Sistemas e Sinais (LEE & LETI)
|
|
|
- Diana Back
- 6 Há anos
- Visualizações:
Transcrição
1 Sistemas e Sinais (LEE & LETI) 2º semestre 2013/2014 Laboratório nº 1 Sinais e Sistemas Isabel Lourtie Janeiro 2014 pfpfpf Grupo nº Turno Nº Nome: Nº Nome: Nº Nome: pfpfpf Data: / / 1. Introdução Este trabalho de laboratório explora conceitos básicos de sinais e de sistemas, nomeadamente, a periodicidade de sinais sinusoidais discretos, a propriedade de mudança de escala de sinais discretos e as propriedades de causalidade, estabilidade, linearidade e invariância temporal de sistemas. Este trabalho de laboratório utiliza, para além deste guia/relatório, os ficheiros compressao.m, sinal_ex5.mat e sinal_ex6.mat que deverão ser copiados para a directoria de trabalho no Matlab. O trabalho é constituído por questões a serem resolvidas antes da aula de laboratório (P) e questões a realizar durante a aula de laboratório (L). Todas as questões devem ser respondidas nos espaços reservados para o efeito no guia de laboratório. Caso o espaço seja insuficiente, poderão ser acrescentadas folhas adicionais. As figuras solicitadas nas questões (L) deverão ser guardadas em formato jpg. 1
2 No final da aula de laboratório os alunos devem: 1. entregar o relatório ao docente; 2. submeter, através do sistema Fénix, um ficheiro.zip com todas as figuras solicitadas no trabalho e a função Matlab desenvolvida na alínea c) do Ex Sinais Ex 1. (2 valores) Considere o sinal discreto =cos 8 5. a) (P) O sinal é periódico? Em caso afirmativo determine o seu período e frequência fundamentais. b) (L) Gere o sinal discreto para =0,,100, e represente-o graficamente em função do índice (ficheiro: ). Confirme a partir do gráfico que o período fundamental do sinal é efectivamente o determinado na alínea anterior. Ex 2. (2 valores) Considere o sinal discreto =2 cos cos 8 5. a) (P) O sinal é periódico? Em caso afirmativo determine o seu período e frequência fundamentais. 2
3 b) (L) Gere o sinal discreto para =0,,100, e represente-o graficamente em função do índice (ficheiro: ). Confirme a partir do gráfico que o período fundamental do sinal é efectivamente o determinado na alínea anterior. Ex 3. (L) (1 valor) Gere o sinal discreto =cos 10, =0,,100, e represente-o graficamente em função do índice (ficheiro: ). Verifique que o sinal é periódico. Indique o seu período e frequência fundamentais. Ex 4. (4 valores) Seja um sinal discreto periódico de período fundamental. a) (P) Mostre que = 2 também é periódico. Relacione o período fundamental de,, com. 3
4 b) (L) Utilize a função compressao fornecida em anexo para determinar o sinal = 2, em que representa o sinal gerado em Ex 3, e represente-o graficamente em função do índice (ficheiro: ). Confirme a partir do gráfico que o sinal é periódico e determine o seu período fundamental. Verifique se o período fundamental satisfaz a relação determinada na alínea a). Comente o resultado obtido. c) (L) Repita a alínea anterior com o sinal gerado no Ex. 1 (ficheiro: ). 4
5 Ex 5. (3 valores) Importe e o sinal discreto gravado em sinal_ex5.mat usando o seguinte comando: load('sinal_ex5.mat') a) (L) Represente graficamente o sinal em função do índice (ficheiro: ). O sinal é periódico? b) (L) Utilize a função compressao fornecida em anexo para gerar o sinal = 2 e represente-o graficamente em função de (ficheiro: ). Verifique a partir do gráfico que o sinal é periódico e obtenha o seu período fundamental. Comente o resultado obtido. c) (L) Com base no resultado anterior, classifique como verdadeira ou falsa a seguinte afirmação: Justifique. periódico periódico 5
6 3. Sistemas Ex 6. (8 valores) Considere o seguinte sistema contínuo = em que e representam, respectivamente, os sinais de entrada e de saída. a) (P) Classifique o sistemas quanto à causalidade, estabilidade, linearidade e invariância temporal. Justifique. 6
7 b) (L) Importe e os sinais contínuos,, e (amostrados com um intervalo de amostragem de 0.1 seg) gravados em sinal_ex6.mat usando o seguinte comando: load('sinal_ex6.mat') Numa única figura represente graficamente os 4 sinais dados em função de (ficheiro: ). Observe que: i. =2 ; ii. = 1. 7
8 c) (L) Escreva uma função Matlab para gerar a saída do sistema ao sinal de entrada. A sua função Matlab deverá começar da seguinte forma: function [y] = sistema(x,t) % Determina a saída y(t)=x( t ) do sistema. % % Variáveis de entrada: % x - vector com o sinal de entrada % t - vector com os instantes de tempo em que está definido o % sinal x % Variável de saída: % y - vector com o sinal de saída definido nos instantes t d) (L) Obtenha a saída do sistema a cada um dos 4 sinais de entrada dados e, numa única figura, represente-os graficamente em função de (ficheiro: ). Interprete os resultados obtidos tendo em conta as propriedades do sistema. 8
Sistemas e Sinais (LEE & LETI)
Sistemas e Sinais (LEE & LETI) 2º semestre 213/214 Laboratório nº Introdução ao Matlab Isabel Lourtie Dezembro 213 pfpfpf Este trabalho de laboratório não é obrigatório destinando-se apenas aos alunos
Sinais e Sistemas SINAIS E SISTEMAS
SINAIS E SISTEMAS Sinais O que são sinais? Transformações lineares da variável independente Reflexão em relação à origem; Mudança de escala; Translação no tempo Propriedades dos sinais Paridades; Periodicidade
Processamento (Digital) de Sinal. Caderno de exercícios para as horas não presenciais
Caderno de exercícios para as horas não presenciais João Paulo Teixeira ESTiG, 014 Capítulo 1 Sinais 1. Considere o Considere o seguinte sinal contínuo: x(t) 1-1 0 1 3 t a. Represente y1(t)=x(t+1). b.
3 o Teste (1 a data) Sistemas e Sinais (LEIC-TP) 2008/ de Junho de Respostas
3 o Teste (1 a data) Sistemas e Sinais (LEIC-TP) 2008/2009 12 de Junho de 2009 Respostas i Problema 1. (0,75v) Considere o sinal ( n n, x(n)=cos 8 4) +π Assinale a afirmação correcta x(n) é um sinal periódico
Parte I O teste tem uma parte de resposta múltipla (Parte I) e uma parte de resolução livre (Parte II)
Instituto Superior Técnico Sinais e Sistemas o teste 4 de Novembro de 0 Nome: Número: Duração da prova: horas Parte I O teste tem uma parte de resposta múltipla (Parte I) e uma parte de resolução livre
Processamento Digital de Sinais Aula 05 Professor Marcio Eisencraft fevereiro 2012
Aula 05 - Sistemas de tempo discreto Classificação Bibliografia OPPENHEIM, A.V.; WILLSKY, A. S. Sinais e Sistemas, 2a edição, Pearson, 2010. ISBN 9788576055044. Páginas 25-36. HAYKIN, S. S.; VAN VEEN,
I-2 Sinais: classificação, propriedades e operações
I-2 Sinais: classificação, propriedades e operações Comunicações (30 de setembro de 2016) ISEL - ADEETC - Comunicações 1 Sumário 1. Classificação de sinais 2. Sinais contínuos e discretos 3. Sinais não
3 a Ficha de exercícios de Cálculo para Informática
3 a Ficha de exercícios de Cálculo para Informática SUCESSÕES, INDUÇÃO, LIMITES. 3-1 Considere a equação recursiva, x n = x n 1 + a n, para todo o n 1. Encontre uma expressão algébrica para x n em função
Matemática Computacional
folha de exercícios 5 :: página 1/5 exercício 5.1. Defina a função f : R R, f(x) = 4x 4 3x 3 + 2x 2 + x. Calcule f(0), f( 1), f(4/3) e f(2.88923). exercício 5.2. Defina a função g : R R R, g(x, y) = x
I-2 Sinais: classificação, propriedades e operações
I-2 Sinais: classificação, propriedades e operações Comunicações (24 de março de 2017) ISEL - ADEETC - Comunicações 1 Sumário 1. Classificação de sinais 2. Sinais contínuos e discretos 3. Sinais não periódicos
Aulas práticas de Álgebra Linear
Ficha 3 Aulas práticas de Álgebra Linear Licenciatura em Engenharia Naval e Oceânica Mestrado Integrado em Engenharia Mecânica 1 o semestre 2018/19 Jorge Almeida e Lina Oliveira Departamento de Matemática,
Departamento de Electrónica, Telecomunicações e Informática. 1 Entrega do Trabalho e avaliação. 2 Sintetizador. Processamento Digital de Sinal
Departamento de Electrónica, Telecomunicações e Informática Processamento Digital de Sinal Trabalho Prático n o 1: Sintetizador de Música Neste trabalho pretende-se que os alunos construam um sintetizador
Aula 06 Representação de sistemas LIT: A soma de convolução
Aula 06 Representação de sistemas LIT: A soma de convolução Bibliografia OPPENHEIM, A.V.; WILLSKY, A. S. Sinais e Sistemas, 2a edição, Pearson, 2010. ISBN 9788576055044. Páginas 47-56. HAYKIN, S. S.; VAN
Instituto Universitário de Lisboa
Instituto Universitário de Lisboa Departamento de Matemática Exercícios extra de Álgebra Linear Ano Lectivo 204/205 . Sejam A = 0 2 0 0 2 e B = 0 0 0 0. (a) Calcule, se possível, as matrizes AB, BA e B
ANÁLISE DE SISTEMAS LINEARES NO ESPAÇO DE ESTADOS
AE- ANÁLISE DE SISTEMAS LINEARES NO ESPAÇO DE ESTADOS AE- Determine os valores e vectores próprios de a) A= -.5.5 -.5 b) B= - - AE- Forma canónica controlável. a) Mostre que a equação diferencial homogénea
INSTITUTO SUPERIOR TÉCNICO Mestrado Integrado em Engenharia Física Tecnológica Ano Lectivo: 2007/2008 Semestre: 1 o
INSTITUTO SUPERIOR TÉCNICO Mestrado Integrado em Engenharia Física Tecnológica Ano Lectivo: 27/28 Semestre: o MATEMÁTICA COMPUTACIONAL Exercícios [4 Sendo A M n (C) mostre que: (a) n A 2 A n A 2 ; (b)
Roteiro de Estudo para a Recuperação Semestral MATEMÁTICA 1ºEM
Roteiro de Estudo para a Recuperação Semestral MATEMÁTICA 1ºEM NOME: IMPRIMA AS FOLHAS. RESOLVA AS QUESTÕES DISSERTATIVAS EM FOLHA DE PAPEL ALMAÇO OU FOLHA DE FICHÁRIO; OS TESTES PODERÃO SER RESPONDIDOS
Elementos Finitos 2014/2015 Colectânea de trabalhos, exames e resoluções
Curso de Mestrado em Engenharia de Estruturas 1. a Edição (014/015) Elementos Finitos 014/015 Colectânea de trabalhos, exames e resoluções Lista dos trabalhos e exames incluídos: Ano lectivo 014/015 Trabalho
i) Filtragem ii) Amostragem e reconstituição cuja Transformada de Fourier (TF) é dada na Figura seguinte e que constitui a entrada de um SLIT S.
6ª Aula Prática de Sistemas e Sinais (LEIC Alameda) Sumário: i) Filtragem ii) Amostragem e reconstituição Exercícios Propostos Exercício 1: Considere o sinal x (t) cuja Transformada de Fourier (TF) é dada
Controlo Em Espaço de Estados. Trabalho de Laboratório nº 1 Dinâmica no Espaço de Estados
Mestrado em Engenharia Electrotécnica e de Computadores Controlo Em Espaço de Estados 2010/11 Trabalho de Laboratório nº 1 Dinâmica no Espaço de Estados Objectivos Após realizar este trabalho, o aluno
2. Determine A B, quando :
COLÉGIO MODELO LUIZ EDUARDO MAGALHÃES CAMAÇARI BA ENSINO MÉDIO ANO: 2017 NOME 1ª SÉRIE Turno: PROPESSOR: HENRIQUE LISTA 2 Intervalos e Funções I UNIDADE Se você esperar pelas condições perfeitas, nunca
Álgebra Linear e Geometria Analítica
Instituto Politécnico de Viseu Escola Superior de Tecnologia Departamento: Matemática Álgebra Linear e Geometria Analítica Curso: Engenharia Electrotécnica Ano: 1 o Semestre: 1 o Ano Lectivo: 007/008 Ficha
Modelação, Identificação e Controlo Digital
Modelação, Identificação e Controlo Digital 1-Aspectos Gerais 1 Modelação, Identificação e Controlo Digital Semestre de Inverno 2005/2006 Área Científica de Sistemas de Decisão e Controlo Modelação, Identificação
Conversão Analógico-Digital
GUIA DO 1 O TRABALHO DE LABORATÓRIO DE SISTEMAS DE COMUNICAÇÕES Conversão Analógico-Digital Ano Lectivo de 2015/2016 Introdução Neste trabalho analisam-se as várias etapas envolvidas na digitalização de
UNIVERSIDADE DE ÉVORA UNIVERSIDADE DO ALGARVE
CURSO DE MESTRADO EM ENGENHARIA CIVIL FUNDAMENTOS DE INVESTIGAÇÃO OPERACIONAL 2010/2011 1º SEMESTRE 1º ANO Exame época normal Parte I: PROGRAMAÇÃO LINEAR 9 de Fevereiro de 2011 Observações Duração desta
Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2002/03 Mais funções polinomiais 10.º Ano
Escola Secundária/ da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 00/0 Mais funções polinomiais 0º Ano Nome: Nº: Turma: Tem-se uma folha rectangular de cartolina com as dimensões de 0 cm por
Ficha Prática nº 5: Espaços Vectoriais. a11 a 12 a : a 11, a 12, a 21 R
Álgebra Linear e Geometria Analítica Eng. Electrotécnica e Eng. Mecânica Ano lectivo: 2006/07 Ficha Prática nº 5: Espaços Vectoriais 1. Considere o espaço vectorial real V = {x, y, z : 2x + 3y + 5z = 0.
CÁLCULO I 1º Semestre 2011/2012. Duração: 2 horas e 30 minutos
NOVA SCHOOL OF BUSINESS AND ECONOMICS CÁLCULO I 1º Semestre 2011/2012 EXAME 2ª ÉPOCA 23 Janeiro 2012 Duração: 2 horas e 30 minutos Não é permitido o uso de calculadoras. Não pode desagrafar as folhas do
ficha 6 espaços lineares com produto interno
Exercícios de Álgebra Linear ficha espaços lineares com produto interno Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico o semestre 011/1 Notação
Problemas de Processamento de Sinais Estruturas de Sistemas Discretos
Problemas de Processamento de Sinais Estruturas de Sistemas Discretos. Determine a função de transferência dos sistemas que se seguem. Mostre que têm os mesmos pólos. r cosθ r r cosθ r senθ r senθ r cosθ.
Laboratório 4 Amostragem e Reconstrução de Sinais. Data: Horário: Turma: Turno: Grupo: Aluno N : Nome: Aluno N : Nome: Aluno N : Nome:
Data: Horário: Turma: Turno: Grupo: 3. DIMENSIONAMENTO Esta secção visa preparar os alunos para as experiências que irão realizar no laboratório. Todos os grupos terão de no início da sessão de laboratório
Matemática Computacional - Exercícios
Matemática Computacional - Exercícios 1 o semestre de 2007/2008 - Engenharia Biológica Teoria de erros e Representação de números no computador Nos exercícios deste capítulo os números são representados
Um conjunto é uma coleção de objetos. Esses objetos podem ser qualquer coisa. Costumamos chamar esses objetos de elementos do conjuntos.
Capítulo 1 Conjuntos 1.1 Noção de conjuntos Um conjunto é uma coleção de objetos. Esses objetos podem ser qualquer coisa. Costumamos chamar esses objetos de elementos do conjuntos. 1. Uma coleção de revista
II-4 Transmissão passa-banda (banda canal) Modulações Digitais
II-4 Transmissão passa-banda (banda canal) Modulações Digitais Comunicações (17 de maio de 17) ISEL - ADEETC - Comunicações 1 Sumário 1. Transmissão em banda canal (passa-banda) Espetro típico. Modulações
Sexta Lista: Geração de Números Pseudo-Aleatórios e Método de Monte Carlo
Sexta Lista: Geração de Números Pseudo-Aleatórios e Método de Monte Carlo Antônio Carlos Roque da Silva Filho e Cristiano R. F. Granzotti 26 de junho de 2017 Os exercícios desta lista devem ser resolvidos
PONTÍFICIA UNIVERSIDADE CATÓLICA DE GOIÁS ESCOLA DE ENGENHARIA ENG1380 SISTEMAS LINEARES CAPÍTULO 01 LISTA DE EXERCÍCIOS PROFA. FABRÍCIA NERES BORGES
PONTÍFICIA UNIVERSIDADE CATÓLICA DE GOIÁS ESCOLA DE ENGENHARIA ENG1380 SISTEMAS LINEARES CAPÍTULO 01 LISTA DE EXERCÍCIOS PROFA. FABRÍCIA NERES BORGES 1.1-1 Determine a energia dos sinais mostrados na Fig.
Ficha de Trabalho 08 Transformações Lineares. (Aulas 19 a 22).
F I C H A D E R A B A L H O 0 8 Ficha de rabalho 08 ransformações Lineares. (Aulas 19 a ). Produto interno em R n. Vectores livres: Ângulo de dois vectores. Vectores ortogonais. Vectores em R n : Produto
Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares
Exercícios de MATEMÁTICA COMPUTACIONAL Mestrado Integrado em Engenharia Biomédica 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x) e x = 0. a) Prove que
I-2 Sinais: classificação, propriedades e operações
I-2 Sinais: classificação, propriedades e operações Comunicações ISEL - ADEETC - Comunicações 1 Sumário 1. Sinais contínuos e discretos 2. Sinais não periódicos e periódicos Pulso retangular e sinc A onda
INSTITUTO SUPERIOR TÉCNICO Mestrado em Engenharia Electrotécnica e de Computadores Ano Lectivo: 2007/2008 Semestre: 2 o
INSTITUTO SUPERIOR TÉCNICO Mestrado em Engenharia Electrotécnica e de Computadores Ano Lectivo: 2007/2008 Semestre: 2 o MATEMÁTICA COMPUTACIONAL Eercícios 1 1.1 Represente num sistema de ponto flutuante
O quadro abaixo destina-se à correcção da prova. Por favor não escreva nada.
Instituto Superior Técnico Departamento de Matemática 2 o semestre 08/09 Nome: Número: Curso: Sala: 1 o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL-II LEIC-Taguspark, LERC, LEGI, LEE 4 de Abril de 2009 (11:00)
Sinais e Sistemas - Lista 1
UNIVERSIDADE DE BRASÍLIA, FACULDADE GAMA Sinais e Sistemas - Lista 1 4 de setembro de 2015 1. Considere o sinal x(t) mostrado na figura abaixo. O sinal é zero no intervalo 2 < t < 2. a) O gráfico a seguir
Introdução aos Sistemas Informáticos. Engenharia Informática, Engenharia Mecânica, Engenharia Química, Gestão e Engenharia Industrial
I Crie na sua directoria pessoal a seguinte estrutura de directorias: ~ Others Users AnaIsabel RuiManuel Docs Textos Docs Textos Em relação à estrutura de directorias criada anteriormente, efectue as seguintes
1 a LISTA DE EXERCÍCIOS Sistemas de Equações Lineares e Matrizes Álgebra Linear - 1 o Semestre /2018 Engenharia Aeroespacial
1 a LISTA DE EXERCÍCIOS Sistemas de Equações Lineares e Matrizes Álgebra Linear - 1 o Semestre - 217/218 Engenharia Aeroespacial Problema 1 Calcule A 2 2B + I, ( ( 2 1 onde A =, B =, e I é a matriz identidade
Manual do Utilizador. Exemplo de Preenchimento
Manual do Utilizador Exemplo de Preenchimento Guia de consulta rápida do Manual Como entrar no balcão - Diapositivo 3/23 Como editar uma fonte Diapositivo 5/23 Como criar uma fonte nova Diapositivo 10/23
w 1 = v 1 + v 2 + v 3 w 2 = 2v 2 + v 3 (1) w 3 = v 1 + 3v 2 + 3v 3 também são linearmente independentes. T =
Independência e dependência linear ) a) Sejam v, v e v vectores linearmente independentes de um espaço linear S. Prove que os vectores também são linearmente independentes. Resolução Seja V a expansão
Computação e Programação Exame Resolvido 1ª Época
Computação e Programação 2012-2013 Mestrado Integrado em Engenharia Civil Licenciatura Bolonha em Engenharia Geológica e de Minas DECivil Exame Resolvido 1ª Época 9 de janeiro de 2012 Exame sem consulta
2. Calcule o determinante das seguintes matrizes usando o teorema de Laplace. ab (a) (b) (c) 2 5. (e) 0 a b a 0 c b c 0. (h)
3.. determinante de uma riz página /5 departamento de emática universidade de aveiro. Determine o número de inversões e classifica qnto à paridade as seguintes permutações de {,, 3, 4, 5}: (3, 4,, 5, )
INSTITUTO SUPERIOR TÉCNICO Licenciatura em Engenharia Física Tecnológica Licenciatura em Engenharia e Gestão Industrial Ano Lectivo: 2002/
INSTITUTO SUPERIOR TÉCNICO Licenciatura em Engenharia Física Tecnológica Licenciatura em Engenharia e Gestão Industrial Ano Lectivo: / ANÁLISE NUMÉRICA Exercícios Considere o sistema linear 6 x 5 y = a)
Sinais e Sistemas Discretos no Tempo Convolução
Sistemas de Processamento Digital Engenharia de Sistemas e Informática Guia 1 2005/2006 4.º Ano/ 2.º Semestre Grupo...Data:... Sinais e Sistemas Discretos no Tempo Convolução Objectivo Este trabalho encontra-se
Transmissão em Banda de Base
GUIA DO 2 O TRABALHO DE LABORATÓRIO DE SISTEMAS DE COMUNICAÇÕES Transmissão em Banda de Base Ano Lectivo de 2015/16 Introdução Neste trabalho analisam-se alguns aspectos da transmissão em banda de base
FACULDADE DE CIÊNCIAS ECONÓMICAS E EMPRESARIAIS. Matemática I 1 a Frequência: 27 de Outubro de 2009
FACULDADE DE CIÊNCIAS ECONÓMICAS E EMPRESARIAIS Matemática I 1 a Frequência: 27 de Outubro de 2009 A frequência consiste em duas partes, tem uma duração de 2h30m e está cotado para 20 valores, é efectuado
Computação e Programação. Exame Época Normal
Nome : Número : Computação e Programação 2015-2016 Mestrado Integrado em Engenharia Civil Licenciatura Bolonha em Engenharia Geológica e de Minas DECivil Exame Época Normal 6 de janeiro de 2016 Exame sem
Álgebra Linear. Cursos: Química, Engenharia Química, Engenharia de Materiais,Engenharia Biológica, Engenharia do Ambiente 1 ō ano/1 ō Semestre 2006/07
Álgebra Linear Cursos: Química, Engenharia Química, Engenharia de Materiais,Engenharia Biológica, Engenharia do Ambiente ō ano/ ō Semestre 2006/07 a Lista: SISTEMAS DE EQUAÇÕES LINEARES E ÁLGEBRA DE MATRIZES
Capítulo III Sistemas de equações
Capítulo III Sistemas de equações III1 - Condicionamento de sistemas lineares 1 Seja 1 0 0 10 6 e considere o sistema Ax = b, com b = 1 10 6 T, que tem por solução exacta x = 1 1 T (a) Determine cond(a)
Modulações Digitais Binárias
GUIA DO 3 O TRABALHO DE LABORATÓRIO DE SISTEMAS DE COMUNICAÇÕES Modulações Digitais Binárias Ano Lectivo de 2015/16 Introdução Neste trabalho analisam-se alguns aspectos das modulações digitais binárias
AGRUPAMENTO DE ESCOLAS D. JOSÉ I - VRSA MATEMÁTICA 6.º ANO 2014/15 Ficha A3 Sequências e proporcionalidade direta NOME N.
AGRUPAMENTO DE ESCOLAS D. JOSÉ I - VRSA MATEMÁTICA 6.º ANO 014/15 Ficha A3 Sequências e proporcionalidade direta NOME N.º Turma NOME 1. Observe atentamente as figuras que representam os primeiros quatro
LISTA DE EXERCÍCIOS. Humberto José Bortolossi
GMA DEPARTAMENTO DE MATEMÁTICA APLICADA LISTA DE EXERCÍCIOS Cálculo I A Humberto José Bortolossi http://wwwprofessoresuffbr/hjbortol/ 03 Operações com funções: soma, diferença, produto, quociente, composição
Investigação Operacional
Ano lectivo: 0/06 Universidade da Beira Interior - Departamento de Matemática Investigação Operacional Ficha de exercícios n o Algoritmo Simplex Cursos: Gestão e Economia. Considere o seguinte conjunto
REGULAMENTO DO PROFESSOR RESPONSÁVEL DE DISCIPLINA
REGULAMENTO DO PROFESSOR RESPONSÁVEL DE DISCIPLINA Proposto pela Comissão Científica do Departamento de Engenharia Electrotécnica em Julho de 2001 Alterada na Comissão Coordenadora do Conselho Científico
Optimização do servomecanismo dum disco rígido
Modelação e Simulação 2012/13 Trabalho de Laboratório nº 2 Optimização do servomecanismo dum disco rígido Objectivo Após realizar este trabalho, o aluno deverá ser capaz de utilizar o SIMULINK para optimizar
AULA LAB 01 SINAIS SENOIDAIS
CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA DEPARTAMENTO DE ELETRÔNICA Retificadores (ENG - 20301) AULA LAB 01 SINAIS SENOIDAIS 1 INTRODUÇÃO Esta aula de laboratório tem por objetivo consolidar
Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar Área Interdepartamental de Matemática
Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar Área Interdepartamental de Matemática Análise Numérica Licenciaturas em Engenharia Ambiente,Civil e Química I - Equações Não Lineares.
Primeira Lista de Exercícios
1 Espaços vetoriais Primeira Lista de Exercícios {( ) } a b Exercício 1.1. Considere M 2 := : a, b, c, d R, : M c d 2 M 2 M 2 dada por e : R M 2 M 2 dada por ( ) ( ) ( ) a1 b 1 a2 b 2 a1 + a := 2 b 1 +
Fundamentos de Programação
Fundamentos de Programação Primeiro Teste 16 de Abril de 2011 09:00 10:30 Nome: Número: Esta prova, individual e sem consulta, tem 7 páginas com 9 perguntas. A cotação de cada pergunta está assinalada
SISTEMAS DIGITAIS LETI, LEE Ano lectivo de 2015/2016 Trabalho 4 Módulos Sequenciais: Contadores e Registos
SISTEMAS DIGITAIS LETI, LEE Ano lectivo de 2015/2016 Trabalho 4 Módulos Sequenciais: Contadores e Registos 1. Introdução Este trabalho foi concebido para que os alunos ganhem experiência na concepção de
1. Entre as funções dadas abaixo, verifique quais são transformações lineares: x y z
MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA 657- - VIÇOSA - MG BRASIL a LISTA DE EXERCÍCIOS DE MAT 8 I SEMESTRE DE Entre as funções dadas abaixo, verifique quais são transformações
LISTA DE EXERCÍCIOS. Humberto José Bortolossi
GMA DEPARTAMENTO DE MATEMÁTICA APLICADA LISTA DE EXERCÍCIOS Matemática Básica Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 06 O Princípio da Indução Finita e Aplicações [01] Usando
Universidade Federal de Viçosa
Universidade Federal de Viçosa Ciências Eatas e Tecnológicas Departamento de Matemática MAT 4 - Lista - 07/. Determine o domínio a imagem as raízes e o estudo de sinal das funções a seguir: (a) f() = 4
Teste de Matemática A 2015 / 2016
Teste de Matemática A 2015 / 2016 Teste N.º 1 Matemática A Duração do Teste: 90 minutos 10.º Ano de Escolaridade Nome do aluno: Turma: Grupo I Os cinco itens deste grupo são de escolha múltipla. Em cada
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 11º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO Nº 2
ESL SEUNÁRI M º IL. INIS IMR º N E ESLRIE MTEMÁTI FIH E VLIÇÃ Nº Grupo I s cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas quatro alternativas, das quais só uma está
23. Resolva as seguintes equações matriciais: a) X. b) X. 24. Determine a matriz X, tal que (X A) t B, sendo:
Matrizes 9 Calcule: 5 7 9 6 5 8 5 7 5 6 6 8 7 5 7 Sejam A 9 5, B 8 6 e C 7 Determine as matrizes: A B C A B C A (B C) Sejam as matrizes A (a ij ), em que a ij i j, e B (b ij ), em que b ij i j Seja C A
