Funções Discriminantes Lineares

Tamanho: px
Começar a partir da página:

Download "Funções Discriminantes Lineares"

Transcrição

1 Funções Discriminantes Lineares Revisão Cap. 2 Classificação Bayesiana: Fdp s conhecidas, w ) P e x w ) ( i p. ( i Cap. 3 Formas das fdp s conhecidas, idem No. de parâmetros. a) Máxima verossimilhança: parâmetros a determinar têm valores fixos mas desconhecidos. b) Métodos Bayesianos: parâmetros são variáveis aleatórias com distribuição a priori conhecida. Observações (vetores de atributos) convertem distribuições a priori em distribuições a posteriori. Cap. 4 Técnicas não paramétricas Consideram-se desconhecidas as formas das densidades de probabilidade, que serão estimadas diretamente a partir das amostras. a) estimar p x w ) b) estimar P( w j x) diretamente ( j 1

2 Funções discriminantes lineares Uma das formas de representar classificadores é através de um conjunto de funções discriminantes g i (x), i = 1,..., c de modo a atribuir um vetor de atributos x à classe w i se g i (x) > g j (x) para todo j diferente de i. O classificador calcula c funções discriminantes e seleciona a categoria correspondente ao maior discriminante. A forma das g(x) não é única. Estaremos representando as funções discriminantes por meio de redes. Da aula 2: Foi visto que, para o caso de taxa de erro mínima, g i (x) = P (w i x) (1) ou seja, a função discriminante máxima corresponde à máxima probabilidade a posteriori. Foi visto também que (1) é equivalente a g i (x) = p (x w i )P(w i ) ln p (x w i ) + ln P(w i ) Por meio da última expressão, podemos determinar (analiticamente) a forma da função discriminante, em casos simples, conhecendo as fdps. Nesta aula 5, veremos como obter g i (x) sem conhecer as fdps, diretamente a partir das amostras, por treinamento. 2

3 O caso de duas classes: Considerando uma função discriminante linear, g (x) = w t x + w 0, estabelecemos: Se g (x) > 0, decidir 1 Se g (x) < 0, decidir 2 Se g (x) = 0, considera-se atribuição indefinida. Implementação típica por meio de rede: Fig. 5.1 Fig. 5.1 Geometria associada à função discriminante g (x) = 0 define a superfície de decisão entre 1 e 2. Se g (x) é linear, a superfície de decisão é um hiperplano H de dimensão d-1 no espaço x d-dimensional. dimensional Sejam x 1 e x 2 pontos da sup. de decisão. Então, g (x 1 ) = g (x 2 ) = 0, ou w t (x 1 - x 2 ) = 0 Ou seja, w é normal ao hiperplano H. Pode-se mostrar que g (x) dá uma medida algébrica da distância de x à sup. de decisão, e que a distância da origem x = 0 a H é w 0 / w. Ver Fig

4 Fig. 5.2 Resumo: Uma função discriminante linear divide o espaço de atributos por um hiperplano H de decisão, cuja orientação é dada por w. A localização de H é determinada por w 0. A função discriminante g(x) é proporcional à distância de x ao hiperplano O caso de múltiplas categorias Há mais de uma forma para estender os discriminantes lineares para c classes. A Fig. 5.3 ilustra duas delas, que geram regiões de indefinição: 1) reduzir o problema de separar c classes a c problemas de separar duas classes. O i-ésimo problema é resolvido por uma função discriminante linear g i (x) que separa pontos atribuídos a i dos pontos não atribuídos a i. 2) solução mais extravagante: usar c(c - 1)/2 discriminantes lineares, um para cada par de classes. 4

5 Fig. 5.3 Uma forma de evitar as regiões de indefinição: Definir c funções discriminantes lineares g i (x) = w i x + w i0 i = 1,..., c e atribuir x a i se g i (x) > g j (x) j i. Hiperplano de separação: g i (x) = g j (x). Quando x verifica esta igualdade, a classificação é considerada indefinida. (g i (x) - g j (x))/ w i - w j dá a distância algébrica de x a H ij. Há c(c - 1)/2 pares de regiões, que não precisam ser contíguas. O número total de segmentos de hiperplanos nas superfícies de decisão freqüentemente é menor do que c(c - 1)/2, como na Fig

6 Fig. 5.4 As regiões de decisão no discriminante linear são convexas, como pode ser mostrado. Este fato limita a flexibilidade e a precisão do classificador. Funções discriminantes lineares generalizadas Função discriminante linear: g(x) = w 0 + Função discriminante quadrática: d i 1 g(x) w w i x i 0 w ix i w ijx ix i 1 i 1 j 1 Como x i x j = x j x i, podemos assumir que w i w j = w j w i, sem perda de generalidade. Assim, a função discriminante quadrática possui d(d+1)/2 coeficientes adicionais, produzindo superfícies de separação mais complicadas. As superfícies de separação g(x) = 0 são superfícies de segundo grau ou hiperquádricas (hiper-esferas, hiper-elipsóides ou hiper-parabolóides - ver Duda). d d d j 6

7 Função discriminante linear generalizada g(x) = d i 1 a y (x) i i ou g(x) = a t y onde a = vetor de pesos d^-dimensional As y i (x) (ou funções (x)) são funções arbitrárias de x que mapeiam o espaço d- dimensional x no espaço d^-dimensional y. A função discriminante resultante da expansão é não linear em x, mas linear em y. O discriminante homogêneo a t y separa pontos no espaço transformado por um hiperplano que passa pela origem. A solução do problema de classificação é então uma função discriminante linear homogênea. Exemplo: g(x) = a 1 + a 2 x + a 3 x 2 Neste caso, o vetor tridimensional y = (y1 y2 y3) t é dado por y = (1 x x 2 ) t Ver Fig Fig Comentários: 1) Se d^ > d, dados x, com fdp p(x), p^(y) será degenerada. Ex. Fig ) Regiões de decisão convexas em y serão não convexas em x. Ver ex. da Fig. 5.5 e também o da Fig

8 No caso da Fig. 5.6, o espaço de entrada bi-dimensional x = (x1 x2) t, será mapeado em y = (y1 y2 y3) t, tridimensional, dado por y1 = x1, y2 = x2 e y3 = x1x2. A região R1 no espaço x não é simplesmente conexa, o que dá flexibilidade de classificação. Fig ) A praga da dimensionalidade pode tornar difícil tirar partido da flexibilidade, por exigir complexidade computacional e grande número de dados. Ex.: uma função discriminante quadrática completa envolve d^ = (d + 1)(d +2)/2 termos. Polinômios de ordem k, levam a O(d^k) termos. Considerando que as d^ componente do vetor de pesos a devem ser determinadas a partir de exemplos de treinamento, então, o número destes deve ser no mínimo d^. 4) Conveniência de escrever g(x) na forma homogênea a t y: 8

9 d g(x) w com x 0 = 1 0 w ix i w ix i 1 d i 0 i Deste modo, o problema de encontrar um classificador reduz-se a encontrar um vetor de pesos a no espaço y. Ver Fig Fig. 5.7 O caso de duas classes linearmente separáveis Problema: Dadas n amostras y1,..., yn, divididas entre duas classes 1 e 2, determinar o vetor de pesos a de uma função discriminante linear g(x) = a t y. Se tal vetor existir, as amostras dizem-se linearmente separáveis. Pode-se procurar um vetor a t.q. a t y > 0 para todas as amostras, simplificando o problema. Geometria e terminologia (Fig. 5.8) a t y = 0 hiperplano pela origem do espaço de pesos. região de solução no espaço de pesos. região de decisão no espaço de atributos. 9

10 Fig. 5.8 A escolha do vetor solução não é única. Critérios: 1) maximizar distância mínima das amostras ao plano separador. 2) a t y b, onde b = margem. Ver Fig Fig

11 Técnicas de descida por gradiente Enfoque para solução a a t y > 0: definir uma função critério J(a) que é minimizada se a for um vetor solução. Portanto, o problema reduz-se ao de minimizar i i uma função escalar, que pode ser resolvido por descida por gradiente. A solução é dada por: a(k + 1) = a(k) - (k) J(a(k)) onde = taxa de aprendizagem. O algoritmo correspondente é: cuja convergência depende de (k). Método para determinar a taxa de aprendizagem Aproximando J(a) até segunda ordem, tem-se: onde H éamatrizhessiana Hessiana. Substituindo a(k+1) obtém-se: J(a(k+1)) pode se minimizado escolhendo-se onde H depende de a, e portanto de k. Se J(a) é quadrático, H e são constantes. 11

12 Método de Newton Escolhendo-se a(k+1) para minimizar a expansão de 2a. ordem de de J(a), resulta no método de Newton de otimização, com e o seguinte algoritmo: A aplicação do algoritmo de Newton exige matriz H não singular. Em geral é mais rápido que o método do gradiente, mas a complexidade da inversão matricial pode anular essa vantagem. A Fig compara os caminhos de otimização dos dois algoritmos. Fig

13 A função critério do Perceptron Trata-se da função onde é o conjunto de amos- amostras classificadas erradamente por a. Notar que não pode ser negativa. Significado geométrico: é proporcional à soma das distâncias das amostras classificadas com erro ao limiar de decisão. O gradiente de é e a regra de atualização de pesos é: onde é o conjunto das amostras classificadas com erro. O algoritmo Perceptron é dado a seguir. Ver Fig para uma ilustração do para um exemplo bidimensional, e a Fig. 5.12, para o uso do algoritmo num ex. bi-dim. com a(1)=0 (k)=1. 13

14 Fig Fig

15 Caso particular: correção a cada amostra Notação: y 1 y 2,..., y k, onde cada y k é uma amostra mal classificada.num cj. de n amostras y1,..., yn. Para (k) = constante = 1, a regra de atualização então fica: e o algoritmo é: a(1) arbitrário a(k+1) = a(k) + y k k 1, Obs.: Este algoritmo termina SSE as amostras forem linearmente separáveis (teorema da convergência do.perceptron). A Fig ilustra aplicação do algoritmo. Fig Convergência do Perceptron: Se as amostras de treinamento forem linearmente separáveis, a seqüência de vetores peso dada pelo algoritmo 4 termina em um vetor a solução. Demonstração: ver livro (Duda) p

16 Técnicas de relaxação São procedimentos que generalizam a minimização do critério Perceptron, incluindo outros critérios de minimização. Um desses critérios é: onde é o conjunto de amostras classificadas erradamente por a. O gradiente de J q é contínuo, contrariamente ao de J p. Na prática utiliza-se: quais a t y b. O gradiente de J r (a) é onde Y(a) é o cj. de amostras para as e a regra de correção para uma amostra por vez é: onde a t y b k. O algoritmo correspondente é: A qtd. é a distância de a(k) ao hiperplano a t y k = b. Como y k / y k é o vetor unitário normal ao hiperplano, a eq. de correção representa mover a(k) de uma fração da dist. r(k) de a(k) ao hiperplano. Se = 1, a(k) é movido exatamente ao hiperplano, relaxando a tensão criada por a t (k)y k b. Ver Figs e Fig

17 Fig Comportamento não separável Tanto o método Perceptron quanto o de relaxação são procedimentos de correção de erro para encontrar um vetor de separação quando as amostras são linearmente separáveis. Um vetor que separa as amostras de treinamento pode não funcionar bem com amostras de teste. Na prática, grandes problemas de separação são quase certamente não separáveis linearmente. Neste caso, como os vetores de peso não podem classificar corretamente cada amostra, as atualizações num processo de correção de erro não têm fim. Verifica-se, entretanto, que o comprimento dos vetores a produzidos por constante é limitado. Assim, a parada dos processos de correção baseia-se empiricamente nesta tendência do comprimento dos vetores flutuar em torno de algum valor limite. Utiliza-se tb. tomar a média dos vetores de peso p/ evitar poder escolher sol. infeliz. 17

18 Técnicas de erro quadrático mínimo As funções critério até agora utilizadas baseiam-se em amostras classificadas erradamente. Além disso, o vetor a deveria proporcionar a t y> 0. Agora, vamos introduzir um critério que leva em conta todas as amostras, e t.q. a t y= b i. Teremos assim um cj. de eqs. lineares. Em forma matricial: Se Y não singular, a = Y -1 b. Mas Y é retangular, com mais linhas que colunas. A solução consiste em procurar a que minimize alguma função do erro e = Ya - b. A função proposta é: A solução analítica é obtida da seguinte forma: onde a matriz é chamada pseudo-inversa de Y. Definindo-se pode-se mostrar que sempre existirá a solução Exemplo: Ver livro (Duda) p

19 Algoritmo LMS O critério de erro quadrático mínimo pode ser minimizado por um procedimento de descida de gradiente. Dessa forma, em relação à solução analítica evitam-se dois problemas: 1) Os decorrentes de Y t Y singular. 2) A necessidade de lidar com matrizes grandes. Como, a regra de correção de pesos é: Pode-se mostrar que se (k) = (1)/k, onde (1) é qq. constante positiva, este algoritmo sempre produz uma solução, independentemente de Y t Y ser singukar ou não. Quando este algoritmo é aplicado seqüencialmente, é conhecido por algoritmo LMS (least-mean-squared), ou de Widrow-Hoff, cuja regra de atualização é: E o algoritmo é: Diferença com o método de relaxação: Neste último trata-se de uma regra de correção de erro, onde as correções prolongamse indefinidamente. No caso do LMS, a seqüência de pesos tende a convergir para u- ma solução, razoável, embora possa não ser um hiperplano de separação, mesmo se existir um (Fig. 5.17). Fig Leituras recomendadas: Seções e do livro (Duda). 19

CC-226 Aula 05 - Teoria da Decisão Bayesiana

CC-226 Aula 05 - Teoria da Decisão Bayesiana CC-226 Aula 05 - Teoria da Decisão Bayesiana Carlos Henrique Q. Forster - Instituto Tecnológico de Aeronáutica 2008 Classificador Bayesiano Considerando M classes C 1... C M. N observações x j. L atributos

Leia mais

SUPPORT VECTOR MACHINE - SVM

SUPPORT VECTOR MACHINE - SVM SUPPORT VECTOR MACHINE - SVM Definição 2 Máquinas de Vetores Suporte (Support Vector Machines - SVMs) Proposto em 79 por Vladimir Vapnik Um dos mais importantes acontecimentos na área de reconhecimento

Leia mais

UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica

UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica REDES NEURAIS ARTIFICIAIS REDE ADALINE e REGRA DELTA Prof. Dr. André A. P. Biscaro 2º Semestre de 2017 Aspectos históricos O ADALINE foi idealizado por Widrow & Hoff em 1960. Sua principal aplicação estava

Leia mais

Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação

Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Francisco A. Rodrigues Departamento de Matemática Aplicada e Estatística - SME Objetivo Dada M classes ω 1, ω 2,..., ω M e um

Leia mais

UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica

UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica REDES NEURAIS ARTIFICIAIS MÁQUINA DE VETOR DE SUPORTE (SUPPORT VECTOR MACHINES) Prof. Dr. André A. P. Biscaro 1º Semestre de 2017 Introdução Poderosa metodologia para resolver problemas de aprendizagem

Leia mais

MÉTODOS NEWTON E QUASE-NEWTON PARA OTIMIZAÇÃO IRRESTRITA

MÉTODOS NEWTON E QUASE-NEWTON PARA OTIMIZAÇÃO IRRESTRITA MÉTODOS NEWTON E QUASE-NEWTON PARA OTIMIZAÇÃO IRRESTRITA Marlon Luiz Dal Pasquale Junior, UNESPAR/FECILCAM, jr.marlon@hotmail.com Solange Regina dos Santos (OR), UNESPAR/FECILCAM, solaregina@fecilcam.br

Leia mais

Redes Neurais e Sistemas Fuzzy

Redes Neurais e Sistemas Fuzzy Redes Neurais e Sistemas Fuzzy O ADALINE e o algoritmo LMS O ADALINE No contexto de classificação, o ADALINE [B. Widrow 1960] pode ser visto como um perceptron com algoritmo de treinamento baseado em minimização

Leia mais

Método Simplex. Marina Andretta ICMC-USP. 19 de outubro de 2016

Método Simplex. Marina Andretta ICMC-USP. 19 de outubro de 2016 Método Simplex Marina Andretta ICMC-USP 19 de outubro de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta (ICMC-USP) sme0211 - Otimização linear

Leia mais

Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 03 / Detecção de Sinais

Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 03 / Detecção de Sinais Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 03 / Detecção de Sinais Prof. Eduardo Simas (eduardo.simas@ufba.br) Programa de Pós-Graduação em Engenharia Elétrica/PPGEE Universidade Federal

Leia mais

Classificadores. André Tavares da Silva.

Classificadores. André Tavares da Silva. Classificadores André Tavares da Silva andre.silva@udesc.br Reconhecimento de padrões (etapas) Obtenção dos dados (imagens, vídeos, sinais) Pré-processamento Segmentação Extração de características Obs.:

Leia mais

Modelagem Computacional. Parte 8 2

Modelagem Computacional. Parte 8 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 8 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 10 e 11] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,

Leia mais

2. Redes Neurais Artificiais

2. Redes Neurais Artificiais Computação Bioinspirada - 5955010-1 2. Redes Neurais Artificiais Prof. Renato Tinós Depto. de Computação e Matemática (FFCLRP/USP) 1 2.5. Support Vector Machines 2.5. Support Vector Machines (SVM) 2.5.2.

Leia mais

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística. Curso: Engenharia de Produção

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística. Curso: Engenharia de Produção Considere a função f(x). Para algum x a f (x) pode não existir. Suponha que se queira resolver o seguinte PPNL: Max f(x) s. a a x b Pode ser que f (x) não exista ou que seja difícil resolver a equação

Leia mais

Considere a função f(x). Para algum x a f (x) pode não existir. Suponha que. Max f(x) s. a a x b

Considere a função f(x). Para algum x a f (x) pode não existir. Suponha que. Max f(x) s. a a x b Considere a função f(x). Para algum x a f (x) pode não existir. Suponha que se queira resolver o seguinte PPNL: Max f(x) s. a a x b Pode ser que f (x) não exista ou que seja difícil resolver a equação

Leia mais

2. Redes Neurais Artificiais

2. Redes Neurais Artificiais Computação Bioinspirada - 5955010-1 2. Redes Neurais Artificiais Prof. Renato Tinós Depto. de Computação e Matemática (FFCLRP/USP) 1 2.3. Perceptron Multicamadas - MLP 2.3.1. Introdução ao MLP 2.3.2. Treinamento

Leia mais

CC-226 Aula 07 - Estimação de Parâmetros

CC-226 Aula 07 - Estimação de Parâmetros CC-226 Aula 07 - Estimação de Parâmetros Carlos Henrique Q. Forster - Instituto Tecnológico de Aeronáutica 2008 Estimação de Parâmetros Para construir o classificador bayesiano, assumimos as distribuições

Leia mais

2. Redes Neurais Artificiais

2. Redes Neurais Artificiais Computação Bioinspirada - 5955010-1 2. Redes Neurais Artificiais Prof. Renato Tinós Depto. de Computação e Matemática (FFCLRP/USP) 1 2.3. Perceptron Multicamadas - MLP 2.3.1. Introdução ao MLP 2.3.2. Treinamento

Leia mais

x exp( t 2 )dt f(x) =

x exp( t 2 )dt f(x) = INTERPOLAÇÃO POLINOMIAL 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia Aproximação

Leia mais

Reconhecimento de Padrões. Reconhecimento de Padrões

Reconhecimento de Padrões. Reconhecimento de Padrões Reconhecimento de Padrões 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Escola Superior de Tecnologia Engenharia Informática Reconhecimento de Padrões Prof. João Ascenso e Prof.

Leia mais

BCC465 - TÉCNICAS DE MULTI-OBJETIVO. Gladston Juliano Prates Moreira 22 de novembro de 2017

BCC465 - TÉCNICAS DE MULTI-OBJETIVO. Gladston Juliano Prates Moreira   22 de novembro de 2017 BCC465 - TÉCNICAS DE OTIMIZAÇÃO MULTI-OBJETIVO Aula 04 - Otimização Não-linear Gladston Juliano Prates Moreira email: gladston@iceb.ufop.br CSILab, Departamento de Computação Universidade Federal de Ouro

Leia mais

Rede Perceptron. Capítulo 3

Rede Perceptron. Capítulo 3 Rede Perceptron Capítulo 3 Rede Perceptron É a forma mais simples de configuração de uma RNA (idealizada por Rosenblatt, 1958) Constituída de apenas uma camada, tendo-se ainda somente um neurônio nesta

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Plano de Aula Aprendizagem de Máquina Bagging,, Support Vector Machines e Combinação de Classificadores Alessandro L. Koerich Uma visão geral de diversos tópicos relacionados à Aprendizagem de Máquina:

Leia mais

3 Aprendizado por reforço

3 Aprendizado por reforço 3 Aprendizado por reforço Aprendizado por reforço é um ramo estudado em estatística, psicologia, neurociência e ciência da computação. Atraiu o interesse de pesquisadores ligados a aprendizado de máquina

Leia mais

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Introdução

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Introdução Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões Introdução Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Objetivos Introduzir os conceito básicos de reconhecimento

Leia mais

Processamento de Imagens CPS755

Processamento de Imagens CPS755 Processamento de Imagens CPS755 aula 06 - sistemas não lineares Antonio Oliveira Ricardo Marroquim 1 / 38 laboratório de processamento de imagens tópicos RANSAC métodos iterativos (não-lineares) gradientes

Leia mais

PUC-GOIÁS - Departamento de Computação

PUC-GOIÁS - Departamento de Computação PUC-GOIÁS - Departamento de Computação Fundamentos IV/Enfase Clarimar J. Coelho Goiânia, 28/05/2014 O que é interpolação polinomial? Ideia básica Permite construir um novo conjunto de dados a partir de

Leia mais

Conceitos de Aprendizagem de Máquina e Experimentos. Visão Computacional

Conceitos de Aprendizagem de Máquina e Experimentos. Visão Computacional Conceitos de Aprendizagem de Máquina e Experimentos Visão Computacional O que você vê? 2 Pergunta: Essa imagem tem um prédio? Classificação 3 Pergunta: Essa imagem possui carro(s)? Detecção de Objetos

Leia mais

Método Simplex dual. Marina Andretta ICMC-USP. 24 de outubro de 2016

Método Simplex dual. Marina Andretta ICMC-USP. 24 de outubro de 2016 Método Simplex dual Marina Andretta ICMC-USP 24 de outubro de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta (ICMC-USP) sme0211 - Otimização

Leia mais

Definição: Uma série infinita (ou simplesmente uma série) é uma expressão que representa uma soma de números de uma sequência infinita, da forma:

Definição: Uma série infinita (ou simplesmente uma série) é uma expressão que representa uma soma de números de uma sequência infinita, da forma: MATERIAL DIDÁTICO Professora Sílvia Victer CÁLCULO 2 SÉRIES INFINITAS A importância de sequências infinitas e séries em cálculo surge da ideia de Newton de representar funções como somas de séries infinitas.

Leia mais

MATRIZES - PARTE Mais exemplos Multiplicação de duas matrizes AULA 26

MATRIZES - PARTE Mais exemplos Multiplicação de duas matrizes AULA 26 AULA 26 MATRIZES - PARTE 2 26. Mais exemplos Nesta aula, veremos mais dois algoritmos envolvendo matrizes. O primeiro deles calcula a matriz resultante da multiplicação de duas matrizes e utiliza três

Leia mais

Aprendizado de Máquinas. Classificadores Lineares

Aprendizado de Máquinas. Classificadores Lineares Universidade Federal do Paraná (UFPR) Departamento de Informática Aprendizado de Máquinas Classificadores Lineares David Menotti, Ph.D. web.inf.ufpr.br/menotti Objetivos Introduzir o conceito de classificação

Leia mais

3 Extração de Regras Simbólicas a partir de Máquinas de Vetores Suporte 3.1 Introdução

3 Extração de Regras Simbólicas a partir de Máquinas de Vetores Suporte 3.1 Introdução 3 Extração de Regras Simbólicas a partir de Máquinas de Vetores Suporte 3.1 Introdução Como já mencionado na seção 1.1, as SVMs geram, da mesma forma que redes neurais (RN), um "modelo caixa preta" de

Leia mais

Redes Neurais. A Rede RBF. Redes RBF: Função de Base Radial. Prof. Paulo Martins Engel. Regressão não paramétrica. Redes RBF: Radial-Basis Functions

Redes Neurais. A Rede RBF. Redes RBF: Função de Base Radial. Prof. Paulo Martins Engel. Regressão não paramétrica. Redes RBF: Radial-Basis Functions Redes RBF: Função de Base Radial Redes Neurais A Rede RBF O LP é baseado em unidades que calculam uma função não-linear do produto escalar do vetor de entrada e um vetor de peso. A rede RBF pertence a

Leia mais

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente. Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário

Leia mais

Método de Newton modificado

Método de Newton modificado Método de Newton modificado Marina Andretta ICMC-USP 14 de setembro de 2010 Marina Andretta (ICMC-USP) sme0212 - Otimização não-linear 14 de setembro de 2010 1 / 36 Método de Newton Como já vimos, o método

Leia mais

Otimização Aplicada à Engenharia de Processos

Otimização Aplicada à Engenharia de Processos Otimização Aplicada à Engenharia de Processos Aula 4: Programação Linear Felipe Campelo http://www.cpdee.ufmg.br/~fcampelo Programa de Pós-Graduação em Engenharia Elétrica Belo Horizonte Março de 2013

Leia mais

Cálculo Numérico BCC760 Raízes de equações algébricas e transcendentes

Cálculo Numérico BCC760 Raízes de equações algébricas e transcendentes Cálculo Numérico BCC760 Raízes de equações algébricas e transcendentes Departamento de Computação Página da disciplina http://www.decom.ufop.br/bcc760/ Introdução Dada uma função y = f(x), o objetivo deste

Leia mais

Resolução de Sistemas Lineares. Ana Paula

Resolução de Sistemas Lineares. Ana Paula Resolução de Sistemas Lineares Sumário 1 Introdução 2 Alguns Conceitos de Álgebra Linear 3 Sistemas Lineares 4 Métodos Computacionais 5 Sistemas Triangulares 6 Revisão Introdução Introdução Introdução

Leia mais

Dados no R n. Dados em altas dimensões 29/03/2017

Dados no R n. Dados em altas dimensões 29/03/2017 Dados no R n Dados em altas dimensões Alguns dados são apresentados como vetores em R n Alguns dados não são apresentados como vetores mas podem ser representados como vetores (e.g. Texto) Texto Dados

Leia mais

1 Auto vetores e autovalores

1 Auto vetores e autovalores Auto vetores e autovalores Os autovalores de uma matriz de uma matriz n n são os n números que resumem as propriedades essenciais daquela matriz. Como esses n números realmente caracterizam a matriz sendo

Leia mais

Marina Andretta. 02 de agosto de 2010

Marina Andretta. 02 de agosto de 2010 Introdução Marina Andretta ICMC-USP 02 de agosto de 2010 Marina Andretta (ICMC-USP) sme0212 - Otimização não-linear 02 de agosto de 2010 1 / 19 Otimização Otimizar significa encontrar a melhor maneira

Leia mais

Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais:

Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: Espaços Euclidianos Espaços R n O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: R n = {(x 1,..., x n ) : x 1,..., x n R}. R 1 é simplesmente o conjunto R dos números

Leia mais

Professor João Soares 20 de Setembro de 2004

Professor João Soares 20 de Setembro de 2004 Teoria de Optimização (Mestrado em Matemática) Texto de Apoio 2A Universidade de Coimbra 57 páginas Professor João Soares 20 de Setembro de 2004 Optimização Linear Considere o problema (1) abaixo, que

Leia mais

SVD. Single Value Decomposition 18/09/2017. Lema. Toda matriz A, com n linhas e d colunas, admite uma fatoração A= UDV T =

SVD. Single Value Decomposition 18/09/2017. Lema. Toda matriz A, com n linhas e d colunas, admite uma fatoração A= UDV T = SVD Single Value Decomposition Lema. Toda matriz A, com n linhas e d colunas, admite uma fatoração A= UDV T = U é uma matriz com n linhas e r colunas (r rank de A) D é uma matriz diagonal r x r; V é uma

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Alessandro L. Koerich Programa de Pós-Graduação em Engenharia Elétrica Universidade Federal do Paraná (UFPR) Redes Neurais Artificiais Plano de Aula Introdução Motivação Biológica

Leia mais

Adriana da Costa F. Chaves. Máquina de Vetor Suporte (SVM) para Classificação Binária 2

Adriana da Costa F. Chaves. Máquina de Vetor Suporte (SVM) para Classificação Binária 2 Máquina de Vetor Suporte (SVM) para Classificação Binária Adriana da Costa F. Chaves Conteúdo da Apresentação Introdução Máquinas de Vetor Suporte para Classificação binária Exemplos Conclusão Máquina

Leia mais

Equações não lineares

Equações não lineares DMPA IME UFRGS Cálculo Numérico Índice Raizes de polinômios 1 Raizes de polinômios 2 raizes de polinômios As equações não lineares constituídas por polinômios de grau n N com coeficientes complexos a n,a

Leia mais

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS. Solução de Sistemas Lineares

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS. Solução de Sistemas Lineares INTRODUÇÃO AOS MÉTODOS NUMÉRICOS Solução de Sistemas Lineares Introdução Uma variedade de problemas de engenharia pode ser resolvido através da análise linear; entre eles podemos citar: determinação do

Leia mais

Sistemas de Equações Lineares e Equações Vectoriais Aula 2 Álgebra Linear Pedro A. Santos

Sistemas de Equações Lineares e Equações Vectoriais Aula 2 Álgebra Linear Pedro A. Santos Sistemas de Equações Lineares e Equações Vectoriais Aula 2 Álgebra Linear MEG Operações Elementares Trocar a posição de duas equações Multiplicar uma equação por uma constante diferente de zero Não alteram

Leia mais

Modelagem Computacional. Parte 2 2

Modelagem Computacional. Parte 2 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 2 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 2 e 3] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

Classificadores Lineares

Classificadores Lineares Universidade Federal do Paraná (UFPR) Bacharelado em Informática Biomédica Classificadores Lineares David Menotti www.inf.ufpr.br/menotti/ci171-182 Hoje Funções Discriminantes Lineares Perceptron Support

Leia mais

Aprendizado por Instâncias Janelas de Parzen & Knn

Aprendizado por Instâncias Janelas de Parzen & Knn Universidade Federal do Paraná (UFPR) Especialização em Engenharia Industrial 4.0 Aprendizado por Instâncias Janelas de Parzen & Knn David Menotti www.inf.ufpr.br/menotti/ci171-182 Hoje Aprendizado por

Leia mais

Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC

Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC Introdução à Mecânica do Contínuo Tensores Professor: Márcio André Araújo Cavalcante

Leia mais

Algoritmos de Aprendizado

Algoritmos de Aprendizado Algoritmos de Aprendizado Regra de Hebb Perceptron Delta Rule (Least Mean Square) Back Propagation Radial Basis Functions (RBFs) Competitive Learning Hopfield Algoritmos de Aprendizado Regra de Hebb Perceptron

Leia mais

MATRIZES VETORES E GEOMETRIA. Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais

MATRIZES VETORES E GEOMETRIA. Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais MATRIZES VETORES E GEOMETRIA ANALÍTICA Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi Março 2002 Matrizes Vetores e Geometria Anaĺıtica Copyright c 2002

Leia mais

Modelagem Computacional. Parte 7 2

Modelagem Computacional. Parte 7 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 7 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 7] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,

Leia mais

Inversão de Matrizes

Inversão de Matrizes Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2017.1 18 de

Leia mais

SISTEMAS LINEARES. Solução de um sistema linear: Dizemos que a sequência ou ênupla ordenada de números reais

SISTEMAS LINEARES. Solução de um sistema linear: Dizemos que a sequência ou ênupla ordenada de números reais SISTEMAS LINEARES Definições gerais Equação linear: Chamamos de equação linear, nas incógnitas x 1, x 2,..., x n, toda equação do tipo a 11 x 1 + a 12 x 2 + a 13 x 3 +... + a 1n x n = b. Os números a 11,

Leia mais

PROCEDIMENTOS NÃO SUPERVISIONADOS E TÉCNICAS DE AGRUPAMENTO (parte 1)

PROCEDIMENTOS NÃO SUPERVISIONADOS E TÉCNICAS DE AGRUPAMENTO (parte 1) PROCEDIMENTOS NÃO SUPERVISIONADOS E TÉCNICAS DE AGRUPAMENTO (parte 1) 1 Procedimentos não supervisionados Não se conhece a classificação das amostras de treinamento Qual é o interesse? 1) Coletar e rotular

Leia mais

6 Ajuste de mínimos quadrados

6 Ajuste de mínimos quadrados 6 Ajuste de mínimos quadrados polinomial No capítulo anterior estudamos como encontrar um polinômio de grau m que interpola um conjunto de n pontos {{x i, f i }} n Tipicamente quando m < n esse polinômio

Leia mais

Renato Martins Assunção

Renato Martins Assunção Análise Numérica Renato Martins Assunção DCC - UFMG 2012 Renato Martins Assunção (DCC - UFMG) Análise Numérica 2012 1 / 84 Equação linear Sistemas de equações lineares A equação 2x + 3y = 6 é chamada linear

Leia mais

Geometria Computacional

Geometria Computacional Geometria Computacional Claudio Esperança Paulo Roma Cavalcanti Estrutura do Curso Aspectos teóricos e práticos Construção e análise de algoritmos e estruturas de dados para a solucionar problemas geométricos

Leia mais

Aula 22 Derivadas Parciais - Diferencial - Matriz Jacobiana

Aula 22 Derivadas Parciais - Diferencial - Matriz Jacobiana Derivadas Parciais - Diferencial - Matriz Jacobiana MÓDULO 3 - AULA 22 Aula 22 Derivadas Parciais - Diferencial - Matriz Jacobiana Introdução Uma das técnicas do cálculo tem como base a idéia de aproximação

Leia mais

Cálculo Diferencial e Integral 2 Formas Quadráticas

Cálculo Diferencial e Integral 2 Formas Quadráticas Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral 2 Formas Quadráticas 1 Formas quadráticas Uma forma quadrática em R n é um polinómio do

Leia mais

Classificação Linear. André Tavares da Silva.

Classificação Linear. André Tavares da Silva. Classificação Linear André Tavares da Silva andre.silva@udesc.br Roteiro Introduzir os o conceito de classificação linear. LDA (Linear Discriminant Analysis) Funções Discriminantes Lineares Perceptron

Leia mais

3 Implementação Computacional

3 Implementação Computacional 3 Implementação Computacional Neste trabalho considerou-se o estudo da instabilidade elástica e inelástica de estruturas planas como vigas, colunas, pórticos e arcos. No estudo deste tipo de estruturas

Leia mais

Momentos: Esperança e Variância. Introdução

Momentos: Esperança e Variância. Introdução Momentos: Esperança e Variância. Introdução Em uma relação determinística pode-se ter a seguinte relação: " + " = 0 Assim, m =, é a declividade e a e b são parâmetros. Sabendo os valores dos parâmetros

Leia mais

Métodos Numéricos - Notas de Aula

Métodos Numéricos - Notas de Aula Métodos Numéricos - Notas de Aula Prof a Olga Regina Bellon Junho 2007 Zeros de equações transcendentes e Tipos de Métodos polinomiais São dois os tipos de métodos para se achar a(s) raízes de uma equação:

Leia mais

Computação Gráfica. Engenharia de Computação. CEFET/RJ campus Petrópolis. Prof. Luis Retondaro. Aula 3. Transformações Geométricas

Computação Gráfica. Engenharia de Computação. CEFET/RJ campus Petrópolis. Prof. Luis Retondaro. Aula 3. Transformações Geométricas Computação Gráfica Engenharia de Computação CEFET/RJ campus Petrópolis Prof. Luis Retondaro Aula 3 Transformações Geométricas no plano e no espaço Introdução (Geometria) 2 Pontos, Vetores e Matrizes Dado

Leia mais

TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira

TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira Sumário 1. Como obter raízes reais de uma equação qualquer 2. Métodos iterativos para obtenção de raízes 1. Isolamento das raízes 2. Refinamento

Leia mais

Análise Convexa. 1. Conjuntos convexos 1.1. Casca convexa, ponto extremo, cone. 2. Hiperplanos: suporte, separador, teorema da separação

Análise Convexa. 1. Conjuntos convexos 1.1. Casca convexa, ponto extremo, cone. 2. Hiperplanos: suporte, separador, teorema da separação Análise Convexa 1. Conjuntos convexos 1.1. Casca convexa, ponto extremo, cone 2. Hiperplanos: suporte, separador, teorema da separação 3. Funções convexas 4. Teoremas de funções convexas 5. Conjunto poliedral

Leia mais

7 Formas Quadráticas

7 Formas Quadráticas Nova School of Business and Economics Apontamentos Álgebra Linear 1 Definição Forma quadrática em variáveis Função polinomial, de grau, cuja expressão tem apenas termos de grau. Ex. 1: é uma forma quadrática

Leia mais

CLP(X) Na Programação em Lógica, a operação fundamental que se executa na passagem de parâmetros é a unificação de termos de Herbrand.

CLP(X) Na Programação em Lógica, a operação fundamental que se executa na passagem de parâmetros é a unificação de termos de Herbrand. CLP(X) Na Programação em Lógica, a operação fundamental que se executa na passagem de parâmetros é a unificação de termos de Herbrand. Com efeito, dado um golo g, uma cláusula h:- b1,..., bk pode ser usada

Leia mais

Poliedros na forma padrão

Poliedros na forma padrão Poliedros na forma padrão Marina Andretta ICMC-USP 19 de outubro de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta (ICMC-USP) sme0211 - Otimização

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Alessandro L. Koerich Programa de Pós-Graduação em Informática Pontifícia Universidade Católica do Paraná (PUCPR) Redes Neurais Artificiais Plano de Aula Introdução Motivação Biológica

Leia mais

Modelagem Computacional. Parte 6 2

Modelagem Computacional. Parte 6 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 6 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 6 e 7] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,

Leia mais

Ajuste de mínimos quadrados

Ajuste de mínimos quadrados Capítulo 5 Ajuste de mínimos quadrados 5 Ajuste de mínimos quadrados polinomial No capítulo anterior estudamos como encontrar um polinômio de grau m que interpola um conjunto de n pontos {{x i, f i }}

Leia mais

Marina Andretta. 17 de setembro de Baseado no livro Numerical Optimization, de J. Nocedal e S. J. Wright.

Marina Andretta. 17 de setembro de Baseado no livro Numerical Optimization, de J. Nocedal e S. J. Wright. Métodos de regiões de confiança Marina Andretta ICMC-USP 17 de setembro de 2014 Baseado no livro Numerical Optimization, de J. Nocedal e S. J. Wright. Marina Andretta (ICMC-USP) sme0212 - Otimização não-linear

Leia mais

3 REDES CLÁSSICAS PERCEPTRON E ADALINE

3 REDES CLÁSSICAS PERCEPTRON E ADALINE w b Professor José Gomes de Carvalho Jr. 3 REDES CLÁSSICAS PERCEPTRON E ADALINE 3.-Redes com funções de ativação de limiar Uma rede simples de uma camada, consiste em um ou mais neurônios de saída j conectados

Leia mais

Otimização Combinatória - Parte 4

Otimização Combinatória - Parte 4 Graduação em Matemática Industrial Otimização Combinatória - Parte 4 Prof. Thiago Alves de Queiroz Departamento de Matemática - CAC/UFG 2/2014 Thiago Queiroz (DM) Parte 4 2/2014 1 / 33 Complexidade Computacional

Leia mais

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18 Sumário CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1 Sistema de Coordenadas Lineares 1 Intervalos Finitos 3 Intervalos Infinitos 3 Desigualdades 3 CAPÍTULO 2 Sistemas de

Leia mais

Combinação de Classificadores (fusão)

Combinação de Classificadores (fusão) Combinação de Classificadores (fusão) André Tavares da Silva andre.silva@udesc.br Livro da Kuncheva Roteiro Sistemas com múltiplos classificadores Fusão por voto majoritário voto majoritário ponderado

Leia mais

Introdução ao Reconhecimento. Prof. Dr. Geraldo Braz Junior

Introdução ao Reconhecimento. Prof. Dr. Geraldo Braz Junior Introdução ao Reconhecimento Prof. Dr. Geraldo Braz Junior O que você vê? 2 Pergunta: Essa imagem tem um prédio? Classificação 3 Pergunta: Essa imagem possui carro(s)? Detecção de Objetos Vários 4 Pergunta:

Leia mais

AULA 04 ENERGIA POTENCIAL E POTENCIAL ELÉTRICO. Eletromagnetismo - Instituto de Pesquisas Científicas

AULA 04 ENERGIA POTENCIAL E POTENCIAL ELÉTRICO. Eletromagnetismo - Instituto de Pesquisas Científicas ELETROMAGNETISMO AULA 04 ENERGIA POTENCIAL E POTENCIAL ELÉTRICO Se um carga elétrica se move de um ponto à outro, qual é o trabalho realizado sobre essa carga? A noção de mudança de posição nos remete

Leia mais

Análise multivariada

Análise multivariada UNIFAL-MG, campus Varginha 6 de Setembro de 2018 Matriz inversa Já discutimos adição, subtração e multiplicação de matrizes A divisão, da forma como conhecemos em aritmética escalar, não é definida para

Leia mais

= f(0) D2 f 0 (x, x) + o( x 2 )

= f(0) D2 f 0 (x, x) + o( x 2 ) 6 a aula, 26-04-2007 Formas Quadráticas Suponhamos que 0 é um ponto crítico duma função suave f : U R definida sobre um aberto U R n. O desenvolvimento de Taylor de segunda ordem da função f em 0 permite-nos

Leia mais

Sessão 1: Generalidades

Sessão 1: Generalidades Sessão 1: Generalidades Uma equação diferencial é uma equação envolvendo derivadas. Fala-se em derivada de uma função. Portanto o que se procura em uma equação diferencial é uma função. Em lugar de começar

Leia mais

Transformações Geométricas. Transformações Geométricas. Sistemas de Coordenadas. Translação: M.C.F. de Oliveira Rosane Minghim 2006

Transformações Geométricas. Transformações Geométricas. Sistemas de Coordenadas. Translação: M.C.F. de Oliveira Rosane Minghim 2006 Transformações Geométricas Transformações Geométricas 2D M.C.F. de Oliveira Rosane Minghim 2006 Aplicadas aos modelos gráficos para alterar a geometria dos objetos, sem alterar a topologia Porque são necessárias:

Leia mais

Reconhecimento de Padrões/Objetos

Reconhecimento de Padrões/Objetos Reconhecimento de Padrões/Objetos André Tavares da Silva andre.silva@udesc.br Capítulo 12 de Gonzales Reconhecimento de Padrões (imagem) Objetivo: Interpretar o conteúdo da imagem através de um mapeamento

Leia mais

)XQGDPHQWRVGHSURJUDPDomRPDWHPiWLFD

)XQGDPHQWRVGHSURJUDPDomRPDWHPiWLFD )XQGDPHQWRVGHSURJUDPDomRPDWHPiWLFD,QWURGXomR A grande maioria dos problemas de engenharia pode ser solucionado de diferentes formas, uma vez que um número muito grande de soluções atende aos critérios

Leia mais

Métodos Não Paramétricos

Métodos Não Paramétricos Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões Métodos não Paramétricos Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Métodos Não Paramétricos Introduzir

Leia mais

CLASSIFICADORES BAEYSIANOS

CLASSIFICADORES BAEYSIANOS CLASSIFICADORES BAEYSIANOS Teorema de Bayes 2 Frequentemente, uma informação é apresentada na forma de probabilidade condicional Probabilidade de um evento ocorrer dada uma condição Probabilidade de um

Leia mais

LOM Teoria da Elasticidade Aplicada

LOM Teoria da Elasticidade Aplicada Departamento de Engenharia de Materiais (DEMAR) Escola de Engenharia de orena (EE) Universidade de São Paulo (USP) OM3 - Teoria da Elasticidade Aplicada Parte 4 - Análise Numérica de Tensões e Deformações

Leia mais

Optimização. Carlos Balsa. Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança

Optimização. Carlos Balsa. Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Optimização Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática Aplicada - Mestrados Eng. Química e Industrial Carlos Balsa Matemática Aplicada

Leia mais

Uma Introdução a SVM Support Vector Machines. Obs: Baseada nos slides de Martin Law

Uma Introdução a SVM Support Vector Machines. Obs: Baseada nos slides de Martin Law Uma Introdução a SVM Support Vector Machines Obs: Baseada nos slides de Martin Law Sumário Historia das SVMs Duas classes, linearmente separáveis O que é um bom limite para a decisão? Duas classes, não

Leia mais

Teoria do aprendizado

Teoria do aprendizado Teoria do aprendizado Marcelo K. Albertini 7 de Agosto de 2014 2/37 Teoria do aprendizado Teoremas não existe almoço grátis Viés e variância Aprendizado PAC Dimensão VC Máquinas de vetores suporte 3/37

Leia mais

Teoria de dualidade. Marina Andretta ICMC-USP. 19 de outubro de 2016

Teoria de dualidade. Marina Andretta ICMC-USP. 19 de outubro de 2016 Teoria de dualidade Marina Andretta ICMC-USP 19 de outubro de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta (ICMC-USP) sme0211 - Otimização

Leia mais

Redes Neurais e Sistemas Fuzzy

Redes Neurais e Sistemas Fuzzy Redes Neurais e Sistemas Fuzzy Redes de uma única camada O Perceptron elementar Classificação de padrões por um perceptron A tarefa de classificação consiste em aprender a atribuir rótulos a dados que

Leia mais

Matriz Hessiana e Aplicações

Matriz Hessiana e Aplicações Matriz Hessiana e Aplicações Sadao Massago Dezembro de 200 Sumário Introdução 2 Matriz Jacobiana 3 Matriz hessiana 2 4 Talor de primeira e segunda ordem 2 5 Classicação dos pontos críticos 3 A Procedimeno

Leia mais