NOÇÕES DE. Maputo, Moçambique
|
|
|
- Alexandre Martini Taveira
- 10 Há anos
- Visualizações:
Transcrição
1 NOÇÕES DE ESTATISTICA BÁSICA Maputo, Moçambique 2008
2 Objectivos No final deste módulo espera-se que o participante seja capaz de: Distinguir variáveis e constantes Identificar variáveis qualitativas e quantitativas Conhecer as medidas de tendência central e de dispersão Caracterizar população e amostra Construir uma amostra Diferenciar estatística descritiva e inferencial
3 Tópicos Conceitos básicos de Estatística Estatística Descritiva Inferência Estatística Introdução à Amostragem Enquadramento dos Métodos Estatísticos na M&A
4 Conceitos Básicos de Estatística Estatística - Metodologia científica para obtenção, organização e análise de dados Estatística Descritiva Metodologia para descrever, colectar, organizar e resumir os dados. Inferência Estatística Conjunto de métodos estatísticos que visam caracterizar ou inferir sobre uma POPULAÇÃO a partir de uma parte dela (AMOSTRA)
5 Conceitos Básicos de Estatística As pessoas de uma comunidade podem ser analisadas de diversos ângulos: Sexo; Estatura, Renda Sexo, estatura e renda são variáveis Propriedades associadas com conceitos ou números e expressar informação sobre a forma de medida Qualquer característica associada a uma população.
6 Conceitos Básicos de Estatística Classificação das variáveis: QUALITATIVA NOMINAL ORDINAL sexo, cor dos olhos classe social, grau de instrução QUANTITATIVA CONTÍNUA DISCRETA peso, altura, salário, idade número de filhos, número de carros, numero de raparigas por turma
7 Conceitos Básicos de Estatística - Variáveis Qualitativa Nominal - os valores representam atributos ou qualidades mas não tem uma relação de ordem entre eles Ex: sexo, grupo sanguíneo, raça et Qualitativa Ordinal - os valores representam atributos ou qualidades mas incluem uma relações de ordem Ex: classe social, grau de instrução Quantitativa Continua - valores são medidos numa escala métrica e onde todos os valores fraccionários são possíveis. Ex: altura, peso, temperatura Quantitativa Discreta - valores são medidos numa escala métrica e porem só admitem valores inteiros Ex: numero de filhos, numero de alunos,
8 MÓDULO 1: NOÇOES BÁSICAS DE ESTATISTICA Exercício 4
9 Estatística Descritiva Metodologia para, colectar, organizar, resumir e descrever os dados.
10 MÓDULO 2: NOÇOES DE ESTATISTICA BÁSICA Estatística Descritiva Calculo numérico de medidas amostrais Medidas de Tendência Central Média aritmética Mediana Moda Medidas de Dispersão Variância Desvio Padrão
11 Representado como:
12 Lê-se : somatório de todos os Xi (xis i) quando i varia de 1 a n. Por ex.: media aritmética de 2,5,8,13,14,15,20,30,46,47 é IMPORTANTE: A media aritmética é o valor que pode substituir todos os valores da variável, isto e o valor que a variável teria se em vez de ser uma variável fosse uma constante
13
14 Estatística Descritiva Medidas de Tendência central Calculo numérico Média Aritmética n DADOS ISOLADOS x i 1 xi n n DADOS AGRUPADOS x i 1 n x in n i 1 i i Onde ni o numero de ocorrências na classe i Xi representa o ponto médio de classe i Ex: para a classe o ponto médio seria 30
15 Estatística Descritiva Medidas de Tendência central Exercícios 1. Foi pedido a um grupo de 8 idosos que classificassem numa escala de 1 (pobre) a 7(Excelente), a qualidade da alimentação do centro de acolhimento onde vivem 2, 4, 2, 3, 5, 4, 3, 2 a) Calcule a média 2. Um treinador de futebol está preocupado em melhorar resultados da sua equipa elaborou uma tabela com a seguinte informação. Jogador No de passes errados a) Calcule o numero médio de passes errados por jogador
16 Estatística Descritiva Medidas de Tendência central Exercícios 2. Os dados da tabela abaixo representam os resultados de um inquérito para saber os rendimentos mensais de um grupo de pessoas envolvidas num programa apoio pelo trabalho Rend. N. pes Qual é o rendimento médio do grupo?
17 Calculo numérico Mediana Indicando a mediana por Md e o numero de dados por n, devem ser considerados 2 casos:
18
19
20
21
22 MEDIANA DE DADOS AGRUPADOS
23 MEDIANA DE DADOS AGRUPADOS
24 Estatística Descritiva Medidas de Tendência central Exercícios VOLTEMOS AOS NOSSOS EXERCIOS E CALCUEMOS A MEDIANA
25 CÁLCULO DA MODA Com exemplos fica mais fácil Calcular a moda de: 8, 2, 18, 8, 10, 8, 12, 10, 6, 8, 12
26 f fi Na prática acontece o mesmo é a moda! Se estão todos a ouvir os clássicos, dizemos que a a musica clássica está na moda. Se os chapéus entram na moda, então.
27
28 Estatística Descritiva Medidas de Tendência central Retomemos aos exemplos anteriores para determinar a moda
29 Estatística Descritiva Medidas de Dispersão
30 Estatística Descritiva Medidas de Dispersão
31 Estatística Descritiva Medidas de Dispersão Embora existam varias medidas de dispersão vamos nos ocupar de apenas duas:
32 Variância e desvio Padrão Vamos praticar para ser mais fácil o entendimento. Temos 2 conjuntos de atiradores ao alvo (A e B) CONJUNTO A: 8,9,10,8,6,11,7,13 Total de ACERTOS; 72 Total de ATIRADORES: 8 CONJUNTO B: 7,3,10,6,5,13,18,10 Total de ACERTOS; 72 Total de ATIRADORES: 8
33 Variância e desvio Padrão Se recorrermos a média aritmética dos acertos??? NÃO RESOLVEMOS o problema XA e XB = 9 acertos e por isso os conjuntos são iguais??? CONJUNTO A CONJUNTO B Acertos variam de 6 a 13 Acertos variam de 3 a 18 AMPLITUDE TOTAL de variação = 13-6 = 7 AMPLITUDE TOTAL de variação = 18-3 = 15 acertos acertos
34 Estatística Descritiva Medidas de Dispersão Mas para dizermos que algo variou precisamos de um ponto de referencia MÉDIA ARITMÉTICA DE CADA CONJUNTO E vamos fazer o seguinte. (por pura coincidência, neste caso a média é igual nos dois conjuntos)
35 Variância e desvio Padrão I. Subtrair de cada valor a média aritmética do conjunto ao qual pertence II. Elevar cada diferença encontrada ao quadrado III. Somar os quadrados IV. Dividir a soma dos quadrados pelo numero de parcelas
36 Variância e desvio Padrão Xi (Xi-X) = xi xi^ /8 = 4,5 ACERTOS 2 Yi (Yi-Y) = yi yi^ /8 = 20,5 ACERTOS
37 Variância e desvio Padrão
38 Variância e desvio Padrão
39 Variância e desvio Padrão
40 Variância e desvio Padrão Resumindo
41 Essas formulas lembram medidas. DESVIO PADRÃO pode ser interpretado como uma MEDIDA CAPAZ DE MEDIR VARIAÇÃO, ou seja: Conjunto A com variação de 2,1 acertos em média Conjunto B com variação de 4,5 acertos em média
42 MÓDULO 2: NOÇÕES DE ESTATÍSTICA BÁSICA QUANTO MAIOR A VARIÂNCIA, MAIOR A HETEROGENIDADE QUANTO MAIOR A VARIÂNCIA, MAIOR O DESVIO PADRÃO No exemplo O CONJUNTO A MAIS HOMOGENEO
43 Variância e desvio Padrão Retomando aos nossos exemplos vamos determinar a variância e desvio padrão.
44 MÓDULO 2: NOÇOES DE ESTATISTICA BÁSICA EXERCICIO 5
45 Conceitos Básicos de Estatística A inferência estatística conjunto de metodologia que apoiam na formulação de conclusões sobre as características de uma POPULAÇÃO a partir de uma parte dela (AMOSTRA)
46 MÓDULO 1: NOÇOES DE ESTATISTICA BÁSICA Introdução à Amostragem População ou Universo Colecção de unidades individuais com uma ou mais características comuns, que se pretendem estudar Exemplos Alunos de uma escola Crianças (0-5) de um orfanato Agregados familiar de uma província Cadeiras dentro do MMAS Automóveis da cidade de Maputo
47 MÓDULO 2: NOÇOES DE ESTATISTICA BÁSICA Introdução à Amostragem Se uma população for muito grande requererá muito trabalho para estuda-la e geralmente os resultados serão sempre falhos. Então recorre se a UMA AMOSTRA UMA AMOSTRA é uma redução representativa da População a dimensões menores, porem Sem perda da característica
48 MÓDULO 2: NOÇOES DE ESTATISTICA BÁSICA AMOSTRA EXEMPLOS No exemplo da escola queremos realizar um estudo sobre qual é a altura média Tendo a escola 400 alunos para, podemos colher uma amostra de 40 alunos e estudar o comportamento da variável Altura apenas nesses alunos No exemplo dos agregados familiares queremos saber qual é o rendimento médio dos agregados familiares de uma província. O censo mostra que há 15 mil agregados familiares em Manica. Podemos estudar como se comporta o rendimento familiar de 601 agregados
49 MÓDULO 2: NOÇOES DE ESTATISTICA BÁSICA UMA AMOSTRA tem que ser; Representativa conter em proporção tudo o que a população possui qualitativa e quantitativamente Imparcial todos os elementos da população tem igual oportunidade de fazer parte da amostra
50 MÓDULO 2: NOÇOES DE ESTATISTICA BÁSICA UMA AMOSTRA é a redução de uma população a Dimensões menores, porem Sem perda de suas características Ao processo de definição da amostra chama-se
51 MÓDULO 2: NOÇOES DE ESTATISTICA BÁSICA Amostragem Probabilistica e Não Probabilistica Métodos Probablisticos (Aleatórios) Todos os elementos da população tem uma probabilidade conhecida, diferente de zero, de pertencer à amostra. Desta forma, a amostragem probabilística implica um sorteio com regras bem determinadas. Métodos Não Probablisticos (Não Aleatórios) Quando não é possível designar uma probabilidade a cada elemento da população, dizemos que a amostragem é não probabilistica.
52 MÓDULO 2: NOÇOES DE ESTATISTICA BÁSICA Amostragens Probabilísticas Aleatória Simples Estratificada Por Clusters Multi-Etapas
53 Amostragem Probabilistica e Não Probabilistica Para os que trabalham com a área social, interessam os métodos que permitem que qualquer indivíduo da POPULAÇÃO possa vir a fazer parte da AMOSTRA métodos PROBALÍSTICOS.
54 Não há dúvida de que uma amostra não representa perfeitamente uma população. Ou seja, a utilização de uma amostra implica na aceitação de uma margem de erro que se denomina ERRO AMOSTRAL. Erro Amostral é a diferença entre um resultado amostral e o verdadeiro resultado populacional; tais erros resultam de flutuações amostrais aleatórias
55 Não podemos evitar a ocorrência do ERRO AMOSTRAL, porém podemos limitar seu valor através da escolha de uma amostra de tamanho adequado. Obviamente, o ERRO AMOSTRAL e o TAMANHO DA AMOSTRA seguem sentidos contrários. Quanto maior o tamanho da amostra, menor o erro cometido e vice-versa. TAMANHO DA AMOSTRA ERRO AMOSTRAL +
56 DETERMINAÇÃO DO TAMANHO DE UMA AMOSTRA COM BASE NA ESTIMATIVA DA MÉDIA POPULACIONAL A determinação do tamanho de uma amostra é problema de grande importância, porque: Amostras desnecessariamente grandes acarretam desperdício de tempo e de dinheiro; Amostras excessivamente pequenas podem levar a resultados não confiáveis.
57 Tamanho da amostra para a população muito grande
58
59
60
61 A fórmula para cálculo do tamanho da amostra para uma estimativa confiável da MÉDIA POPULACIONAL (Ψ) é dada por: ( Z / 2 S ) 2 n E Onde: n Z α/2 s E α Número de indivíduos na amostra Valor crítico que corresponde ao grau de confiança desejado. Desvio-padrão populacional da variável estudada Margem de erro ou ERRO MÁXIMO DE ESTIMATIVA. Identifica a diferença máxima entre a MÉDIA AMOSTRAL ( X ) e a verdadeira MÉDIA POPULACIONAL Nível de significancia
62 Os valores de confiança mais utilizados e os valores de Z correspondentes Valores críticos associados ao grau de confiança na amostra Grau de Confiança α Valor Crítico Zα/2 90% 0,10 1,645 95% 0,05 1,96 99% 0,01 2,575
63 Exemplo Um economista deseja estimar a renda média para o primeiro ano de trabalho de um bacharel em direito. Quantos valores de renda devem ser tomados, se o economista deseja ter 95% de confiança em que a média amostral esteja a menos de $500,00 da verdadeira média populacional? Suponha que saibamos, por um estudo prévio, que para tais rendas, s = $6250,00.
64 Resolução Queremos determinar o tamanho n da amostra, dado que αα = 0,05 (95% de confiança) Z α/2=1,96. Desejamos que a média amostral seja a menos de $ 500 da média populacional, de forma que E = 500 Supondo S = 6250 e aplicamos a equação, obtendo: ( Z / 2 S ) 2 n 2 E 2 n=((1,96*6250) /500) = 601
65 Amostragem por proporção Tamanho da amostra: ( Z 2 / 2 ( p )(1 p )) n d[ ]i 2 E n 1.56 [1.962 (0.50) (1-0.50) / 0.052] n (esperando-se que 10% não queira responder ao questionário, a grosso modo esperando 60) n 660
66 Assumindo que: Z = 1.96 (assume 2-lados teste α =.05) E = máximo erro tolerado 5% p = proporção populacional esperada 0.50; esta e a estimativa mais conservadora d = efeito de desenho 1.56 i = aumento por ser necessário uma sub-amostra da população (na população percentagem de crianças menores que 2 anos não e homogénea em todos os AF)
67 Exemplo Entrevistas requeridas* Entrevistas por sitio** Sitios requeridos (arredondados) 90 * Baseado nos calculos da amostra - incrementado de 2,008 para 2,015 por causa de arredondamento baseado na estratificacao ** Baseado em materia logisitica Table 2: Sample Stratification Neigborhood Bairros BAIRRO Bairro de CENTRO HÍPICO Bairro de NHAMADJESSA Bairro de NHAMASSANE Bairro de 25 DE JUNHO Bairro AGOSTINHO NETO Bairro FRANCISCO MANYANGA Bairro de 1º DE MAIO Bairro de CHISSUI Bairro de HEROIS MOÇAMBICANOS Bairro de TRANGAPASSO P.A. de URBANA 1 P.A. de Urbana 1 P.A. de Urbana 2 # Sites P.A. de Urbana 3 Selected Cidade de Chimoio Habitantes Number of Habitants 47,553 49,645 73, ,056 Number of Sites per N. de sitios por Administrative areas P.A. (total of 75 sites) 28% 10 29% 10 43% % 34 Percentage of % habitantes Habitants
68 MÓDULO 2: NOÇOES DE ESTATISTICA BÁSICA Amostragem Aleatória Simples Estabelece-se o tamanho da amostra e aleatoriamente seleccionam-se os elementos que a compõe.
69 MÓDULO 2: NOÇOES DE ESTATISTICA BÁSICA Exemplo: Amostragem Aleatória Simples Exemplo uma escola com 400 alunos (meninos, idades entre 6 e 16 anos) para realizarmos um estudo sobre qual a estatura média? Podemos colher uma amostra de 40 alunos e estudar o comportamento da variável estatura apenas nesses alunos
70 MÓDULO 2: NOÇOES DE ESTATISTICA BÁSICA Exemplo: Amostragem Aleatória Simples
71 MÓDULO 2: NOÇOES DE ESTATISTICA BÁSICA Exemplo: Amostragem Aleatória Simples Vamos supor que os 30 alunos da primeira série são os seguintes:
72 MÓDULO 2: NOÇOES DE ESTATISTICA BÁSICA Para garantir Representatividade e Imparcialidade
73 MÓDULO 2: NOÇOES DE ESTATISTICA BÁSICA Exemplo: Amostragem Aleatória Simples Vamos supor que decidimos trabalhar com uma amostra de tamanho 40 e usamos a seguinte notação: N (população) = 400 Tamanho da População n (amostra) = 40 Tamanho da amostra Para garantirmos a representatividade, na amostra teremos :
74 MÓDULO 2: NOÇOES DE ESTATISTICA BÁSICA Exemplo: Amostragem Aleatória Simples Na primeira série 3 alunos
75 MÓDULO 2: NOÇOES DE ESTATISTICA BÁSICA Exemplo: Amostragem Aleatória Simples Agora vamos sortear os alunos de cada serie, obedecendo a seguinte regra: 1.Utilize a tabela de números aleatórios 2.Escolha as colunas e a linha 3.Escolha o sentido de consulta
76 MÓDULO 2: NOÇOES DE ESTATISTICA BÁSICA Exemplo: Amostragem Aleatória Simples Escolhi a coluna 5 e 6 e a fileira 3 e os números resultantes são:
77 MÓDULO 2: NOÇOES DE ESTATISTICA BÁSICA Exemplo: Amostragem Aleatória Simples Como só precisávamos de 3 alunos na primeira série os números sorteados são: 16,09 e 13 Responda: Porque não consideramos os outros números sorteados 69, 91 e 75? Porque usamos 2 colunas? Se tivéssemos 120 alunos quantas colunas teríamos de usar?
78 MÓDULO 2: NOÇOES DE ESTATISTICA BÁSICA Exemplo: Amostragem Aleatória Simples Vamos agora ver as alturas e temos a seguinte tabela:
79 MÓDULO 2: NOÇOES DE ESTATISTICA BÁSICA Exemplo: Amostragem Aleatória Simples Já temos uma amostra representativa da população inicial. Os alunos passam a ser tratados como dados (alturas) e podem dar origem a diversas relações estatísticas: MÉDIA ARITMETICA MEDIANA MODA VARIÂNCIA DESVIO PADRÃO
80 MÓDULO 2: NOÇOES DE ESTATISTICA BÁSICA Exercícios (exemplos) de determinação do tamanho da amostra
81 MÓDULO 2: NOÇOES DE ESTATISTICA BÁSICA Enquadramento dos Métodos Estatísticos na M&A Processo de Informação Indicadores Fontes Recolha de Dados Transferência de Dados Gestão Processamento de Dados Análise Uso da Informação para Tomada de Decisão Normas Organizacionais
82 MÓDULO 2: NOÇOES DE ESTATISTICA BÁSICA Exercício 6
83 Obrigado!
84 MEASURE Evaluation is funded by the U.S. Agency for International Development (USAID) through Cooperative Agreement GPO-A and is implemented by the Carolina Population Center at the University of North Carolina in partnership with Constella Futures Group, John Snow, Inc., Macro International, and Tulane University. Visit us online at
Pesquisa em Marketing
Pesquisa em Marketing Aula 4 1. Identificar o tamanho da amostral ideal 2. Saber calcular a amostra O Processo de Amostragem TIPOS DE AMOSTRAGEM Amostra não-probabilística Amostra por Conveniência Amostra
O que é a estatística?
Elementos de Estatística Prof. Dr. Clécio da Silva Ferreira Departamento de Estatística - UFJF O que é a estatística? Para muitos, a estatística não passa de conjuntos de tabelas de dados numéricos. Os
EXERCÍCIOS EXERCÍCIOS. Definições Básicas. Definições Básicas. Definições Básicas. Introdução à Estatística. Dados: valores de variáveis observadas.
Definições Básicas Introdução à Estatística ESTATÍSTICA: estudo dos métodos para coletar, organizar, apresentar e analisar dados. População: conjunto constituído por todos os indivíduos que apresentem
ANÁLISE ANÁ DE DADOS DAD
ANÁLISE DE DADOS Maputo, Moçambique 2008 Objectivos No final deste módulo espera-se que o participante seja capaz de: Distinguir as etapas na Análise de Dados Qualitativos Distinguir as etapas na Análise
Estatística Aplicada ao Serviço Social Módulo 1:
Estatística Aplicada ao Serviço Social Módulo 1: Introdução à Estatística Importância da Estatística Fases do Método Estatístico Variáveis estatísticas. Formas Iniciais de Tratamento dos Dados Séries Estatísticas.
Estatística Descritiva I
Estatística Descritiva I Bacharelado em Economia - FEA - Noturno 1 o Semestre 2016 Profs. Fábio P. Machado e Gilberto A. Paula MAE0219 (Economia-FEA-Noturno) Estatística Descritiva I 1 o Semestre 2016
DETERMINAÇÃO DO TAMANHO DE UMA AMOSTRA
DETERMINAÇÃO DO TAMANHO DE UMA AMOSTRA INTRODUÇÃO O pesquisador social procura tirar conclusões a respeito de um grande número de sujeitos. Por exemplo, ele poderia desejar estudar: os 170.000.000 de cidadãos
ESTATÍSTICA. aula 1. Insper Ibmec São Paulo. Prof. Dr. Marco Antonio Leonel Caetano
ESTATÍSTICA aula 1 Prof. Dr. Marco Antonio Leonel Caetano Insper Ibmec São Paulo ESTATÍSTICA COISAS DO ESTADO ESTATÍSTICA: - Apresentação e Análise de dados - Tomadas de Decisões baseadas em análises -
QUALITATIVA VARIÁVEL QUANTITATIVA
NOMINAL ORDINAL QUALITATIVA VARIÁVEL QUANTITATIVA DISCRETA CONTÍNUA - Variável qualitativa nominal = valores que expressam atributos, sem nenhum tipo de ordem. Ex: cor dos olhos, sexo, estado civil, presença
Estatística: Conceitos e Organização de Dados. Introdução Conceitos Método Estatístico Dados Estatísticos Tabulação de Dados Gráficos
Estatística: Conceitos e Organização de Dados Introdução Conceitos Método Estatístico Dados Estatísticos Tabulação de Dados Gráficos Introdução O que é Estatística? É a parte da matemática aplicada que
Após essa disciplina você vai ficar convencido que a estatística tem enorme aplicação em diversas áreas.
UNIVERSIDADE FEDERAL DA PARAÍBA INTRODUÇÃO Departamento de Estatística Luiz Medeiros http://www.de.ufpb.br/~luiz/ CONCEITOS FUNDAMENTAIS DE ESTATÍSTICA O que a Estatística significa para você? Pesquisas
Inferência Estatística-Macs11ºano
INFERÊNCIA ESTATÍSTICA Inferência Estatística-Macs11ºano Estatística Descritiva: conjunto de métodos para sintetizar e representar de forma compreensível a informação contida num conjunto de dados. Usam-se,
Teorema Central do Limite e Intervalo de Confiança
Probabilidade e Estatística Teorema Central do Limite e Intervalo de Confiança Teorema Central do Limite Teorema Central do Limite Um variável aleatória pode ter uma distribuição qualquer (normal, uniforme,...),
Leia o texto abaixo para resolver as questões sobre população e amostra.
Leia o texto abaixo para resolver as questões sobre população e amostra. População e amostra População e amostra referem-se ao conjunto de entes cujas propriedades desejamos averiguar. População estatística
UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo
UNIVERSIDADE DE SÃO PAULO Faculdade de Arquitetura e Urbanismo DISTRIBUIÇÃO AMOSTRAL ESTIMAÇÃO AUT 516 Estatística Aplicada a Arquitetura e Urbanismo 2 DISTRIBUIÇÃO AMOSTRAL Na aula anterior analisamos
Teorema do Limite Central e Intervalo de Confiança
Probabilidade e Estatística Teorema do Limite Central e Intervalo de Confiança Teorema do Limite Central Teorema do Limite Central Um variável aleatória pode ter uma distribuição qualquer (normal, uniforme,...),
Pressupostos verificação
Maputo, Moçambique 2008 Descrição do Projecto Indicadores Meios de Pressupostos verificação Goal: Descrição ampla do Impacto Mede até que ponto o programa Fonte e métodos de que se pretende com o programa
INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE
INE 5 LISTA DE EERCÍCIOS DE PROBABILIDADE INE 5 Gabarito da Lista de Exercícios de Probabilidade ) Em um sistema de transmissão de dados existe uma probabilidade igual a 5 de um dado ser transmitido erroneamente.
COMENTÁRIO AFRM/RS 2012 ESTATÍSTICA Prof. Sérgio Altenfelder
Comentário Geral: Prova muito difícil, muito fora dos padrões das provas do TCE administração e Economia, praticamente só caiu teoria. Existem três questões (4, 45 e 47) que devem ser anuladas, por tratarem
Introdução a Química Analítica. Professora Mirian Maya Sakuno
Introdução a Química Analítica Professora Mirian Maya Sakuno Química Analítica ou Química Quantitativa QUÍMICA ANALÍTICA: É a parte da química que estuda os princípios teóricos e práticos das análises
Tópicos Abordados. Pesquisa de Mercado. Aula 2. Contextualização. Qualitativa X Quantitativa. Instrumentalização. 1. Diferença entre qualitativa
Tópicos Abordados Pesquisa de Mercado Aula 2 Prof. Me. Ricieri Garbelini 1. Diferença entre qualitativa e quantitativa 2. Dados X informação 3. Tipos de coleta 4. Classificação dos dados 5. Amostragem
Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano
Organização e tratamento de dados Representação e interpretação de dados Formulação de questões Natureza dos dados Tabelas de frequências absolutas e relativas Gráficos de barras, circulares, de linha
Revisão de Estatística Básica:
Revisão de Estatística Básica: Estatística: Um número é denominado uma estatística (singular). Ex.: As vendas de uma empresa no mês constituem uma estatística. Estatísticas: Uma coleção de números ou fatos
Estatística Aplicada ao Serviço Social
Estatística Aplicada ao Serviço Social Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Introdução O que é Estatística? Coleção de métodos
MATEMÁTICA. Recenseamento/Sondagem ESTATÍSTICA
MATEMÁTICA NOME: ANO: TURMA: N.º FICHA INFORMATIVA ESTATÍSTICA A estatística é uma área da Matemática que trata da recolha, organização, resumo e interpretação de dados, e está presente em todos os ramos
Escola Secundária de Jácome Ratton
Escola Secundária de Jácome Ratton Ano Lectivo 2010/2011 Matemática Aplicada às Ciências Sociais Amostragem Sondagem Uma sondagem pressupõe a escolha de uma amostra. A selecção da amostra é uma das fases
Cláudio Tadeu Cristino 1. Julho, 2014
Inferência Estatística Estimação Cláudio Tadeu Cristino 1 1 Universidade Federal de Pernambuco, Recife, Brasil Mestrado em Nutrição, Atividade Física e Plasticidade Fenotípica Julho, 2014 C.T.Cristino
Capítulo 7 Medidas de dispersão
Capítulo 7 Medidas de dispersão Introdução Para a compreensão deste capítulo, é necessário que você tenha entendido os conceitos apresentados nos capítulos 4 (ponto médio, classes e frequência) e 6 (média).
http://www.de.ufpb.br/~luiz/
UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Luiz Medeiros http://www.de.ufpb.br/~luiz/ Vimos que é possível sintetizar os dados sob a forma de distribuições de frequências
Aula 4 Conceitos Básicos de Estatística. Aula 4 Conceitos básicos de estatística
Aula 4 Conceitos Básicos de Estatística Aula 4 Conceitos básicos de estatística A Estatística é a ciência de aprendizagem a partir de dados. Trata-se de uma disciplina estratégica, que coleta, analisa
CAPÍTULO 9 Exercícios Resolvidos
CAPÍTULO 9 Exercícios Resolvidos R9.1) Diâmetro de esferas de rolamento Os dados a seguir correspondem ao diâmetro, em mm, de 30 esferas de rolamento produzidas por uma máquina. 137 154 159 155 167 159
MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade
MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 19 de Agosto, 2013 Probabilidade: uma Introdução / Aula 3 1 Probabilidade Discreta: Exemplos
Resoluções comentadas das questões de Estatística da prova para. ANALISTA DE GERENCIAMENTO DE PROJETOS E METAS da PREFEITURA/RJ
Resoluções comentadas das questões de Estatística da prova para ANALISTA DE GERENCIAMENTO DE PROJETOS E METAS da PREFEITURA/RJ Realizada pela Fundação João Goulart em 06/10/2013 41. A idade média de todos
Instituto Politécnico de Viseu Escola Superior de Tecnologia
Instituto Politécnico de Viseu Escola Superior de Tecnologia Departamento: Matemática Estatística I Curso: Contabilidade e Administração Ano: 3 o Semestre: o Prova: Exame Época: Normal Ano Lectivo: 2004/2005
CURSO ON-LINE PROFESSOR GUILHERME NEVES 1
CURSO ON-LINE PROFESSOR GUILHERME NEVES 1 Olá pessoal! Resolverei neste ponto a prova de Matemática e Estatística para Técnico Administrativo para o BNDES 2008 organizado pela CESGRANRIO. Sem mais delongas,
Atividade 4 - Acerte no alvo
Atividade 4 - Acerte no alvo 1. Justificativa Para entender um processo estatístico, é possível criar um experimento em que os alunos possam vivenciá-lo, organizando, selecionando, interpretando e criticando
3. Características amostrais. Medidas de localização e dispersão
Estatística Descritiva com Excel Complementos. 77 3. Características amostrais. Medidas de localização e dispersão 3.1- Introdução No módulo de Estatística foram apresentadas as medidas ou estatísticas
PLANIFICAÇÃO OPERACIONAL DA PESQUISA
Laboratório de Psicologia Experimental Departamento de Psicologia UFSJ Disciplina: Método de Pesquisa Quantitativa TEXTO 8: PLANIFICAÇÃO OPERACIONAL DA PESQUISA Autora: Prof. Marina Bandeira,Ph.D. 1. POPULAÇÃO-
ESTATÍSTICA. Professor: Ricardo Vojta
ESTATÍSTICA Ciências Contábeis Professor: Ricardo Vojta RAMOS DA ESTATÍSTICA A estatística dedutiva (também conhecida como Estatística Descritiva) se encarrega de descrever o conjunto de dado desde a elaboração
Medidas e Incertezas
Medidas e Incertezas O que é medição? É o processo empírico e objetivo de designação de números a propriedades de objetos ou eventos do mundo real de forma a descreve-los. Outra forma de explicar este
MÉDIA ARITMÉTICA MÉDIA PONDERADA MODA MEDIANA
MÉDIA ARITMÉTICA MÉDIA PONDERADA MODA MEDIANA Em um amostra, quando se têm os valores de uma certa característica, é fácil constatar que os dados normalmente não se distribuem uniformemente, havendo uma
Áurea Sousa /Deptº. Matemática U.A. Áurea Sousa /Deptº. Matemática U.A.
Métodos Estatísticos Mestrado em Gestão (MBA) Objectivos O que é a estatística? Como pode a estatística ajudar? Compreender o método de análise estatística; Reconhecer problemas que podem ser resolvidos
Noções de Pesquisa e Amostragem. André C. R. Martins
Noções de Pesquisa e Amostragem André C. R. Martins 1 Bibliografia Silva, N. N., Amostragem probabilística, EDUSP. Freedman, D., Pisani, R. e Purves, R., Statistics, Norton. Tamhane, A. C., Dunlop, D.
Estatística Aplicada. Gestão de TI. Evanivaldo Castro Silva Júnior
Gestão de TI Evanivaldo Castro Silva Júnior Porque estudar Estatística em um curso de Gestão de TI? TI trabalha com dados Geralmente grandes bases de dados Com grande variabilidade Difícil manipulação,
Métodos Matemáticos para Gestão da Informação
Métodos Matemáticos para Gestão da Informação Aula 05 Taxas de variação e função lineares III Dalton Martins [email protected] Bacharelado em Gestão da Informação Faculdade de Informação e Comunicação
Omatematico.com ESTATÍSTICA DESCRITIVA
Omatematico.com ESTATÍSTICA DESCRITIVA 1. Classifique as variáveis abaixo: (a) Tempo para fazer um teste. (b) Número de alunos aprovados por turma. (c) Nível sócio-econômico (d) QI (Quociente de inteligência).
DESENVOLVIMENTO DE UM SOFTWARE NA LINGUAGEM R PARA CÁLCULO DE TAMANHOS DE AMOSTRAS NA ÁREA DE SAÚDE
DESENVOLVIMENTO DE UM SOFTWARE NA LINGUAGEM R PARA CÁLCULO DE TAMANHOS DE AMOSTRAS NA ÁREA DE SAÚDE Mariane Alves Gomes da Silva Eliana Zandonade 1. INTRODUÇÃO Um aspecto fundamental de um levantamento
PÓS GRADUAÇÃO EM CIÊNCIAS DE FLORESTAS TROPICAIS-PG-CFT INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA-INPA. 09/abril de 2014
PÓS GRADUAÇÃO EM CIÊNCIAS DE FLORESTAS TROPICAIS-PG-CFT INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA-INPA 09/abril de 2014 Considerações Estatísticas para Planejamento e Publicação 1 Circularidade do Método
Centro Universitário Franciscano Material elaborado por: Professora Leandra Anversa Fioreze e Professor Clandio Timm Marques.
Conceitos Introdutórios 1. Definindo Estatística: Ciência que fornece métodos para a coleta, organização, descrição, análise e interpretação de dados, utilizando-os na tomada de decisões. 2. Divisão da
Amostragem. Prof. Joel Oliveira Gomes. Capítulo 9. Desenvolvimento
Capítulo 9 Amostragem Desenvolvimento 9.1 Introdução 9.2 Censo versus Amostra 9.3 Processo de planejamento de uma amostragem 9.4 Técnicas Amostrais 9.5 Amostragem Não-probabilística 9.6 Amostragem Probabilística
CURSO ON-LINE PROFESSOR GUILHERME NEVES
Olá pessoal! Neste ponto resolverei a prova de Matemática Financeira e Estatística para APOFP/SEFAZ-SP/FCC/2010 realizada no último final de semana. A prova foi enviada por um aluno e o tipo é 005. Os
Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG
Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - EPPGG 11. Em uma caixa há 1 bolas de mesmo tamanho: 3 brancas, 4 vermelhas e 5 pretas. Uma pessoa, no escuro, deve retirar n bolas
Distribuição de Freqüências
Distribuição de Freqüências Por constituir-se o tipo de tabela importante para a Estatística Descritiva, faremos um estudo completo da distribuição de freqüências. Uma distribuição de freqüências condensa
Apresentação... 19 Prefácio da primeira edição... 21 Prefácio da segunda edição... 27 Introdução... 33
Sumário Apresentação... 19 Prefácio da primeira edição... 21 Prefácio da segunda edição... 27 Introdução... 33 Capítulo I CIÊNCIA, CONHECIMENTOS E PESQUISA CIENTÍFICA... 37 1. Conceito de ciência e tipos
NOME DO ALUNO: Nome da Escola: Nome do
International Statistical Literacy Competition of the ISLP Competição Internacional de Literacia Estatística do ISLP NOME DO ALUNO: Ano de Escolaridade: Idade: Nome da Escola: Nome do Professor: Turma:
AULAS 22, 23 E 24 A lógica da amostragem do survey
1 AULAS 22, 23 E 24 A lógica da amostragem do survey Ernesto F. L. Amaral 03, 09 e 10 de junho de 2011 Metodologia (DCP 033) Fonte: Babbie, Earl. 1999. Métodos de Pesquisas de Survey. Belo Horizonte: Editora
Aula 1 Estatística e Probabilidade
Aula 1 Estatística e Probabilidade Anamaria Teodora Coelho Rios da Silva O QUE É ESTATÍSTICA? No nosso cotidiano, precisamos tomar decisões, muitas vezes decisões rápidas. A Estatística fornece métodos
Olá pessoal! Sem mais delongas, vamos às questões.
Olá pessoal! Resolverei neste ponto a prova para AFRE/SC 2010 realizada pela FEPESE no último final de semana. Nosso curso teve um resultado muito positivo visto que das 15 questões, vimos 14 praticamente
CURSO ON-LINE PROFESSOR: VÍTOR MENEZES. Comentários sobre as provas de estatística e financeira ICMS RJ
Comentários sobre as provas de estatística e financeira ICMS RJ Caríssimos, Acabei de voltar de uma longa auditoria em que visitamos inúmeros assentamentos federais do INCRA no interior do estado. Ou seja:
Estudo da Viabilidade da utilização de Cartão de Crédito para um Grupo de Clientes Essenciais
Estudo da Viabilidade da utilização de Cartão de Crédito para um Grupo de Clientes Essenciais Cleyton Zanardo de Oliveira CER, DEs, UFSCar Vera Lúcia Damasceno Tomazella, DEs, UFSCar Resumo Uma única pessoa
1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3.
1 1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. Modelo de Resultados Potenciais e Aleatorização (Cap. 2 e 3
Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO
Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - APO 11. O Dia do Trabalho, dia 1º de maio, é o 11º dia do ano quando o ano não é bissexto. No ano de 1958, ano em que o Brasil ganhou,
ESCOLA SECUNDÁRIA MANUEL DA FONSECA, SANTIAGO DO CACÉM GRUPO DISCIPLINAR: 500 Matemática Aplicada às Ciências Sociais
ANO: 11º ANO LECTIVO : 008/009 p.1/7 CONTEÚDOS MODELOS MATEMÁTICOS COMPETÊNCIAS A DESENVOLVER - Compreender a importância dos modelos matemáticos na resolução de problemas de problemas concretos. Nº. AULAS
Aula 4 Estatística Conceitos básicos
Aula 4 Estatística Conceitos básicos Plano de Aula Amostra e universo Média Variância / desvio-padrão / erro-padrão Intervalo de confiança Teste de hipótese Amostra e Universo A estatística nos ajuda a
INTRODUÇÃO AO ESTUDO DA ESTATÍSTICA
INTRODUÇÃO AO ESTUDO DA ESTATÍSTICA Prof. Dr. Ivan Bezerra Allaman Universidade Estadual de Santa Cruz - UESC Cronograma Introdução 1 Introdução 2 3 Você associa a estatística ao que? Qual a importância
MÓDULO 1. I - Estatística Básica
MÓDULO 1 I - 1 - Conceito de Estatística Estatística Técnicas destinadas ao estudo quantitativo de fenômenos coletivos e empíricamente observáveis. Unidade Estatística nome dado a cada observação de um
Profª Cristina Lacerda Soares Petrarolha Silva Questionário Muito comum na época das pesquisas eleitorais Existem regras para se fazer pesquisa na forma de questionários. Um exemplo: 1- Quando se faz
Medidas de Variação ou Dispersão
Medidas de Variação ou Dispersão Estatística descritiva Recapitulando: As três principais características de um conjunto de dados são: Um valor representativo do conjunto de dados: uma média (Medidas de
CRITÉRIOS PARA A DETERMINAÇÃO DOS INTERVALOS DE CLASSE
CRITÉRIOS PARA A DETERMINAÇÃO DOS INTERVALOS DE CLASSE Número de classes a considerar (k): a) Tabela de Truman L. Kelley n 5 10 25 50 100 200 500 1000 k 2 4 6 8 10 12 15 15 b) k=5 para n 25 e para n >25.
AULAS 04 E 05 Estatísticas Descritivas
1 AULAS 04 E 05 Estatísticas Descritivas Ernesto F. L. Amaral 19 e 28 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:
MÉTODOS QUANTITATIVOS EM MARKETING. Prof.: Otávio Figueiredo e-mail: [email protected]
MÉTODOS QUANTITATIVOS EM MARKETING Prof.: Otávio Figueiredo e-mail: [email protected] ESTATÍSTICA População e Amostra População Amostra Idéia Principal Resumir para entender!!! Algumas Técnicas Pesquisa de
1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3.
1 1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. Modelo de Resultados Potenciais e Aleatorização (Cap. 2 e 3
Pesquisa Aplicada à Estatística
Pesquisa Aplicada à Estatística Tatiene Correia de Souza / UFPB [email protected] September 14, 2014 Souza () Pesquisa Aplicada à Estatística September 14, 2014 1 / 23 Estatística: ideias gerais O que
CÁLCULO DO TAMANHO DA AMOSTRA PARA UMA PESQUISA ELEITORAL. Raquel Oliveira dos Santos, Luis Felipe Dias Lopes
CÁLCULO DO TAMANHO DA AMOSTRA PARA UMA PESQUISA ELEITORAL Raquel Oliveira dos Santos, Luis Felipe Dias Lopes Programa de Pós-Graduação em Estatística e Modelagem Quantitativa CCNE UFSM, Santa Maria RS
Elaborado por Eduardo Rebouças Carvalho Hermano Alexandre Lima Rocha DISTRIBUIÇÃO NORMAL
Faculdade de Medicina Universidade Federal do Ceará Elaborado por Eduardo Rebouças Carvalho Hermano Alexandre Lima Rocha DISTRIBUIÇÃO NORMAL - Uma curva de distribuição pode descrever a forma da distribuição
Distribuições de Probabilidade Distribuição Normal
PROBABILIDADES Distribuições de Probabilidade Distribuição Normal BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas
ESTATÍSTICA. O que é Estatística? É o ramo da Matemática que se encarrega de coletar dados sobre determinado assunto,
ESTATÍSTICA O que é Estatística? É o ramo da Matemática que se encarrega de coletar dados sobre determinado assunto, organizá-los e expôlos na forma de tabelas ou gráficos. Apresentando uma estatística
Eventos independentes
Eventos independentes Adaptado do artigo de Flávio Wagner Rodrigues Neste artigo são discutidos alguns aspectos ligados à noção de independência de dois eventos na Teoria das Probabilidades. Os objetivos
Disciplinas: Cálculo das Probabilidades e Estatística I
Introdução a Inferência Disciplinas: Cálculo das Probabilidades e Estatística I Universidade Federal da Paraíba Prof a. Izabel Alcantara Departamento de Estatística (UFPB) Introdução a Inferência Prof
PESQUISA DE MERCADO AMOSTRAGEM
PESQUISA DE MERCADO Universo, população e amostra Coleta de dados: é impossível adquirir informações de um todo (universo ou população); Por essa razão escolhe-se uma parte do todo (amostra) representação
Módulo 4. Construindo uma solução OLAP
Módulo 4. Construindo uma solução OLAP Objetivos Diferenciar as diversas formas de armazenamento Compreender o que é e como definir a porcentagem de agregação Conhecer a possibilidade da utilização de
Análise Exploratória de Dados
Análise Exploratória de Dados Profª Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Programa de Pós-graduação em Saúde Coletiva email: [email protected] Introdução O primeiro passo
1. Tipos de variáveis e organização dos dados
1. Tipos de variáveis e organização dos dados 2012 1.1 ARREDONDAMENTO Algarismo significativo é qualquer algarismo sobre o qual temos certeza na sua determinação. Em inglês: significant digit ou significant
Universidade da Beira Interior Departamento de Matemática
Universidade da Beira Interior Departamento de Matemática ESTATÍSTICA Ano lectivo: 2007/2008 Curso: Ciências do Desporto Ficha de exercícios nº1: Análise Exploratória de dados: Redução e Representação
Tópico 8. Estatística Inferencial Teste de Hipóteses
Tópico 8 Estatística Inferencial Teste de Hipóteses Estatística Inferencial Princípio básico da estatística População (Plano de Amostragem Probabilística) Amostra Generalizar Descrever dados Parâmetro
Introdução à Análise Química QUI 094 ERRO E TRATAMENTO DE DADOS ANALÍTICOS
Introdução a Analise Química - II sem/2012 Profa Ma Auxiliadora - 1 Introdução à Análise Química QUI 094 1 semestre 2012 Profa. Maria Auxiliadora Costa Matos ERRO E TRATAMENTO DE DADOS ANALÍTICOS Introdução
Vetores Aleatórios, correlação e conjuntas
Vetores Aleatórios, correlação e conjuntas Cláudio Tadeu Cristino 1 1 Universidade Federal Rural de Pernambuco, Recife, Brasil Segundo Semestre, 2013 C.T.Cristino (DEINFO-UFRPE) Vetores Aleatórios 2013.2
UNIVERSIDADE FEDERAL DO MATO GROSSO CAMPUS
BIOESTATÍSTICA Aula 0 TÓPICOS ABORDADOS: Introdução a estatística; Coleta de dados; Estatística descritiva; Distribuição de frequências; Notação de somatório Medidas de posição. ESTATÍSTICA É um ramo da
Universidade da Beira Interior - Departamento de Matemática ESTATÍSTICA APLICADA À PSICOLOGIA I
Ano lectivo: 2008/2009 Universidade da Beira Interior - Departamento de Matemática ESTATÍSTICA APLICADA À PSICOLOGIA I Ficha de exercícios 1 Validação de Pré-Requisitos: Estatística Descritiva Curso: Psicologia
CURSO ON-LINE PROFESSOR: VÍTOR MENEZES
Caríssimos. Recebi muitos e-mails pedindo ajuda com eventuais recursos para as provas do BACEN. Em raciocínio lógico, eu não vi possibilidade de recursos, apesar de achar que algumas questões tiveram o
PARTE I IMPORTÂNCIA DA INFORMAÇÃO PARA O MARKETING. TIPOLOGIA DOS ESTUDOS DE MERCADO
Índice Prefácio 15 PARTE I IMPORTÂNCIA DA INFORMAÇÃO PARA O MARKETING. TIPOLOGIA DOS ESTUDOS DE MERCADO Capítulo 1 Sistema de Informação de Marketing (SIM) 1. Definição e enquadramento genérico da necessidade
CADEX. Consultoria em Logística Interna. Layout de armazém. Objectivos. Popularidade. Semelhança. Tamanho. Características
CADEX Consultoria em Logística Interna Layout de armazém fonte: Wikipédia O layout de armazém é a forma como as áreas de armazenagem de um armazém estão organizadas, de forma a utilizar todo o espaço existente
Objetivos: Construção de tabelas e gráficos, escalas especiais para construção de gráficos e ajuste de curvas à dados experimentais.
7aula Janeiro de 2012 CONSTRUÇÃO DE GRÁFICOS I: Papel Milimetrado Objetivos: Construção de tabelas e gráficos, escalas especiais para construção de gráficos e ajuste de curvas à dados experimentais. 7.1
2aula TEORIA DE ERROS I: ALGARISMOS SIGNIFICATIVOS, ARREDONDAMENTOS E INCERTEZAS. 2.1 Algarismos Corretos e Avaliados
2aula Janeiro de 2012 TEORIA DE ERROS I: ALGARISMOS SIGNIFICATIVOS, ARREDONDAMENTOS E INCERTEZAS Objetivos: Familiarizar o aluno com os algarismos significativos, com as regras de arredondamento e as incertezas
Aula 10 Testes de hipóteses
Aula 10 Testes de hipóteses Na teoria de estimação, vimos que é possível, por meio de estatísticas amostrais adequadas, estimar parâmetros de uma população, dentro de certo intervalo de confiança. Nos
Sistema de Numeração e Aritmética Básica
1 Sistema de Numeração e Aritmética Básica O Sistema de Numeração Decimal possui duas características importantes: ele possui base 10 e é um sistema posicional. Na base 10, dispomos de 10 algarismos para
INTELIGÊNCIA ARTIFICIAL Data Mining (DM): um pouco de prática. (1) Data Mining Conceitos apresentados por
INTELIGÊNCIA ARTIFICIAL Data Mining (DM): um pouco de prática (1) Data Mining Conceitos apresentados por 1 2 (2) ANÁLISE DE AGRUPAMENTOS Conceitos apresentados por. 3 LEMBRE-SE que PROBLEMA em IA Uma busca
Prof. Dr. Guanis de Barros Vilela Junior
Prof. Dr. Guanis de Barros Vilela Junior INTRODUÇÃO O que é pesquisa? Pesquisar significa, de forma bem simples, procurar respostas para indagações propostas. INTRODUÇÃO Minayo (1993, p. 23), vendo por
