e Venturi. Prof. Lucrécio Fábio

EXPERIMENTO 03. Medidas de vazão de líquidos, utilizando Rotâmetro, Placa de orifício e Venturi. Prof. Lucrécio Fábio EXPERIMENTO 03 Medidas de vazão de líquidos, utilizando Rotâmetro, Placa de orifício e Venturi Prof. Lucrécio Fábio Atenção: As notas destinam-se exclusivamente a servir como roteiro de estudo. Figuras

Leia mais

ESTUDO DA TRANSIÇÃO ENTRE ESCOAMENTO LAMINAR E TURBULENTO EM TUBO CAPILAR

ESTUDO DA TRANSIÇÃO ENTRE ESCOAMENTO LAMINAR E TURBULENTO EM TUBO CAPILAR ESTUDO DA TRANSIÇÃO ENTRE ESCOAMENTO LAMINAR E TURBULENTO EM TUBO CAPILAR M. H. MARTINS 1, A. KNESEBECK 1 1 Universidade Federal do Paraná, Departamento de Engenharia Química E-mail para contato: marcellohmartins@gmail.com

Leia mais

Classificação de Trocadores de Calor

Classificação de Trocadores de Calor Trocadores de Calor Trocadores de Calor Equipamento usados para implementar a troca de calor entre dois ou mais fluidos sujeitos a diferentes temperaturas são denominados trocadores de calor Classificação

Leia mais

29/11/2010 DEFINIÇÃO:

29/11/2010 DEFINIÇÃO: Universidade Federal do Paraná Curso de Engenharia Industrial Madeireira MÁQUINAS TÉRMICAS AT-056 M.Sc. Alan Sulato de Andrade alansulato@ufpr.br 1 DEFINIÇÃO: Trocadores de calor são dispositivo utilizados

Leia mais

OPERAÇÕES UNITÁRIAS II AULA 4: - DIMENSIONAMENTO DE TROCADORES DE CALOR A

OPERAÇÕES UNITÁRIAS II AULA 4: - DIMENSIONAMENTO DE TROCADORES DE CALOR A OPERAÇÕES UNITÁRIAS II AULA 4: - DIMENSIONAMENTO DE TROCADORES DE CALOR A PLACAS - ANÁLISE DE TROCADORES: MLDT E NUT Profa. Dra. Milena Martelli Tosi TROCADOR DE CALOR A PLACAS http://rpaulsingh.com/animations/plateheat

Leia mais

3. CONVECÇÃO FORÇADA INTERNA

3. CONVECÇÃO FORÇADA INTERNA 3. CONVECÇÃO FORÇADA INTERNA CONVECÇÃO FORÇADA NO INTERIOR DE TUBOS Cálculo do coeficiente de transferência de calor e fator de atrito Representa a maior resistência térmica, principalmente se for um gás

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Trocadores de Calor Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal de Juiz

Leia mais

Instrumentação. Aula Medição Vazão Prof. Sergio Luis Brockveld Junior. Material desenvolvido com base na aula do professor Guilherme P.

Instrumentação. Aula Medição Vazão Prof. Sergio Luis Brockveld Junior. Material desenvolvido com base na aula do professor Guilherme P. Instrumentação Aula Medição Vazão Prof. Sergio Luis Brockveld Junior Material desenvolvido com base na aula do professor Guilherme P. Colnago Assuntos Aplicações Conceitos Medição de Vazão Experiências

Leia mais

Propagação da incerteza de medição ou incerteza combinada

Propagação da incerteza de medição ou incerteza combinada UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ENGENHARIA MECÂNICA ENG0308 - MEDIÇÕES TÉRMICAS Energia e Fenômenos de Transporte Prof. Paulo S. Schneider pss@mecanica.ufrgs.br Medições Térmicas - Engenharia

Leia mais

EDITAL DE TRABALHO FINAL DA DISCIPLINA MEDIÇÕES TÉRMICAS edição

EDITAL DE TRABALHO FINAL DA DISCIPLINA MEDIÇÕES TÉRMICAS edição UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA ENGENHARIA MECÂNICA E DE ENERGIA ENG 03108 Medições Térmicas (Energia e Fenômenos de Transporte) Prof. Paulo Smith Schneider e Cristiano Frandalozo

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Escoamento Sobre uma Placa Plana Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE TROCADOR DE CALOR PARA RESFRIAMENTO DE MOSTO DE CERVEJA por Bruno Niche

Leia mais

CORRELAÇÃO ENTRE FATOR DE ATRITO f DE DARCY-WEISBACH COM O FATOR C DE HANZEN- WILLIAMS.

CORRELAÇÃO ENTRE FATOR DE ATRITO f DE DARCY-WEISBACH COM O FATOR C DE HANZEN- WILLIAMS. 1 CORRELAÇÃO ENTRE FATOR DE ATRITO f DE DARCY-WEISBACH COM O FATOR C DE HANZEN- WILLIAMS. A fórmula de Darcy na hidráulica, transportando água, leva em consideração o tipo, natureza e o estado da parede

Leia mais

4. Redução de dados Modelo matemático

4. Redução de dados Modelo matemático 4. Redução de dados Modelo matemático 4.1. Coeficiente global de Troca de calor o balanço de resistências térmicas para um elemento no trocador, tem-se. 1 1 1 eplac 1 1 = + + + + (19) U h R k R h 1 F 1

Leia mais

SELEÇÃO DE BOMBAS HIDRÁULICAS

SELEÇÃO DE BOMBAS HIDRÁULICAS SELEÇÃO DE BOMBAS HIDRÁULICAS Prof. Jesué Graciliano da Silva https://jesuegraciliano.wordpress.com/aulas/mecanica-dos-fluidos/ 1- EQUAÇÃO DE BERNOULLI A equação de Bernoulli é fundamental para a análise

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE MEDIÇÃO DE VAZÃO A PARTIR DO DESLOCAMENTO DE UMA MOLA por Giordano Demoliner

Leia mais

Transferência de Calor 1

Transferência de Calor 1 Transferência de Calor Guedes, Luiz Carlos Vieira. G94t Transferência de calor : um / Luiz Carlos Vieira Guedes. Varginha, 05. 80 slides; il. Sistema requerido: Adobe Acrobat Reader Modo de Acesso: World

Leia mais

TÍTULO: DESENVOLVIMENTO DE UM KIT DIDÁTICO DE PERDA DE CARGA CATEGORIA: EM ANDAMENTO ÁREA: ENGENHARIAS E ARQUITETURA SUBÁREA: ENGENHARIAS

TÍTULO: DESENVOLVIMENTO DE UM KIT DIDÁTICO DE PERDA DE CARGA CATEGORIA: EM ANDAMENTO ÁREA: ENGENHARIAS E ARQUITETURA SUBÁREA: ENGENHARIAS TÍTULO: DESENVOLVIMENTO DE UM KIT DIDÁTICO DE PERDA DE CARGA CATEGORIA: EM ANDAMENTO ÁREA: ENGENHARIAS E ARQUITETURA SUBÁREA: ENGENHARIAS INSTITUIÇÃO: FACULDADE DE ENGENHARIA DE SOROCABA AUTOR(ES): RAPHAEL

Leia mais

ENGENHARIA FÍSICA. Fenômenos de Transporte A (Mecânica dos Fluidos)

ENGENHARIA FÍSICA. Fenômenos de Transporte A (Mecânica dos Fluidos) ENGENHARIA FÍSICA Fenômenos de Transporte A (Mecânica dos Fluidos) Prof. Dr. Sérgio R. Montoro sergio.montoro@usp.br srmontoro@dequi.eel.usp.br MECÂNICA DOS FLUIDOS ENGENHARIA FÍSICA AULA 7 ESCOAMENTO

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE CONSTRUÇÃO TROCADOR DE CALOR TIPO CASCO TUBO PARA RESFRIAMENTO DE MOSTRO

Leia mais

OPERAÇÕES UNITÁRIAS II AULA 4: - DIMENSIONAMENTO DE TROCADORES DE CALOR A

OPERAÇÕES UNITÁRIAS II AULA 4: - DIMENSIONAMENTO DE TROCADORES DE CALOR A OPERAÇÕES UNITÁRIAS II AULA 4: - DIMENSIONAMENTO DE TROCADORES DE CALOR A PLACAS - ANÁLISE DE TROCADORES: MLDT E NUT Profa. Dra. Milena Martelli Tosi TROCADOR DE CALOR A PLACAS http://rpaulsingh.com/animations/plateheat

Leia mais

EM34B Transferência de Calor 2

EM34B Transferência de Calor 2 EM34B Transferência de Calor 2 Prof. Dr. André Damiani Rocha arocha@utfpr.edu.br Trocadores de Calor 2 Trocadores de Calor Introdução Os trocadores de calor são dispositivos que facilitam a transferência

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE CONSTRUÇÃO, INSTRUMENTAÇÃO E ENSAIO DE UM ACUMULADOR DE CALOR por Caymo

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Aletas e Convecção em Escoamento Interno e Externo Prof. Universidade Federal do Pampa BA000200 Campus Bagé 19 de junho de 2017 Transferência de Calor: Convecção 1 / 30 Convecção

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE CONSTRUÇÃO E ENSAIO DE UM ELEMENTO ACUMULADOR AQUECIDO POR UM ESCOAMENTO

Leia mais

https://www.youtube.com/watch?v=aiymdywghfm

https://www.youtube.com/watch?v=aiymdywghfm Exercício 106: Um medidor de vazão tipo venturi é ensaiado num laboratório, obtendose a curva característica abaixo. O diâmetro de aproximação e o da garganta são 60 mm e 0 mm respectivamente. O fluido

Leia mais

ROTEIRO DO PROJETO: DIMENSIONAMENTO DE UM TROCADOR DE CALOR

ROTEIRO DO PROJETO: DIMENSIONAMENTO DE UM TROCADOR DE CALOR ROTEIRO DO PROJETO: DIMENSIONAMENTO DE UM TROCADOR DE CALOR 1. OBJETIVOS DO PROJETO Comparar a área de troca térmica obtida a partir do dimensionamento usando a equação de projeto ( ) com a área real (exemplo

Leia mais

OTIMIZAÇÃO DA VAZÃO DE FLUIDO REFRIGERANTE E ÁREA DE TROCA TÉRMICA DE UM TROCADOR DE CALOR CONTRA- CORRENTE

OTIMIZAÇÃO DA VAZÃO DE FLUIDO REFRIGERANTE E ÁREA DE TROCA TÉRMICA DE UM TROCADOR DE CALOR CONTRA- CORRENTE OTIMIZAÇÃO DA VAZÃO DE FLUIDO REFRIGERANTE E ÁREA DE TROCA TÉRMICA DE UM TROCADOR DE CALOR CONTRA- CORRENTE Mário Gomes da Silva Júnior (1); Camila Barata Cavalcanti (2); Josiele Souza Batista Santos (3);

Leia mais

ENG 3006 TRANSFERÊNCIA DE CALOR E MASSA 1 o SEMESTRE DE Capítulo 11 Trocadores de Calor

ENG 3006 TRANSFERÊNCIA DE CALOR E MASSA 1 o SEMESTRE DE Capítulo 11 Trocadores de Calor ENG 3006 TRANSFERÊNCIA DE CALOR E MASSA 1 o SEMESTRE DE 2015 Capítulo 11 Trocadores de Calor Tópicos Tipos de trocadores de calor; O coeficiente global de transferência de calor; Análise térmica de trocadores

Leia mais

1. Introdução Motivação

1. Introdução Motivação 1. Introdução 1.1. Motivação O gelo é considerado um material de armazenamento de energia térmica efetivo, para temperaturas ao redor de 0 C, conseguindo reduzir os volumes de armazenamento de frio num

Leia mais

LOQ4086-OPERAÇÕES UNITÁRIAS II. Trocadores de Calor. Profª Lívia Chaguri

LOQ4086-OPERAÇÕES UNITÁRIAS II. Trocadores de Calor. Profª Lívia Chaguri LOQ4086-OPERAÇÕES UNITÁRIAS II Trocadores de Calor Profª Lívia Chaguri LOQ4086-OPERAÇÕES UNITÁRIAS II Projeto de Trocadores de Calor a) Método Bell-Delaware b) Método Kern c) Exercício de aplicação Profª

Leia mais

5 Resfriamento de Gás

5 Resfriamento de Gás 5 Resfriamento de Gás Para analisar o tempo de resfriamento e o fluxo de calor através das paredes do duto, para o caso do gás, foram consideradas as mesmas condições iniciais já apresentadas para o caso

Leia mais

Exame de Admissão 2016/1 Prova da área de termo fluidos Conhecimentos específicos

Exame de Admissão 2016/1 Prova da área de termo fluidos Conhecimentos específicos Exame de Admissão 2016/1 Prova da área de termo fluidos Conhecimentos específicos 1ª. Questão (1 ponto) Considere uma bomba centrífuga de 20 kw de potência nominal, instalalada em uma determinada planta

Leia mais

Capítulo 08 - TRANSFERÊNCIA DE CALOR POR CONDUÇÃO EM REGIME TRANSIENTE

Capítulo 08 - TRANSFERÊNCIA DE CALOR POR CONDUÇÃO EM REGIME TRANSIENTE Os exercícios e figuras deste texto foram retirados de diversas referências bibliográficas listadas no programa da disciplina 1 FENÔMENOS DE TRANSPORTE Capítulo 08 - TRANSFERÊNCIA DE CALOR POR CONDUÇÃO

Leia mais

OPERAÇÕES UNITÁRIAS II AULA 1: REVISÃO TRANSFERÊNCIA DE CALOR. Profa. Dra. Milena Martelli Tosi

OPERAÇÕES UNITÁRIAS II AULA 1: REVISÃO TRANSFERÊNCIA DE CALOR. Profa. Dra. Milena Martelli Tosi OPERAÇÕES UNITÁRIAS II AULA 1: REVISÃO TRANSFERÊNCIA DE CALOR Profa. Dra. Milena Martelli Tosi A IMPORTÂNCIA DA TRANSFERÊNCIA DE CALOR NA INDÚSTRIA DE ALIMENTOS Introdução Revisão: Mecanismos de transferência

Leia mais

ESTUDO COMPARATIVO DE MÉTODO DIFERENCIAL TERMOFLUIDODINÂMICO PARA TROCADORES DE CALOR DO TIPO CASCO E TUBOS 1-2 COM CHICANAS FRACIONADAS E HELICOIDAIS

ESTUDO COMPARATIVO DE MÉTODO DIFERENCIAL TERMOFLUIDODINÂMICO PARA TROCADORES DE CALOR DO TIPO CASCO E TUBOS 1-2 COM CHICANAS FRACIONADAS E HELICOIDAIS ESTUDO COMPARATIVO DE MÉTODO DIFERENCIAL TERMOFLUIDODINÂMICO PARA TROCADORES DE CALOR DO TIPO CASCO E TUBOS 1-2 COM CHICANAS FRACIONADAS E HELICOIDAIS A. S. PEREIRA 1, M. L. MAGALHÃES 1 e S. J. M. CARTAXO

Leia mais

Refrigeração e Ar Condicionado

Refrigeração e Ar Condicionado Refrigeração e Ar Condicionado Condensadores Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal de

Leia mais

Universidade do Vale do Rio dos Sinos PPGEM Programa de Pós-Graduação de Engenharia Mecânica

Universidade do Vale do Rio dos Sinos PPGEM Programa de Pós-Graduação de Engenharia Mecânica Universidade do Vale do Rio dos Sinos PPGEM Programa de Pós-Graduação de Engenharia Mecânica SIMULAÇÃO DE CICLO TÉRMICO COM DUAS CALDEIRAS EM PARALELO: COMBUSTÃO EM GRELHA E EM LEITO FLUIDIZADO Herson

Leia mais

ALVARO ANTONIO OCHOA VILLA

ALVARO ANTONIO OCHOA VILLA UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS DEPARTAMENTO DE ENGENHARIA MECÂNICA PÓS-GRADUAÇÃO. DOUTORADO EM ENERGIA. ANÁLISE DIMENSIONAL E SEMELHANÇA ALVARO ANTONIO OCHOA VILLA

Leia mais

Escoamento completamente desenvolvido

Escoamento completamente desenvolvido Escoamento completamente desenvolvido A figura mostra um escoamento laminar na região de entrada de um tubo circular. Uma camada limite desenvolve-se ao longo das paredes do duto. A superfície do tubo

Leia mais

Utilizado quando se necessita rejeitar calor a baixas temperaturas. O uso do AR como meio de resfriamento tem as seguintes vantagens:

Utilizado quando se necessita rejeitar calor a baixas temperaturas. O uso do AR como meio de resfriamento tem as seguintes vantagens: TROCADORES DE CALOR ALETADOS E/OU COMPACTOS Utilizado quando se necessita rejeitar calor a baixas temperaturas. Pode-se utilizar como meios de resfriamento: ÁGUA ou AR O uso do AR como meio de resfriamento

Leia mais

EN 2411 Aula 4 Escoamento externo. Escoamento cruzado em cilindros e esferas

EN 2411 Aula 4 Escoamento externo. Escoamento cruzado em cilindros e esferas Universidade Federal do ABC EN 2411 Aula 4 Escoamento externo. Escoamento cruzado em cilindros e esferas EN2411 Consideremos o escoamento de um fluido na direção normal do eixo de um cilindro circular,

Leia mais

TÍTULO: BOMBEAMENTO DE POLPA: CURVA EXPERIMENTAL DA PERDA DE CARGA EM FUNÇÃO DA VELOCIDADE E VISCOSIDADE APARENTE DE SUSPENSÕES DE AREIA EM ÁGUA

TÍTULO: BOMBEAMENTO DE POLPA: CURVA EXPERIMENTAL DA PERDA DE CARGA EM FUNÇÃO DA VELOCIDADE E VISCOSIDADE APARENTE DE SUSPENSÕES DE AREIA EM ÁGUA 16 TÍTULO: BOMBEAMENTO DE POLPA: CURVA EXPERIMENTAL DA PERDA DE CARGA EM FUNÇÃO DA VELOCIDADE E VISCOSIDADE APARENTE DE SUSPENSÕES DE AREIA EM ÁGUA CATEGORIA: CONCLUÍDO ÁREA: ENGENHARIAS E ARQUITETURA

Leia mais

Convecção Forçada Externa

Convecção Forçada Externa Convecção Forçada Externa Força de arrasto e sustentação Arrasto: força que o escoamento exerce na sua própria direção. Corpos submetidos a escoamento de fluidos são classificados: Região separada: Uma

Leia mais

Laboratório de Engenharia Química I Aula Prática 01. Determinação do regime de escoamento: Experiência de Reynolds. Prof. Dr. Gilberto Garcia Cortez

Laboratório de Engenharia Química I Aula Prática 01. Determinação do regime de escoamento: Experiência de Reynolds. Prof. Dr. Gilberto Garcia Cortez Laboratório de Engenharia Química I Aula Prática 01 Determinação do regime de escoamento: Experiência de Reynolds Prof. Dr. Gilberto Garcia Cortez 1 Introdução Em 1883, procurando observar o comportamento

Leia mais

Experiência 6 - Perda de Carga Distribuída ao Longo de

Experiência 6 - Perda de Carga Distribuída ao Longo de Experiência 6 - Perda de Carga Distribuída ao Longo de Tubulações Prof. Vicente Luiz Scalon 1181 - Lab. Mecânica dos Fluidos Objetivo: Medida de perdas de carga linear ao longo de tubos lisos e rugosos.

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE MEDIÇÃO DE VAZÃO POR METODOS NÃO TRADICIONAIS MEDIÇÃO DE VAZÃO POR CÁLCULO

Leia mais

5. Análise dos Resultados

5. Análise dos Resultados 5. Análise dos Resultados 5.1. Capacidade de Resfriamento Como já mencionado, o calor trocado foi medido nos dois fluidos. À medida feita do lado da pasta de gelo denominou-se capacidade de resfriamento.

Leia mais

SIMULAÇÃO 3D DA PERDA DE CARGA EM UMA TUBULAÇÃO PARA FLUXO LAMINAR UTILIANDO SOLIDWORKS.

SIMULAÇÃO 3D DA PERDA DE CARGA EM UMA TUBULAÇÃO PARA FLUXO LAMINAR UTILIANDO SOLIDWORKS. SIMULAÇÃO 3D DA PERDA DE CARGA EM UMA TUBULAÇÃO PARA FLUXO LAMINAR UTILIANDO SOLIDWORKS. Alcides Gabriel Prudêncio Coutinho Maciel (1) Marcos Joselem da Silva Barros (2); Márcio Roberto de Andrade Araújo

Leia mais

% % 40

% % 40 5 Simulação Física O comportamento da corrente de turbidez foi avaliado segundo as observações dos experimentos conduzidos juntamente com o Núcleo de Estudos de Correntes de Densidade, NECOD, do Instituto

Leia mais

Fluidodinâmica. Carlos Marlon Santos

Fluidodinâmica. Carlos Marlon Santos Fluidodinâmica Carlos Marlon Santos Fluidodinâmica Os fluidos podem ser analisados utilizando-se o conceito de sistema ou de volume de controle O sistema é definido quando uma certa quantidade de matéria

Leia mais

5 Resultados de Campo

5 Resultados de Campo 5 Resultados de Campo O modelo desenvolvido e testado no capítulo anterior foi utilizado para realizar a previsão de depósito de parafina em um poço produtor da Petrobras. Utilizando informações de geometria,

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE TROCADOR DE CALOR TRIPLO TUBO Por Mauro Jaeger Moreira Felipe Gregoletto

Leia mais

8º CONGRESSO IBEROAMERICANO DE ENGENHARIA MECANICA Cusco, 23 a 25 de Outubro de 2007

8º CONGRESSO IBEROAMERICANO DE ENGENHARIA MECANICA Cusco, 23 a 25 de Outubro de 2007 1 8º CONGRESSO IBEROAMERICANO DE ENGENHARIA MECANICA Cusco, 23 a 25 de Outubro de 2007 UTILIZACÂO DE UM MODELO MATEMÁTICO PARA ALTERACÂO NA ESCALA DE UM ROTÂMETRO PARA OPERAR COM UM FLUIDO QUALQUER Dias

Leia mais

EN Escoamento interno. Considerações fluidodinâmicas e térmicas

EN Escoamento interno. Considerações fluidodinâmicas e térmicas Universidade Federal do ABC EN 411 - Escoamento interno. Considerações fluidodinâmicas e térmicas Considerações fluidodinâmicas Escoamento laminar dentro de um tubo circular de raio r o, onde o fluido

Leia mais

Fenômenos de Transporte I. Prof. Gerônimo Virgínio Tagliaferro

Fenômenos de Transporte I. Prof. Gerônimo Virgínio Tagliaferro Fenômenos de Transporte I Prof. Gerônimo Virgínio Tagliaferro Ementa 1) Bases conceituais para o estudo dos Fenômenos de transporte 2) Propriedades gerais dos fluidos 3) Cinemática dos fluidos:. 4) Equações

Leia mais

4.6. Experiência do tubo de Pitot

4.6. Experiência do tubo de Pitot 4.6. Experiência do tubo de Pitot 98 O tubo de Pitot serve para determinar a velocidade real de um escoamento. Na sua origem, poderia ser esquematizado como mostra a figura 33. Figura 33 que foi extraída

Leia mais

RESUMO 1. INTRODUÇÃO. Figura 1 Primeiro caso de canais axiais. Figura 2 Segundo caso de canais axiais. Figura 3 Terceiro caso de canais axiais.

RESUMO 1. INTRODUÇÃO. Figura 1 Primeiro caso de canais axiais. Figura 2 Segundo caso de canais axiais. Figura 3 Terceiro caso de canais axiais. ESTUDO COMPARATIVO DA EFICIÊNCIA DOS CANAIS AXIAIS DE VENTILAÇÃO DE ROTORES UTILIZANDO O MÉTODO DOS ELEMENTOS FINITOS (SOFTWARE ANSYS) Hilton Penha Silva - Departamento da Engenharia do Produto - WM RESUMO

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE PROJETO DE UM TROCADOR DE CALOR PARA UM PASTEURIZADOR DE CERVEJA por

Leia mais

Aula 21 Convecção Natural

Aula 21 Convecção Natural Aula 1 Convecção Natural UFJF/Departamento de Engenharia de Produção e Mecânica Prof. Dr. Washington Orlando Irrazabal Bohorquez Considerações Gerais A convecção natural tem lugar quando há movimento de

Leia mais

Projeto de um trocador de calor para arrefecimento de mosto de cerveja

Projeto de um trocador de calor para arrefecimento de mosto de cerveja UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA ENGENHARIA MECÂNICA Projeto de um trocador de calor para arrefecimento de mosto de cerveja Eduardo Bered Fernandes Vieira - 170595 Leandro

Leia mais

Perda de Carga e Comprimento Equivalente

Perda de Carga e Comprimento Equivalente Perda de Carga e Comprimento Equivalente Objetivo da aula: Conceitos sobre Perda de Carga e Comprimento Equivalente, Para que os mesmos possam utilizá-los, futuramente, para especificar bombas hidráulicas

Leia mais

TRANSP. BRAS. GAS. BOLÍVIA-BRASIL GERAL SIMULAÇÃO ÍNDICE DE REVISÕES DESCRIÇÃO E / OU FOLHAS ATINGIDAS

TRANSP. BRAS. GAS. BOLÍVIA-BRASIL GERAL SIMULAÇÃO ÍNDICE DE REVISÕES DESCRIÇÃO E / OU FOLHAS ATINGIDAS GOPE CAT. : ÁREA DE ATIVIDADE: SERVIÇO: TÍTULO : TRANSP. BRAS. GAS. BOLÍVIA-BRASIL GERAL SIMULAÇÃO de 9 METODOLOGIA DE CÁLCULO DO COEFICIENTE GLOBAL DE TRANSFERÊNCIA DE CALOR REV. ÍNDICE DE REVISÕES DESCRIÇÃO

Leia mais

TRANSMISSÃO DE CALOR resumo

TRANSMISSÃO DE CALOR resumo TRANSMISSÃO DE CALOR resumo convecção forçada abordagem experimental ou empírica Lei do arrefecimento de Newton Taxa de Transferência de Calor por Convecção 𝑞"#$ ℎ𝐴 𝑇 𝑇 ℎ 1 𝐴 ℎ - Coeficiente Convectivo

Leia mais

LOQ Fenômenos de Transporte I

LOQ Fenômenos de Transporte I LOQ 4083 - Fenômenos de Transporte I FT I 1 EXERCÍCIOS Prof. Lucrécio Fábio dos Santos Departamento de Engenharia Química LOQ/EEL Atenção: Estas notas destinam-se exclusivamente a servir como roteiro de

Leia mais

Disciplina: Instrumentação e Controle de Sistemas Mecânicos. Mensuração da Vazão Parte 1

Disciplina: Instrumentação e Controle de Sistemas Mecânicos. Mensuração da Vazão Parte 1 Disciplina: Instrumentação e Controle de Sistemas Mecânicos Mensuração da Vazão Parte 1 Medidores de Vazão 1. Tipo turbina 2. Medidores magnéticos 3. Medidores ultra-sônicos 4. Placa de orifício / sensor

Leia mais

ENG03366 INTRODUÇÃO À ENGENHARIA MECÂNICA. ENG INTRODUÇÃO À ENGENHARIA MECÂNICA Aula No. 4 Modelo Francis H. R. França

ENG03366 INTRODUÇÃO À ENGENHARIA MECÂNICA. ENG INTRODUÇÃO À ENGENHARIA MECÂNICA Aula No. 4 Modelo Francis H. R. França ENG03366 INTRODUÇÃO À ENGENHARIA MECÂNICA ENG 03363 INTRODUÇÃO À ENGENHARIA MECÂNICA Aula No. 4 Modelo Francis H. R. França Modelo Em geral, é impraticável a solução de um problema de engenharia considerando

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Física Lista 1 Física 2. prof. Daniela Szilard 23 de maio de 2016

Universidade Federal do Rio de Janeiro Instituto de Física Lista 1 Física 2. prof. Daniela Szilard 23 de maio de 2016 Universidade Federal do Rio de Janeiro Instituto de Física Lista 1 Física 2 prof. Daniela Szilard 23 de maio de 2016 1. Julgue os itens: verdadeiro ou falso. ( ) A lei de Stevin é válida para qualquer

Leia mais

LABORATÓRIO DE ENGENHARIA QUÍMICA I

LABORATÓRIO DE ENGENHARIA QUÍMICA I LABORATÓRIO DE ENGENHARIA QUÍMICA I Prof. Gerônimo Virgínio Tagliaferro FENÔMENOS DE TRANSPORTE EXPERIMENTAL Programa Resumido 1) Cominuição e classificação de sólidos granulares 2) Medidas de Vazão em

Leia mais

EDITAL DE TRABALHO FINAL DA DISCIPLINA MEDIÇÕES TÉRMICAS Edição

EDITAL DE TRABALHO FINAL DA DISCIPLINA MEDIÇÕES TÉRMICAS Edição UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA ENGENHARIA MECÂNICA E DE ENERGIA ENG 03108 Medições Térmicas (Energia e Fenômenos de Transporte) Prof. Paulo Smith Schneider EDITAL DE TRABALHO

Leia mais

SIMULAÇÃO NUMÉRICA DE UM CONDENSADOR A AR

SIMULAÇÃO NUMÉRICA DE UM CONDENSADOR A AR SIMULAÇÃO NUMÉRICA DE UM CONDENSADOR A AR R. S. MELLO e A. L. H. COSTA Universidade do Estado do Rio de Janeiro E-mail para contato: rsmello@outlook.com RESUMO A crescente necessidade da indústria química

Leia mais

Desenvolvimento de Bancada Didática para Estudos de Desempenho Térmico de um Trocador de Calor Compacto Aletado

Desenvolvimento de Bancada Didática para Estudos de Desempenho Térmico de um Trocador de Calor Compacto Aletado Curso de Engenharia Mecânica Desenvolvimento de Bancada Didática para Estudos de Desempenho Térmico de um Trocador de Calor Compacto Aletado Hugo Sotelo Goulart Campinas São Paulo Brasil Dezembro de 2008

Leia mais

PROGRAMA DE ENSINO CÓDIGO DISCIPLINA OU ESTÁGIO SERIAÇÃO IDEAL/PERÍODO

PROGRAMA DE ENSINO CÓDIGO DISCIPLINA OU ESTÁGIO SERIAÇÃO IDEAL/PERÍODO PROGRAMA DE ENSINO UNIDADE UNIVERSITÁRIA: UNESP CÂMPUS DE ILHA SOLTEIRA CURSO: ENGENHARIA MECÂNICA (Resolução UNESP n O 74/2004 - Currículo: 4) HABILITAÇÃO: OPÇÃO: DEPARTAMENTO RESPONSÁVEL: Engenharia

Leia mais

FENÔMENOS DE TRANSPORTES

FENÔMENOS DE TRANSPORTES FENÔMENOS DE TRANSPORTES AULA 3 CLASSIFICAÇÃO DE ESCOAMENTOS PROF.: KAIO DUTRA Descrição e Classificação dos Movimentos de Fluido A mecânica dos fluidos é uma disciplina muito vasta: cobre desde a aerodinâmica

Leia mais

HIDROSTÁTICA. Priscila Alves

HIDROSTÁTICA. Priscila Alves HIDROSTÁTICA Priscila Alves priscila@demar.eel.usp.br OBJETIVOS Exemplos a respeito da Lei de Newton para viscosidade. Variação da pressão em função da altura. Estática dos fluidos. Atividade de fixação.

Leia mais

Conclusão 6.1. Desenvolvimento e Validação do Método

Conclusão 6.1. Desenvolvimento e Validação do Método 6 Conclusão A primeira contribuição da tese no estado da arte é a apresentação e discussão de uma metodologia para simulação numérica e análise de medidores ultrassônicos. É apresentado um método para

Leia mais