Centro Federal de Educação Tecnológica de Pelotas CEFET-RS Curso Técnico de Edificações

Tamanho: px
Começar a partir da página:

Download "Centro Federal de Educação Tecnológica de Pelotas CEFET-RS Curso Técnico de Edificações"

Transcrição

1 Centro Federal de Educação Tecnológica de Pelotas CEFET-RS Curso Técnico de Edificações Mecânica dos Solos Módulo Geral 1 Compilação: Cristiane Salerno Schmitz

2 ÍNDICE 1. ORIGEM E NATUREZA DOS SOLOS A Mecânica dos Solos na Engenharia Civil As partículas constituintes dos solos A origem dos solos Classificação dos solos pela sua origem Solos orgânicos Tamanho das partículas Constituição mineralógica Solos lateríticos Estrutura 9 2. O ESTADO DO SOLO Índices físicos entre as três fases Cálculo dos índices de estado IDENTIFICAÇÃO DOS SOLOS POR MEIO DE ENSAIOS Analise granulométrica Índices de consistência (Limites de Atterberg) Atividade das Argilas Emprego dos índices de consistência ESTADO DAS AREIAS COMPACIDADE ESTADO DAS ARGILAS CONSISTÊNCIA Sensitividade das argilas Índice de consistência IDENTIFICAÇÃO TÁTIL-VISUAL DOS SOLOS COMPRESSIBILIDADE Introdução Analogia da Mecânica de Terzaghi Compressibilidade dos Terrenos Pouco Permeáveis (Argila) Compressibilidade dos Terrenos Permeáveis (Areia e Pedregulho) 33 8 RESISTÊNCIA AO CISALHAMENTO Atrito Coesão CLASSIFICAÇÃO DOS SOLOS A importância da classificação dos solos Classificação Unificada Sistema Rodoviário de Classificação 44 2

3 9.4 Classificações regionais 45 3

4 ÍNDICE DE FIGURAS Figura 1.1 Perfil de solo residual de decomposição de gnaisse (Vargas, 1981) 3 Figura 1.2 Estrutura de uma camada de caulinita; (a) atômica, (b) simbólica 7 Figura 1.3 Estrutura simbólica de minerais com camada 2:1; (a) esmectita com duas camadas de moléculas de água, (b) ilita 8 Figura 1.4 Exemplo de estruturas de solos sedimentares; (a) floculada em água salgada, (b) floculada em água não salgada, (c) dispersa (Mitchel, 1976) 10 Figura 1.5 Exemplo de estrutura de solo residual, mostrando micro e macroporos 10 Figura 2.1 As fases do solo; (a) no estado natural, (b) separadas em volumes, (c) em função do volume dos sólidos 11 Figura 2.2 Esquema de determinação do volume do peso específico dos grãos 13 Figura 3.1 Exemplo de curva de distribuição granulométrica do solo 17 Figura 3.2 Esquema representativo da sedimentação 18 Figura 3.3 Curvas granulométricas de alguns solos brasileiros 19 Figura 3.4 Limites de Atterberg dos solos 21 Figura 3.5 Esquema do aparelho de Casagrande para determinação do LL 21 Figura 4.1 Exemplos de formato de grãos de areia 24 Figura 4.2 Comparação de compacidades de duas areias com e=0,65 25 Figura 5.1 Resistência de argila sensitiva, indeformada e amolgada 27 Figura 5.2 Comparação de consistências de duas argilas 28 Figura 7.1 Analogia mecânica para o processo de adensamento, segundo Terzaghi_ 32 Figura 7.2 Camada de argila limitada em uma (a) e duas faces (b) por camada drenante 33 Figura 8.1 Esquemas referentes ao atrito entre dois corpos 35 Figura 8.2 Transmissão de forças entre partículas de areias e de argilas 36 Figura 8.3 Representação da envoltória de ruptura de Coulomb 37 Figura 9.1 Granulometrias de areia bem graduada e mal graduada 40 Figura 9.2 Curvas granulométricas com diferentes coeficientes de curvatura 41 Figura 9.3 Carta de Plasticidade 42 Figura 9.4 Classificação dos solos finos no Sistema Rodoviário 44 4

5 ÍNDICE DE TABELAS Tabela 1.1 Limites das frações de solo pelo tamanho dos grãos 6 Tabela 4.1 Valores típicos de índices de vazios de areias 25 Tabela 4.2 Classificação das areias segundo a compacidade 25 Tabela 5.1 Consistência em função da resistência à compressão 26 Tabela 5.2 Classificação das argilas quanto á sensitividade 27 Tabela 5.3 Estimativa da consistência pelo índice de consistência 29 Tabela 9.1 Terminologia do Sistema Unificado 39 Tabela 9.2 Esquema para classificação pelo Sistema Unificado 43 Tabela 9.3 Esquema para classificação pelo Sistema Rodoviário 45 5

6 1. ORIGEM E NATUREZA DOS SOLOS 1.1 A Mecânica dos Solos na Engenharia Civil Todas as obras de Engenharia Civil se assentam sobre o terreno e inevitavelmente requerem que o comportamento do solo seja devidamente considerado. A Mecânica dos Solos, que estuda o comportamento dos solos quando tensões são aplicadas, como nas fundações, ou aliviadas, no caso de escavações, ou perante o escoamento de água nos vazios, constitui-se numa Ciência de Engenharia, na qual o engenheiro civil se baseia para desenvolver seus projetos. Este ramo da engenharia, chamado de engenharia Geotécnica ou engenharia de Solos, costuma empolgar os seus praticantes pela diversidade de suas atividades, pelas peculiaridades que o material apresenta em cada local e pela engenhosidade freqüentemente requerida para a solução de problemas reais. Trabalhos marcantes sobre o comportamento dos solos já foram desenvolvidos em séculos passados, como os clássicos de Coulomb, 1773, Rankine, 1856 e Darcy, Entretanto, um acúmulo de insucessos em obras de engenharia civil no início deste século, dos quais se destacam as rupturas do Canal do Panamá e rompimentos de grandes taludes em estradas e canais em construção na Europa e nos Estados Unidos, mostrou a necessidade de revisão os procedimentos de cálculo. Como apontou Terzaghi em 1936, ficou evidente que não se podiam aplicar aos solos leis teóricas de uso corrente em projetos que envolviam materiais mais bem definidos, como o concreto e o aço. Não era suficiente determinar em laboratório parâmetros de resistência e deformidade em amostras de solos e aplicá-los a modelos teóricos adequados àqueles materiais. O conhecimento do comportamento deste material, disposto pela natureza em depósitos heterogêneos e apresentando comportamento demasiadamente complicado para tratamentos teóricos rigorosos, deveu-se em grande parte aos trabalhos de Karl Terzaghi, engenheiro civil de larga experiência, sólido preparo científico e acurado espírito de investigação internacionalmente conhecido como o fundador da Mecânica dos Solos. Seus trabalhos, identificando o papel das pressões da água no estudo nas tenções nos solos e a apresentação da solução matemática para a evolução dos recalques das argilas com o tempo após o carregamento, são conhecidos como o marco inicial desta nova ciência de engenharia. Apesar de seu nome, hoje empregado internacionalmente, a Mecânica dos Solos não se restringe ao conhecimento das propriedades dos solos que a Mecânica pode esclarecer. A Química e a Física Coloidal, importantes para justificar aspectos do comportamento dos solos, são parte integrante da Mecânica dos Solos, enquanto que o conhecimento da Geologia é fundamental para o tratamento correto dos problemas de fundações. 1

7 A Engenharia Geotécnica é uma arte que se aprimora pela experiência, pela observação e análise do comportamento das obras, para o que é imprescindível atentar para as peculiaridades dos solos com base no entendimento dos mecanismos de comportamento, que constituem a essência da Mecânica dos Solos. Os solos são constituídos por um conjunto de partículas com água (ou outro líquido) e ar nos espaços intermediários. As partículas, de maneira geral encontram-se livres para deslocar entre si. Em alguns casos, uma pequena cimentação pode ocorrer entre elas, mas num grau extremamente mais baixo do que nos cristais de uma rocha ou de um metal, ou nos agregados de um concreto. O comportamento dos solos depende do movimento das partículas sólidas entre si e isto faz com que ele se afaste do mecanismo dos sólidos idealizados na Mecânica dos Sólidos Deformáveis, na qual se fundamenta a Mecânica das Estruturas geralmente consideradas na engenharia civil. Mais que qualquer dos materiais tradicionalmente considerados nas estruturas, o comportamento dos solos diverge daquele de um sólido deformável. A Mecânica dos Solos poderia ser adequadamente incluída na Mecânica dos Sistemas Particulados (Lambe e Witman, 1969). As soluções da Mecânica dos Sólidos Deformáveis são freqüentemente empregadas para a representação do comportamento de maciços de solo, graças a sua simplicidade e por obterem comprovação aproximada de seus resultados com o comportamento real dos solos, quando verificada experimentalmente em obras de engenharia. Em diversas situações, entretanto, o comportamento do solo só pode ser entendido pela consideração das forças transmitidas diretamente nos contatos entre as partículas, embora estas forças não sejam utilizadas em cálculos e modelos. Não é raro, por exemplo, que as partículas do solo se quebrem quando este é solicitado, alterandoo, com conseqüente influência no seu desempenho. 1.2 As partículas constituintes dos solos A origem dos solos Todos os solos se originam da decomposição das rochas que constituíam inicialmente a crosta terrestre. A decomposição é decorrente de agentes físicos e químicos. Variações de temperatura provocam trincas, nas quais penetra a água, atacando quimicamente os minerais. O congelamento da água nas trincas, entre outros fatores, exerce elevadas tensões, do que decorre maior fragmentação dos blocos. A presença da fauna e flora promove o ataque químico, através de hidratação, hidrólise, oxidação, lixiviação, troca de cátions, carbonatação, etc. O conjunto destes processos, que são muito mais atuantes em climas quentes do que em climas frios, leva à formação dos solos que, em conseqüência, são misturas de partículas pequenas que se diferenciam pelo tamanho e pela composição química. A maior ou menor concentração de cada tipo de partícula num solo depende da composição química da rocha que lhe deu origem. 2

8 1.2.2 Classificação dos solos pela sua origem A classificação dos solos pela sua origem é um complemento importante para o conhecimento das ocorrências e para a transmissão de conhecimentos acumulados. Algumas vezes, a indicação da origem do solo é tão ou mais útil do que a classificação sob o ponto de vista da constituição física. Os solos podem ser classificados em dois grandes grupos: solos residuais e solos transportados. Solos residuais são aqueles resultantes da decomposição das rochas que se encontram no próprio local em que formaram. Para que eles ocorram, é necessário que a velocidade de decomposição da rocha seja maior do que a velocidade de decomposição por agentes externos. A velocidade de decomposição depende de vários fatores, entre os quais a temperatura, o regime de chuva e a vegetação. As condições existentes nas regiões tropicais são favoráveis a degradações mais rápidas da rocha, razão pela qual as maiores ocorrências de solos residuais ocorrem nestas regiões, entre elas o Brasil. Figura 1.1 Perfil de solo residual de decomposição de gnaisse (Vargas, 1981) Os solos residuais se apresentam em horizontes com grau de intemperização decrescente. Vargas (1981) identifica as seguintes camadas, cujas transições são gradativas, conforme mostra a Figura 1.1. Solo residual maduro: superficial ou sotoposto a um horizonte poroso ou húmico, e que perdeu toda a estrutura original da rocha-mãe e tornou-se relativamente homogêneo. 3

9 Saprolitro ou solo saprolítico: solo que mantém a estrutura original da rocha-mater, mas perdeu a consistência da rocha. Visualmente pode confundir-se com uma rocha alterada, mas apresenta pequena resistência ao manuseio. É também chamado de solo residual jovem ou solo de alteração de rocha. Rocha alterada: horizonte em que a alteração progrediu ao longo de fraturas ou zonas de menor resistência, deixando intactos grandes blocos da rocha original. Em se tratando de solos residuais, é de grande interesse a indicação da rochamãe, pois ela condiciona, entre outras coisas, a própria composição física. Solos residuais de basalto são predominantemente argilosos, os de gnaisse são siltosos e os granitos apresentam teores aproximadamente iguais de areia média, silte e argila, etc. Solos transportados são aqueles que foram levados ao seu local atual por alguns agentes de transporte. As características dos solos são função do agente transportador. Solos formados por ação da gravidade dão origem a solos coluvionares. Entre eles estão os escorregamentos das escarpas da Serra do Mar, formando os tálus nos pés do talude, massas de materiais muito diversos e sujeitos a movimentações de rastejo. Têm sido também classificados como coluviões, solos superficiais do planalto brasileiro depositados sobre solos residuais. Solos resultantes do carregamento pela água são os aluviões, ou solos aluvionares. Sua composição depende da velocidade das águas no momento de deposição. Existem aluviões essencialmente arenosos, bem como aluviões muito argilosos, comuns nas várzeas quaternárias dos córregos e rios. Registra-se também a ocorrência de camadas sobrepostas de granulometrias distintas, devidas a diversas épocas e regimes de deposição. O transporte pelo vento dá origem aos depósitos eólicos. O transporte eólico provoca o arredondamento das partículas, em virtude do seu atrito constante. As areias constituintes dos arenitos brasileiros são arredondadas, por ser esta uma rocha sedimentar com partículas previamente transportadas pelo vento. O transporte por geleiras dá origem aos drifts, muito freqüentes na Europa e nos Estados Unidos, mas com pequena ocorrência no Brasil Solos orgânicos São chamados solos orgânicos àqueles que contém uma quantidade apreciável de matéria decorrente de decomposição de origem vegetal ou animal, em vários estágios de decomposição. Geralmente argilas ou areias finas, os solos orgânicos são de fácil identificação, pela cor escura e pelo odor característico. A norma norte-americana classifica como solo orgânico àquele que apresenta LL de uma amostra seca em estufa menor do que 75% do LL de amostra natural sem secagem em estufa. O teor de 4

10 matéria orgânica pode ser determinado pela secagem em mufla a 540 C. Solos orgânicos geralmente são problemáticos por serem muito compressíveis. Eles são encontrados no Brasil principalmente nos depósitos litorâneos, em espessura de dezenas de metros, e nas várzeas dos rios e córregos, em camadas de 3 a 10 m de espessura. O teor de matéria orgânica em peso tem variado de 4 a 20%. Por sua característica orgânica, apresentam elevados índices de vazios, e por serem de sedimentação recente, normalmente adensados, possuem baixa capacidade de suporte e considerável compressibilidade. Em algumas formações, ocorre uma importante concentração de folhas e caules em processo incipiente de decomposição, formando as turfas. São materiais extremamente deformáveis, mas muito permeáveis, permitindo que os recalques, devidos a carregamentos externos, ocorram rapidamente Tamanho das partículas A primeira característica que diferencia os solos é o tamanho das partículas que os compõem. Numa primeira aproximação, pode-se identificar que alguns solos possuem grãos perceptíveis a olho nu, como os grãos de pedregulho ou a areia do mar, e que outros têm os grãos tão finos que, quando molhado, se transformam numa pasta (barro), não podendo se visualizar as partículas individualmente. A diversidade do tamanho dos grãos é enorme. Não se percebe isto num primeiro contato com o material, simplesmente porque parecem todos muito pequenos perante os materiais com os quais se está acostumado a lidar. Mas alguns são consideravelmente menores do que outros. Existem grãos de areia com dimensões de 1 a 2mm, e existem partículas de argila com espessuras da origem de 10 Å (0, mm). Isto significa que, se uma partícula de argila fosse ampliada de forma a ficar com o tamanho de uma folha de papel, o grão de areia citado ficaria com diâmetros da ordem de 100 a 200 metros, um quarteirão. Num solo, geralmente convivem partículas de tamanhos diversos. Não é fácil identificar o tamanho das partículas pelo simples manuseio do solo, porque grãos de areia, por exemplo, podem estar envoltos por uma grande quantidade de partículas argilosas, finíssimas, ficando com o mesmo aspecto de uma aglomeração formada exclusivamente por uma grande quantidade destas partículas. Quando secas, as duas formações são muito semelhantes.quando úmidas, entretanto, a aglomeração de partículas argilosas se transforma em uma pasta fina, enquanto a partícula arenosa revestida é facilmente reconhecida pelo tato. Denominações específicas são empregadas para as diversas faixas de tamanhos de grãos; seus limites, entretanto, variam conforme os sistemas de classificação. Os valores adotados pela ABNT Associação Brasileira de Normas Técnicas são os indicados na Tabela

11 Tabela 1.1 Limites das frações de solo pelo tamanho dos grãos Fração Matacão Pedra Pedregulho Areia grossa Areia média Areia fina Silte Argila Limites definidos pela Norma da ABNT de 25 cm a 1 m de 7,6 cm a 25 cm de 4,8 cm a 7,6 cm de 2,0 cm a 4,8 cm de 0,042mm a 2,0 cm de 0,05 mm a 0,042 mm de 0,005 mm a 0,05 mm inferior a 0,005 mm Diferentemente desta terminologia adotada pela ABNT, a separação entre as frações silte e areia é freqüente tomada como 0,075 mm, correspondente à abertura da peneira nº 200, O conjunto de silte e argila é denominado como a fração de finos do solo, enquanto o conjunto areia e pedregulho é denominado fração grossa ou grosseira do solo. Por outro lado, a fração argila é considerada, com freqüência, como a fração abaixo do diâmetro de 0,002 mm, que corresponde ao tamanho mais próximo das partículas de constituição mineralógica dos minerais-argila Constituição mineralógica As partículas resultantes da desagregação de rochas dependem da composição da rocha matriz. Algumas partículas maiores, dentre os pedregulhos, são constituídas freqüentemente de agregações de minerais distintos. É mais comum, entretanto, que as partículas sejam constituídas de um único mineral. O quartzo, presente na maioria das rochas, é bastante resistente à desagregação e forma grãos de silte e areia. Sua composição química é simples, SiO2, as partículas são equidimensionais, como cubos ou esferas, e ele apresenta baixa atividade superficial. Outros minerais, como feldspato, gipsita, calcita e mica, também podem ser encontrados neste tamanho. Os feldspatos são os minerais mais atacados pela natureza, dando origem aos argilo-minerais, que constituem a fração mais fina dos solos, geralmente com dimensão inferior a 2 mm. Não só o reduzido tamanho mas, principalmente, a constituição mineralógica faz com que estas partículas tenham um comportamento extremamente diferenciado em relação ao dos grãos de silte e areia. Os argilo-minerais apresentam uma estrutura complexa. Uma abordagem detalhada deste tema foge ao intuito desta apostila, uma síntese do assunto, que permite compreender o comportamento dos solos argilosos perante a água, é apresentada a seguir, tomando-se como exemplo três dos minerais mais comuns na 6

12 natureza (a caulinita, a ilita e a esmectita), que apresentam comportamentos bem distintos, principalmente na presença de água. Na composição química das argilas, existem dois tipos de estruturas: uma estrutura de tetraedros justapostos num plano, com átomos de oxigênio que pertencem simultaneamente a ambas. Alguns minerais-argila são formados por uma camada tetraédrica e uma octaédrica (estrutura de camada 1:1), determinando uma espessura da ordem de 7 Å (1 Angstron = m), como a caulinita, cuja estrutura está representada na Figura 1.2. As camadas assim constituídas encontram-se firmemente empacotadas, com ligações de hidrogênio que impedem sua separação e que entre elas se introduzam moléculas de água. A partícula resultante fica com espessura da ordem de Å, sendo sua dimensão longitudinal de cerca de Å. Figura 1.2 Estrutura de uma camada de caulinita; (a) atômica, (b) simbólica Noutros minerais o arranjo octaédrico é encontrado entre duas estruturas do arranjo tetraédrico (estrutura de camadas 2:1), definindo uma espessura de cerca de 10 Å. Com esta constituição estão as esmectitas e as ilitas, cujas estruturas simbólicas estão apresentadas na Figura 1.3. Nestes minerais, as ligações entre as camadas se fazem por íons O² - e O² + dos arranjos tetraédricos, que são mais fracos que a ligações entre camadas de caulinita, em que íons O² + da estrutura tetraédrica se ligam a OH - da estrutura octaédrica. As camadas ficam livres, e as partículas, no caso das esmectitas, ficam com a espessura da própria camada estrutural, que é de 10 Å. Sua dimensão longitudinal também é reduzida, ficando com cerca de Å, pois as placas se quebram por flexão. As partículas de esmectita apresentam um volume 10-4 vezes menor do que as de caulinita e uma área 10-2 vezes menor. Isto significa que para igual volume ou massa, a superfície das partículas de esmectita é 100 vezes maior do que das partículas de caulinita. A superfície específica (superfície total de um conjunto de partículas dividida pelo seu peso) das caulinitas é da ordem de 10 m²/g, enquanto que a das esmectitas é de cerca de 1.000m²/g. As forças de superfície são muito importantes no comportamento de partículas coloidais, sendo a diferença de superfície específica uma indicação da diferença de comportamento entre os solos com distintos minerais-argila.. 7

13 Figura 1.3 Estrutura simbólica de minerais com camada 2:1; (a) esmectita com duas camadas de moléculas de água, (b) ilita O comportamento das argilas seria menos complexo se não ocorressem imperfeições na sua composição mineralógica. É comum, entretanto, a ocorrência de um átomo de alumínio, Al³ +, substituindo um de silício, Si 4+, na estrutura tetraédrica, e que na estrutura octaédrica, átomos de alumínio estejam substituídos por outros átomos de menor valência, como o magnésio, Mg ++. Estas alterações são definidas como substituições isomórficas, pois não alteram o arranjo dos átomos, mas as partículas resultam com uma carga negativa. Para neutralizar as cargas negativas, existem cátions livres nos solos, por exemplo, cálcio, Ca ++, ou sódio, Na +, aderidos às partículas. Estes cátions atraem camadas contíguas, mas com força relativamente pequena, o que não impede a entrada de água entre as camadas. A liberdade de movimento das placas explica a elevada capacidade de absorção de água de certas argilas, sua expansão quando em contato com a água e sua contração considerável ao secar. As bordas das partículas argilosas apresentam cargas positivas, resultantes das descontinuidades da estrutura molecular, mas íons negativos neutralizam estas cargas. Os cátions e íons são facilmente trocáveis por percolação de soluções químicas. O tipo de cátion presente numa argila condiciona o seu comportamento. Uma argila esmectita com sódio absorvido, por exemplo, é muito mais sensível à água do que tendo cálcio absorvido. Daí a diversidade de comportamentos apresentados pelas argilas e a dificuldade de correlacioná-los por meio de índices empíricos Solos lateríticos A pedologia é o estudo das transformações da superfície dos depósitos geológicos, dando origem a horizontes distintos, ocorrendo tanto em solos residuais 8

14 como nos transportados. Os fatores que determinam as propriedades dos solos considerados na pedologia são: (1) a rocha matriz, (2) o clima e a vegetação, (3) organismos vivos, (4) topografia, e (5) o tempo de exposição a estes fatores. Na engenharia civil, as classificações pedológicas são utilizadas principalmente pelos engenheiros rodoviários, que lidam com solos superficiais e que encontram úteis correlações entre o comportamento de pavimentos e taludes com estas classificações. A identificação dos solos lateríticos é de particular interesse para o Brasil, já que são típicos da evolução de solos em climas quentes, com regime de chuvas moderadas a intensas. A denominação de lateríticos se incorporou na terminologia dos engenheiros, embora não seja mais usada nas classificações pedológicas. Os solos lateríticos têm sua fração argila constituída predominantemente de minerais cauliníticos e apresentam elevada concentração de ferro e alumínio na forma de óxidos e hidróxidos, donde vem sua peculiar coloração avermelhada. Estes sais se encontram, geralmente, recobrindo agregações de partículas argilosas. Os solos lateríticos apresentam-se na natureza, geralmente não-saturados e com índice de vazios elevado, daí sua pequena capacidade de suporte. Quando compactados, entretanto, sua capacidade de suporte é elevada, sendo por isto muito empregado em pavimentação e em aterros. Depois de compactado, um solo laterítico apresenta contração se o teor de umidade diminuir, mas não apresenta expansão na presença de água. Uma metodologia de classificação, que permite a identificação dos solos de comportamento laterítico, foi desenvolvida pelo Prof. Job S. Nogami e vem sendo empregada por alguns órgãos rodoviários do País. 1.3 Estrutura A água é um mineral de comportamento bem mais complexo do que sua simples composição química (H2O) sugere. Os dois átomos de hidrogênio, em órbita em torno do átomo de oxigênio não se encontram em posições diametralmente opostas, o que resultaria num equilíbrio de cargas. Do movimento constante dos átomos resulta um comportamento para a água que poderia ser interpretado como se os dois átomos de hidrogênio estivessem em posições que definiriam um ângulo de 105 com o centro no oxigênio. Em conseqüência, a água atua como um bipólo, orientando-se em relação às cargas externas. Quando duas partículas de argila, na água, estão muito próximas, ocorrem forças de atração e de repulsão entre elas. Da combinação das forças de atração e de repulsão entre as partículas resulta a estrutura dos solos, que se refere à disposição das partículas na massa de solo e às forças entre elas. Lambe (1953) identificou dois tipos básicos de estruturas: estrutura floculada, quando os contatos se fazem entre faces e arestas, ainda que através da água adsorvida; e estrutura dispersa, quando as partículas se posicionam paralelamente, face a face. 9

15 As argilas sedimentares apresentam estruturas que dependem da salinidade da água em que se formaram. Em águas salgadas, a estrutura é bastante aberta, embora haja um relativo paralelismo entre as partículas. Estruturas floculadas em água não salgada resultam da atração das cargas positivas das bordas com as cargas negativas das faces das partículas. A Figura 1.4 ilustra esquematicamente estes tipos de estrutura. O conhecimento das estruturas permite o entendimento de diversos fenômenos notados no comportamento dos solos, como, por exemplo, a sensitividade das argilas. Figura 1.4 Exemplo de estruturas de solos sedimentares; (a) floculada em água salgada, (b) floculada em água não salgada, (c) dispersa (Mitchel, 1976) O modelo de estrutura mostrado acima é simplificado. No caso de solos residuais e de solos compactos, a posição relativa das partículas é mais elaborada. Intimamente, existem aglomerações de partículas argilosas que se dispõem de forma a determinar vazios de maiores dimensões, como se mostra na Figura 1.5. Existem microporos nos vazios entre as partículas argilosas que constituem as aglomerações e macroporos entre as aglomerações. Esta diferenciação é importante para o entendimento de alguns comportamentos dos solos como, por exemplo, a elevada permeabilidade de certos solos residuais no estado natural, ainda que apresentando considerável parcela de partículas argilosas, como se estudará. Figura 1.5 Exemplo de estrutura de solo residual, mostrando micro e macroporos Por outro lado, observa-se que em solos evoluídos pedologicamente, principalmente em climas quentes e úmidos (comportamento laterítico), aglomerações de partículas minerais se apresentam envoltas por deposições de sais de ferro e de alumínio (agentes cimentantes), sendo este aspecto determinante para seu comportamento. 10

16 2. O ESTADO DO SOLO 2.1 Índices físicos entre as três fases Num solo, só parte do volume total é ocupado pelas partículas sólidas, que se acomodam formando uma estrutura. O volume restante costuma ser chamado de vazios, embora esteja ocupado por água ou ar. Deve-se reconhecer, portanto,que o solo é constituído de três fases: partículas sólidas,água e ar. O comportamento de um solo depende da quantidade relativa de cada uma das três fases (sólido, água e ar). Diversas relações são empregadas para expressar as proporções entre elas. Na figura 2.1 (a), estão representadas, simplificadamente, as três fases que normalmente ocorrem nos solos, ainda que, em alguns casos, todos os vazios possam estar ocupados pela água. Na Figura 2.1 (b), as três fases estão separadas proporcionalmente aos volumes que ocupam, facilitando a definição e a determinação das relações entre elas. Os volumes de cada fase são apresentados à esquerda e os pesos à direita. Figura 2.1 As fases do solo; (a) no estado natural, (b) separadas em volumes, (c) em função do volume dos sólidos Em princípio, as quantidades de água e ar podem variar. A evaporação pode fazer diminuir a quantidade de água, substituindo-a por ar, e a compressão do solo pode provocar a saída de água e ar, reduzindo o volume de vazios. O solo, no que se refere às partículas que o constituem, permanece o mesmo, mas seu estado se altera. As diversas propriedades do solo dependem do estado em que se encontra. Quando diminui o volume de vazios, por exemplo, a resistência aumenta. 11

17 Para identificar o estado do solo, empregam-se índices que correlacionam os pesos e os volumes das três fases. Estes índices são os seguintes (vide esquema da Figura 2.1): Umidade Relação entre o peso da água e o peso dos sólidos. É expresso pela letra h. Para sua determinação, pesa-se o solo no seu estado natural, seca-se em estufa a 105 C até constância e peso e pesa-se novamente. Tendo-se o peso das duas fases, a umidade é calculada. É a operação mais freqüente em um laboratório de solos. Os teores de umidade dependem do tipo de solo e situam-se geralmente entre 10 e 40%, podendo ocorrer valores muito baixos (solos secos) ou muito altos (150% ou mais). h = Pa 100 Ps Índice de vazios Relação entre o volume de vazios e o volume das partículas sólidas. É expresso pela letra e. Não pode ser determinado diretamente, mas é calculado a partir dos outros índices. Costuma se situar entre 0,5 e 1,5, mas argilas orgânicas podem ocorrer com índices de vazios superiores a 3 (volume de vazios, no caso com água, superior a 3 vezes o volume de partículas sólidas). e = Vv Vs Porosidade Relação entre o volume de vazios e o total. Indica a mesma coisa que o índice de vazios. É expresso pela letra n. Valores geralmente entre 30 e 70%. n = Vv 100 V t Grau de saturação Relação entre o volume de água e o volume de vazios. Expresso pela letra S. Não é determinado diretamente, mas calculado. Varia de zero (solo seco) a 100% (solo saturado). S = Va 100 Vv Peso específico dos sólidos (ou dos grãos) É uma característica dos sólidos. Relação entre o peso das partículas sólidas e o seu volume. É expresso pelo símbolo γg. γ Ps g = Vs 12

18 Figura 2.2 Esquema de determinação do volume do peso específico dos grãos É determinado em laboratório. Coloca-se um peso seco conhecido do solo (Ps) num picnômetro e completa-se com água, determinando o peso total (Pp+Ps+Pa ). O peso do picnômetro completado só com água (Pp+Pa), mais o peso do solo, menos o peso do picnômetro com solo e água, é o peso da água que foi substituído pelo solo. Deste peso, calcula-se o volume de água que foi substituído pelo solo e que é o volume do solo. Vs = ( Pp + Pa) + ( Ps) ( Pp + Ps + Pa ') Com o peso e o volume, tem-se o peso específico. γ Ps g = ( Pp + Pa) + ( Ps) ( Pp + Ps + Pa') O peso específico dos grãos dos solos varia pouco de solo para solo e, por si, não permite identificar o solo em questão, mas é necessário para cálculos de outros índices. Os valores situam-se em torno de 27 kn/m³, sendo este valor adotado quando não se dispõe do valor específico para o solo em estudo. Grãos de quartzo (areia) costumam apresentar pesos específicos de 26,5 kn/m³ e argilas, em virtude da deposição de sais de ferro, valores até 30 kn/m³. Peso específico da água Embora varie um pouco com a temperatura, adotase sempre como igual a 10kN/m³, a não ser em certos procedimentos de laboratório. É expresso pelo símbolo γa. Peso específico natural Relação entre o peso total do solo e seu volume total. É expresso pelo símbolo γnat. γ P t nat = V t 13

19 A expressão peso específico natural é, algumas vezes, substituída só por peso específico do solo. Tratando-se de compactação do solo, o peso específico natural é denominado peso específico úmido. Para sua determinação, molda-se um cilindro do solo cujas dimensões conhecidas permitem calcular o volume. O peso total dividido pelo volume é o peso específico natural. O peso específico também pode ser determinado a partir de corpos irregulares, obtendo-se o volume por meio do peso imerso n água. Para tal, o corpo deve ser previamente envolto por parafina. O peso específico natural não varia muito entre os diferentes solos. Situa-se em torno de 19 e 20 kn/m³ e, por isso, quando não conhecido, é estimado como igual a 20 kn/m³. Pode ser um pouco maior (21 kn/m³) ou menor (17 kn/m³). Caso especiais, como as argilas orgânicas moles, podem apresentar pesos específicos de 14 kn/m³. Peso específico aparente seco - Relação entre o peso dos sólidos e o volume total. Corresponde ao peso específico que o solo teria se viesse a ficar seco, se isto pudesse ocorrer sem que houvesse variação de volume. Expresso pelo símbolo γs. Não é determinado diretamente em laboratório, mas calculado a partir do peso específico natural e da umidade. Situa-se entre 13 e 19 kn/m³ (4 a 5 kn/m³ no caso de argilas orgânicas moles). γ Ps s = V t Peso específico aparente saturado Peso específico do solo se viesse a ficar saturado e se isto ocorresse sem variação de volume. É de pouca aplicação prática, servindo para a programação de ensaios ou a análise de depósitos de areia que possam vir a se saturar. Expresso pelo γsat, é da ordem de 20 kn/m³. Peso específico submerso É o peso específico efetivo do solo quando submerso. Serve para cálculos de tensões efetivas. É igual ao peso específico natural menos o peso específico da água, portanto com valores da ordem de 10 kn/m³. É expresso pelo símbolo γsub. γ sub = γ nat γ a 2.2 Cálculo dos índices de estado Dos índices vistos anteriormente, só três são determinados diretamente em laboratório: a umidade (h), o peso específico dos grãos (γg) e o peso específico natural 14

20 (γnat). Um é adotado, o peso específico da água. Os outros são calculados a partir dos determinados. Algumas correlações resultam diretamente da definição dos índices: e n = 1 + e ( 1+ h) γ g γ g γ g + e γa γnat = γ = 1+ e s γ = 1 + e sat 1+ e Outras resultam de fáceis deduções. A seqüência natural dos cálculos, a partir de valores determinados em laboratório, ou estimado, é a seguinte: γ γ = nat s 1 + h γ g e = 1 γ s γ g h S = e γa Massas específicas Relações entre pesos e volumes são denominados pesos específicos, como acima definidos, e expressos geralmente em kn/m³. Relações entre quantidade de matéria (massa) e volume são denominadas massa específicas, e expressas geralmente em ton/m³, kg/ dm³ ou g/cm³. A relação entre valores numéricos que expressão as duas grandezas é constante Se um solo tem uma massa específica de 1,8 t/m³, seu peso específico é o produto deste valor pela aceleração da gravidade, que varia conforme a posição no globo terrestre e que vale em torno de 9,81 m/s² (em problemas de engenharia prática, adotase, simplificadamente, 10m/s²). O peso específico é, portanto, de 18 kn/m³. No laboratório, determina-se massas e as normas existentes indicam como se obter massas específicas. Entretanto, na prática da engenharia, é mais conveniente trabalhar com pesos específicos, razão pela qual se optou por apresentar os índices físicos nestes termos. Deve ser notado, por outro lado, que no Sistema Técnico de unidades, que vem sendo paulatinamente substituído pelo Sistema Internacional, as unidades de peso tem denominação semelhante às das unidades de massa no Sistema Internacional. Por exemplo, um decímetro cúbico de água tem uma massa de um quilograma (1kg) e um peso de dez Newtons (10N) no Sistema Internacional e um peso de um quilograma força no Sistema Técnico (1kgf). Assim, ainda é comum que se diga no meio técnico, por exemplo, que a tensão admissível aplicada numa sapata é de 5 t/m² (não é correto,mas se omite o complemento força). Na realidade, a pressão aplicada é de 50kN/m², resultante da ação da massa de 5 toneladas por metro quadrado. 15

21 A expressão densidade se refere á massa específica e densidade relativa é a relação entre a densidade do material e a densidade da água a 4 C. Como esta é igual a 1 kg/dm³, resulta que a densidade relativa tem o mesmo valor que a massa específica (expressa em g/cm³, kg/dm³ ou ton/m³), mas é adimensional. Como a relação entre o peso específico de um material e o peso específico da água a 4 C é igual à relação das massas específicas, é comum se estender o conceito de densidade relativa à relação dos pesos e se adotar como peso específico a densidade relativa do material multiplicada pelo peso específico da água. 16

22 3. IDENTIFICAÇÃO DOS SOLOS POR MEIO DE ENSAIOS Para identificação dos solos a partir das partículas que os constituem, são empregados correntemente dois tipos de ensaios, a análise granulométrica e os índices de consistência. 3.1 Analise granulométrica Num solo, geralmente convivem partículas de tamanhos diversos. Nem sempre é fácil identificar as partículas porque grãos de areia, por exemplo, podem estar envoltos por uma grande quantidade de partículas argilosas, finíssimas, apresentando o mesmo aspecto de uma aglomeração formada exclusivamente por estas partículas argilosas. Quando secas, as duas formações são dificilmente diferenciáveis. Quando úmidas, entretanto, a aglomeração de partículas argilosas se transforma em uma pasta fina, enquanto que a partícula arenosa revestida é facilmente reconhecida pelo tato. Portanto, numa tentativa de identificação tátil-visual dos grãos de um solo, é fundamental que ele se encontre bastante úmido. Figura 3.1 Exemplo de curva de distribuição granulométrica do solo Para o reconhecimento do tamanho dos grãos de um solo, realiza-se a análise granulométrica, que consiste, em geral, de duas fases: peneiramento e sedimentação. O peso do material que passa em cada peneira, referido ao peso seco da amostra, é considerado como a porcentagem que passa, e representado graficamente em função da abertura da peneira, esta em escala logarítmica, como se mostra na Figura 3.1. A 17

23 abertura nominal da peneira é considerada como o diâmetro das partículas. Trata-se, evidentemente, de um diâmetro equivalente, pois as partículas não são esféricas. A análise por peneiramento tem como limitação a abertura da malha das peneiras, que não pode ser tão pequena quanto o diâmetro de interesse. A menor peneira costumeiramente empregada é a de nº 200, cuja abertura é de 0,075 mm. Existem peneiras mais finas para estudos especiais, mais são pouco resistentes e por isso não são usadas rotineiramente. Mesmo estas, por sinal, têm aberturas muito maiores do que as dimensões das partículas mais finas do solo. Quando há interesse no conhecimento da distribuição granulométrica da porção mais fina dos solos, emprega-se a técnica da sedimentação, que se baseia na Lei de Stokes: a velocidade de queda de partículas esféricas num fluído atinge um valor limite que depende do peso específico do material da esfera, do peso específico do fluído, da viscosidade do fluído, e do diâmetro da esfera. Colocando-se uma certa quantidade de solo (uns 60g) em suspensão em água (cerca de um litro), as partículas cairão com velocidades proporcionais ao quadrado de seus diâmetros. Considere-se a Figura 3.2, na qual, à esquerda do frasco, estão indicados grãos com quatro diâmetros diferentes igualmente representados ao longo da altura, o que corresponde ao início do ensaio. À direita do frasco, está representada a situação depois de decorrido um certo tempo. No instante em que a suspensão é colocada em repouso, a sua densidade é igual ao longo de toda a profundidade. Quando as partículas maiores caem, a densidade na parte superior do frasco diminui. Numa profundidade qualquer, em um certo momento, a relação entre a densidade existente e a densidade inicial indica a porcentagem de grãos com diâmetro inferior ao determinado pela Lei de Stokes. Figura 3.2 Esquema representativo da sedimentação As densidades de suspensão são determinadas com um densímetro, que também indica a profundidade correspondente. Diversas leituras do densímetro, em diversos intervalos de tempo, determinarão igual número de pontos na curva granulométrica, como se mostra na Figura 3.1, complementando a parte da curva 18

24 obtida por peneiramento. Novamente, neste caso, o que se determina é um diâmetro equivalente, pois as partículas não são as esferas às quais se refere a Lei de Stokes. Diâmetro equivalente da partícula é o diâmetro da esfera que sedimenta com velocidade igual à da partícula. Deve-se frisar, que uma das operações mais importantes é a separação de todas as partículas, de forma que elas possam sedimentar isoladamente. Na situação natural, é freqüente que as partículas estejam agregadas ou floculadas. Se estas aglomerações não forem destruídas, determinar-se-ão os diâmetros dos flocos e não os das partículas isoladas. Para esta desagregação, adiciona-se um produto químico, com ação defloculante, deixa-se a amostra imersa em água por 24 horas e provoca-se uma agitação mecânica padronizada. Mesmo quando se realiza só o ensaio de peneiramento, esta preparação da amostra é necessária (destorroamento), pois, se não for feita, ficarão retidas nas peneiras agregações de partículas muito mais finas. Para diversas faixas de tamanho de grãos, existem denominações específicas, como definidas na Tabela 1.1 (item 1.2.4). Conhecida a distribuição granulométrica do solo, como na Figura 3.1, pode-se determinar a porcentagem correspondente a cada uma das frações acima especificadas. A figura 3.3 apresenta exemplos de curvas granulométricas de alguns solos brasileiros. Figura 3.3 Curvas granulométricas de alguns solos brasileiros Deve-se notar que as mesmas designações usadas para expressar as frações granulométricas de um solo são empregadas para denominar os próprios solos. Diz-se, 19

25 por exemplo, que um solo é uma argila quando o seu comportamento é o de um solo argiloso, ainda que contenha partículas com diâmetros correspondentes às frações silte e areia. Da mesma forma, uma areia é um solo cujo comportamento é ditado pelos grãos arenosos que ele possui, embora partículas de outras frações possam estar presentes. No caso de argilas, um terceiro sentido pode estar sendo empregado: os minerais-argila, uma família de minerais cujo arranjo de átomos foi descrito no item Estes minerais se apresentam geralmente em formato de placas e em tamanhos reduzidos, predominantemente, mas não exclusivamente correspondentes à fração argila. São estes minerais que conferem a plasticidade característica aos solos argilosos. 3.2 Índices de consistência (Limites de Atterberg) Só a distribuição granulométrica não caracteriza bem o comportamento dos solos sob o ponto de vista da engenharia. A fração fina dos solos tem uma importância muito grande neste comportamento. Quanto menores as partículas, maior a superfície específica (superfície das partículas dividida por seu peso ou por seu volume). Um cubo com 1 cm de aresta tem 6 cm² de área e volume de 1 cm³. Um conjunto de cubos com 0,05 mm (siltes) apresentam 125 cm² por cm³ de volume. Já certos tipos de argilas chegam a apresentar 300 m² de área por cm³ (1 cm³ é suficiente para cobrir uma sala de aula!). O comportamento de partículas com superfícies específicas tão distintas perante a água é muito diferenciado. Por outro lado, as partículas de minerais-argila diferem acentuadamente pela estrutura mineralógica, bem como pelos cátions adsorvidos, como visto nos itens e 1.3. Desta forma, para a mesma porcentagem de fração argila, o solo pode ter comportamento muito diferente, dependendo das características dos minerais presentes. Todos estes fatores interferem no comportamento do solo, mas o estudo dos minerais-argila é muito complexo. À procura de uma forma mais prática de identificar a influência das partículas argilosas, a engenharia a substituiu por uma análise indireta, baseada no comportamento do solo na presença de água. Generalizou-se, para isto, o emprego de ensaios e índices propostos pelo engenheiro químico Attemberg, pesquisador do comportamento dos solos sob o aspecto agronômico, adaptados e padronizados pelo professor de Mecânica dos Solos, Arthur Casagrande. Os limites se baseiam na constatação de que um solo argiloso ocorre com aspectos bem distintos conforme o seu teor de umidade. Quando muito úmido, ele se comporta como um líquido; quando perde parte de sua água, fica plástico; e quando mais seco, torna-se quebradiço. Este fato é bem ilustrado pelo comportamento do mineral transportado e depositado por rio ou córrego que transborda invadindo as ruas da cidade. Logo que o rio retorna ao seu leito, o barro resultante se comporta como um líquido: quando um automóvel passa, o barro é espirrado lateralmente. No dia 20

26 seguinte, tendo evaporado parte da água, os veículos deixam moldado o desenho de seus pneus no material plástico em que se transformou o barro. Secando um pouco mais, os pneus dos veículos já não penetram no solo depositado, mas sua passagem provoca o desprendimento de pó. Os teores de umidade correspondentes às mudanças de estado, como se mostra na Figura 3.4, são definidos como: Limite de Liquidez (LL) e limite de Plasticidade (LP) dos solos. A diferença entre estes dois limites, que indica a faixa de valores em que o solo se apresenta plástico, é definida como o índice de Plasticidade (IP) do solo. Em condições normais, só são apresentados os valores do LL e do IP como índices de consistência dos solos. O LP só é empregado para a determinação do IP. Figura 3.4 Limites de Atterberg dos solos O Limite de Liquidez é definido como o teor de umidade do solo com o qual uma ranhura nele feita requer 25 golpes para se fechar numa concha, como ilustrado na Figura 3.5. Figura 3.5 Esquema do aparelho de Casagrande para determinação do LL Diversas tentativas são realizadas, com o solo em diferentes umidades, anotando-se o número de golpes para fechar a ranhura, obtendo-se o limite pela 21

27 interpolação dos resultados. O procedimento de ensaio é padronizado no Brasil pela ABNT (Método NBR 6459). O Limite de Plasticidade é definido como o menor teor de umidade com o qual se consegue moldar um cilindro com 3 mm de diâmetro, rolando-se o solo com a palma da mão. O procedimento é padronizado no Brasil pelo Método NBR Deve ser notado que a passagem de um estado para outro ocorre de forma gradual, com a variação da umidade. A definição dos limites acima descrita é arbitrária. Isto não diminui seu valor, pois os resultados são índices comparativos. A padronização dos ensaios é que é importante, sendo, de fato, praticamente universal. Na Tabela 3.1, são apresentados resultados típicos de alguns solos brasileiros. Tabela 3.1 Índices de Atterberg de alguns solos brasileiros Solos LL% IP% Residuais de arenito (arenosos finos) Residual de gnaisse Residual de basalto Residual de granito Argilas orgânicas de várzeas quaternárias Argilas orgânicas de baixadas litorâneas Argila porosa vermelha de São Paulo 65 a a 40 Argilas variegadas de São Paulo 40 a a 45 Areias argilosas variegadas de São Paulo 20 a 40 5 a 15 Argilas duras, cinzas, de São Paulo Atividade das Argilas Os Índices de Attemberg indicam a influência dos finos argilosos no comportamento do solo. Certos solos com teores elevados de argila podem apresentar índices mais baixos do que aqueles com pequenos teores de argila. Isso pode ocorrer porque a composição mineralógica dos argilo-minerais é bastante variável. Pequenos teores de argila e altos índices de consistência indicam que a argila á muito ativa. Mas os índices determinados são também função da areia presente. Solos de mesma procedência, com o mesmo mineral-argila, mas com diferentes teores de areia, apresentarão índices diferentes, tanto maiores quanto maior teor de argila, numa razão aproximadamente constante. Quando se quer ter uma idéia sobre a atividade da fração argila, os índices devem ser comparados com a fração argila presente. É isto que mostra o índice de atividade de uma argila, definido na relação: índice de plasticidade (IP) Índice de Atividade = fração argila (menor que 0, 002 mm) 22

28 A argila presente num solo é considerada normal quando seu índice de atividade se situa entre 0,75 e 1,25. Quando o índice é menor que 0,75, considera-se a argila como inativa e, quando o índice é maior que 1,25, ela é considerada ativa. 3.4 Emprego dos índices de consistência Os índices de consistência têm se mostrado muito úteis para a identificação dos solos e suas classificações. Desta forma, com o seu conhecimento, pode-se prever muito do comportamento do solo, sob o ponto de vista da engenharia, com base em experiência anterior. Uma primeira correlação foi apresentada por Terzaghi, resultante de observação de que os solos são tanto masis compressíveis (sujeitos a recalques) quanto maior for o seu LL. Tendo-se a compressibilidade expressa pelo índice de compressão (Cc), estabeleceu-se a seguinte correlação: Cc=0,009(LL-10) De maneira análoga, diversas correlações empíricas vêm sendo apresentadas, muitas vezes com uso restrito para solos de uma mesma determinada região ou de uma certa formação geológica. Deve ser notado que os Índices de Attemberg são uma indicação do tipo de partículas existentes no solo. Desta forma, eles representam bem os solos em que as partículas ocorrem isoladamente, como é o caso dos solos transportados. Solos saprolíticos apresentam significativa influência da estrutura da rocha mater. Solos lateríticos, por sua vez, apresentam aglomeração de partículas envoltas por deposições de sais de ferro ou alumínio. Os ensaios de limites são feitos com a amostra previamente seca ao ar e destorroada e amassada energicamente com uma espátula durante a incorporação de água. Tais procedimentos alteram a estrutura original do solo. Desta maneira, é de se esperar que as correlações estabelecidas com base em comportamento de solos transportados não se apliquem adequadamente a solos saprolíticos e lateríticos, que ocorrem em regiões tropicais. Correlações específicas a estes solos devem ser estabelecidas. 23

PLASTICIDADE DOS SOLOS

PLASTICIDADE DOS SOLOS INTRODUÇÃO Solos finos granulometria não é suficiente para caracterização; formados por partículas de grande área superficial (argilominerais) interação com a água propriedades plásticas f(tipo de argilomineral);

Leia mais

DEPARTAMENTO DE CIÊNCIA E TECNOLOGIA DOS MATERIAIS SETOR DE MATERIAIS

DEPARTAMENTO DE CIÊNCIA E TECNOLOGIA DOS MATERIAIS SETOR DE MATERIAIS UFBA-ESCOLA POLITÉCNICA-DCTM DEPARTAMENTO DE CIÊNCIA E TECNOLOGIA DOS MATERIAIS SETOR DE MATERIAIS ROTEIRO DE AULAS CONCRETO FRESCO Unidade III Prof. Adailton de O. Gomes CONCRETO FRESCO Conhecer o comportamento

Leia mais

Capítulo 10 ELEMENTOS SOBRE SOLOS

Capítulo 10 ELEMENTOS SOBRE SOLOS 1 - Conceitos: Capítulo 10 ELEMENTOS SOBRE SOLOS O solo deve ser considerado sob o aspecto de ente natural e, como tal é tratado pelas ciências que estudam a natureza, como a geologia, a pedologia e a

Leia mais

ESTADO DE MATO GROSSO SECRETARIA DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP DEPARTAMENTO DE

ESTADO DE MATO GROSSO SECRETARIA DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP DEPARTAMENTO DE ESTADO DE MATO GROSSO SECRETARIA DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP DEPARTAMENTO DE ENGENHARIA CIVIL Definição de solo Ciências aplicadas Contexto

Leia mais

Os constituintes do solo

Os constituintes do solo Os constituintes do solo Os componentes do solo Constituintes minerais Materiais orgânicos Água Ar Fase sólida partículas minerais e materiais orgânicos Vazios ocupados por água e/ou ar Os componentes

Leia mais

LISTA 1 CS2. Cada aluno deve resolver 3 exercícios de acordo com o seu númeo FESP

LISTA 1 CS2. Cada aluno deve resolver 3 exercícios de acordo com o seu númeo FESP LISTA 1 CS2 Cada aluno deve resolver 3 exercícios de acordo com o seu númeo FESP Final 1 exercícios 3, 5, 15, 23 Final 2 exercícios 4, 6, 17, 25 Final 3- exercícios 2, 7, 18, 27 Final 4 exercícios 1 (pares),

Leia mais

a) 0:1:3; b) 1:0:4; c) 1:0,5:5; d) 1:1,5:7; e) 1:2:9; f) 1:2,5:10

a) 0:1:3; b) 1:0:4; c) 1:0,5:5; d) 1:1,5:7; e) 1:2:9; f) 1:2,5:10 ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE ENGENHARIA DE CONSTRUÇÃO CIVIL PCC 2435 - TECNOLOGIA DE CONSTRUÇÃO DE EDIFÍCIOS I DEFINIÇÃO E DOSAGEM DE ARGAMASSAS PARA ASSENTAMENTO DE

Leia mais

TRANSPORTES E OBRAS DE TERRA

TRANSPORTES E OBRAS DE TERRA TRANSPORTES E OBRAS DE TERRA Movimento de Terra e Pavimentação NOTAS DE AULA MECÂNICA DOS SOLOS Prof. Edson de Moura Aula 04 Granulometria de Solos 2011 17 Granulometria de Solos A finalidade da realização

Leia mais

OBJETIVOS Substituir por métodos científicos os métodos empíricos aplicados no passado.

OBJETIVOS Substituir por métodos científicos os métodos empíricos aplicados no passado. UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE TECNOLOGIA DEPARTAMENTO DE TECNOLOGIA DA CONSTRUÇÃO CIVIL DISCIPLINA: MECÂNICA DOS SOLOS I PROFESSORA : AGDA C.T.GUIMARÃES AULA 1 1. INTRODUÇÃO AO CURSO 1.1 DEFINIÇÃO

Leia mais

Caracterização dos Solos

Caracterização dos Solos Mecânica dos Solos Caracterização dos Solos Prof. Fernando A. M. Marinho Exemplos de obras de Engenharia Geotécnica Talude Natural Talude de corte Barragem de terra Aterro de estradas Construções em solos

Leia mais

Propriedades das partículas do solo

Propriedades das partículas do solo 1 Propriedades das partículas do solo 1 - Natureza das partículas 2 - Peso específico das partículas 3 - Densidade relativa das partículas 4 - Densidade real das partículas no laboratório 5 - Formas de

Leia mais

Blocos de. Absorção de água. Está diretamente relacionada à impermeabilidade dos produtos, ao acréscimo imprevisto de peso à Tabela 1 Dimensões reais

Blocos de. Absorção de água. Está diretamente relacionada à impermeabilidade dos produtos, ao acréscimo imprevisto de peso à Tabela 1 Dimensões reais Blocos de CONCRETO DESCRIÇÃO: Elementos básicos para a composição de alvenaria (estruturais ou de vedação) BLOCOS VAZADOS DE CONCRETO SIMPLES COMPOSIÇÃO Cimento Portland, Agregados (areia, pedra, etc.)

Leia mais

Propriedades do Concreto

Propriedades do Concreto Universidade Federal de Itajubá Instituto de Recursos Naturais Propriedades do Concreto EHD 804 MÉTODOS DE CONSTRUÇÃO Profa. Nívea Pons PROPRIEDADES DO CONCRETO O concreto fresco é assim considerado até

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA CIVIL

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA CIVIL UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA CIVIL CIV 332 MECÂNICA DOS SOLOS I APOSTILA DE EXERCÍCIOS Parte 01 Prof. Benedito de Souza Bueno Prof.

Leia mais

CONTEXTO GEOTÉCNICO EM SÃO PAULO E CURITIBA. José Maria de Camargo Barros IPT

CONTEXTO GEOTÉCNICO EM SÃO PAULO E CURITIBA. José Maria de Camargo Barros IPT CONTEXTO GEOTÉCNICO EM SÃO PAULO E CURITIBA José Maria de Camargo Barros IPT 2 Sumário Argilas cinza-esverdeadas de São Paulo x Formação Guabirotuba Solos residuais de São Paulo x Solos residuais de Curitiba

Leia mais

TRABALHOS TÉCNICOS INTERDEPENDÊNCIA DAS CARACTERÍSTICAS FÍSICAS DAS MISTURAS BETUMINOSAS TIPO C.B.U.Q.

TRABALHOS TÉCNICOS INTERDEPENDÊNCIA DAS CARACTERÍSTICAS FÍSICAS DAS MISTURAS BETUMINOSAS TIPO C.B.U.Q. 01 / 07 SINOPSE O trabalho apresenta aspectos conceituais do comportamento das relações físicas envolvidas no sistema, e misturas tipo C.B.U.Q., levando em consideração as características físicas rotineiras

Leia mais

Compactação dos Solos

Compactação dos Solos Compactação dos Solos Compactação dos Solos A compactação de um solo consiste basicamente em se reduzir seus vazios com o auxílio de processos mecânicos. Adensamento - expulsão da água Compactação - expulsão

Leia mais

ESTRUTURA DOS SOLOS FATORES QUE INFLUENCIAM A ESTRUTURA NA FORMAÇÃO DOS SOLOS

ESTRUTURA DOS SOLOS FATORES QUE INFLUENCIAM A ESTRUTURA NA FORMAÇÃO DOS SOLOS Arranjo das partículas de solo. Agregação de partículas em partículas compostas ou agregados que se separam de elementos adjacentes por superfícies naturais de fraqueza FATORE QUE INFLUENCIAM A ETRUTURA

Leia mais

Pedologia. Professor: Cláudio Custódio. www.espacogeografia.com.br

Pedologia. Professor: Cláudio Custódio. www.espacogeografia.com.br Pedologia Professor: Cláudio Custódio Conceitos: Mineração: solo é um detrito que deve ser separado dos minerais explorados. Ecologia: é um sistema vivo composto por partículas minerais e orgânicas que

Leia mais

Mecânica de Solos Prof. Fabio Tonin

Mecânica de Solos Prof. Fabio Tonin Compactação dos Solos Mecânica de Solos Prof. Fabio Tonin Compactação É o processo mecânico de aplicação de forças externas, destinadas a reduzir o volume dos vazios do solo, até atingir a massa específica

Leia mais

Geomecânica dos resíduos sólidos

Geomecânica dos resíduos sólidos III Conferência Internacional de Gestão de Resíduos da América Latina Geomecânica dos resíduos sólidos urbanos: uma introdução Miriam Gonçalves Miguel Faculdade de Engenharia Civil, Arquitetura e Urbanismo

Leia mais

Areias e Ambientes Sedimentares

Areias e Ambientes Sedimentares Areias e Ambientes Sedimentares As areias são formadas a partir de rochas. São constituídas por detritos desagregados de tamanhos compreendidos entre 0,063 e 2 milímetros. Areias: Ambiente fluvial As areias

Leia mais

CURSO DE AQUITETURA E URBANISMO

CURSO DE AQUITETURA E URBANISMO 1- Generalidades PROPRIEDADES DO CONCRETO FRESCO Todas as misturas de concreto devem ser adequadamente dosadas para atender aos requisitos de: Economia; Trabalhabilidade; Resistência; Durabilidade. Esses

Leia mais

Materiais de Construção AGREGADOS NA CONSTRUÇÃO CIVIL

Materiais de Construção AGREGADOS NA CONSTRUÇÃO CIVIL Materiais de Construção AGREGADOS NA CONSTRUÇÃO CIVIL Agregados para concreto Os agregados constituem um componente importante no concreto, contribuindo com cerca de 80% do peso e 20% do custo de concreto

Leia mais

3.0 Resistência ao Cisalhamento dos Solos

3.0 Resistência ao Cisalhamento dos Solos 3.0 Resistência ao Cisalhamento dos Solos 3.1 INTRODUÇÃO Vários materiais sólidos empregados em construção normalmente resistem bem as tensões de compressão, porém têm uma capacidade bastante limitada

Leia mais

ESTADO DE MATO GROSSO SECRETARIA DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP DEPARTAMENTO DE

ESTADO DE MATO GROSSO SECRETARIA DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP DEPARTAMENTO DE ESTADO DE MATO GROSSO SECRETARIA DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP DEPARTAMENTO DE ENGENHARIA CIVIL PROJETO DE FUNDAÇÕES Todo projeto de fundações

Leia mais

Revisão de geologia e Pedogênese

Revisão de geologia e Pedogênese Revisão de geologia e Pedogênese Ricardo Gonçalves de Castro 1 Minerais Mineral é um sólido homogêneo, com composição química definida, podendo variar dentro de intervalos restritos, formados por processos

Leia mais

Agregados para Construção Civil

Agregados para Construção Civil Agregados para Construção Civil Agregados são fragmentos de rochas, popularmente denominados pedras e areias. É um material granular, sem forma nem volume definidos, geralmente inerte, com dimensões e

Leia mais

7.0 PERMEABILIDADE DOS SOLOS

7.0 PERMEABILIDADE DOS SOLOS 7.0 PERMEABILIDADE DOS SOLOS 7.1 Introdução A permeabilidade é a propriedade que o solo apresenta de permitir o escoamento da água através s dele. O movimento de água através s de um solo é influenciado

Leia mais

Resultados e Discussões 95

Resultados e Discussões 95 Resultados e Discussões 95 É interessante observar, que a ordem de profundidade máxima não obedece à ordem de dureza Shore A. A definição de dureza é exatamente a dificuldade de se penetrar na superfície

Leia mais

Observação do Contato Concreto-Solo da Ponta de Estacas Hélice Contínua

Observação do Contato Concreto-Solo da Ponta de Estacas Hélice Contínua Observação do Contato Concreto-Solo da Ponta de Estacas Hélice Contínua Rubenei Novais Souza Petrobras S/A Rio de Janeiro - Brasil RESUMO: O trabalho apresenta uma verificação expedita realizada em uma

Leia mais

UNIVERSIDADE MUNICIPAL DE SÃO CAETANO DO SUL PARECER DE GEOTECNIA

UNIVERSIDADE MUNICIPAL DE SÃO CAETANO DO SUL PARECER DE GEOTECNIA UNIVERSIDADE MUNICIPAL DE SÃO CAETANO DO SUL PARECER DE GEOTECNIA Rua Macéio, s/n Bairro Barcelona São Caetano do Sul /SP PAR 15026 Março/2015 Revisão 0 CPOI Engenharia e Projetos Ltda Índice 1. INTRODUÇÃO...3

Leia mais

TECNICAS CONSTRUTIVAS I

TECNICAS CONSTRUTIVAS I Curso Superior de Tecnologia em Construção de Edifícios TECNICAS CONSTRUTIVAS I Prof. Leandro Candido de Lemos Pinheiro leandro.pinheiro@riogrande.ifrs.edu.br FUNDAÇÕES Fundações em superfície: Rasa, Direta

Leia mais

10-10-2000. Francisco José Simões Roque, nº9 11ºA

10-10-2000. Francisco José Simões Roque, nº9 11ºA Estudo da composição dos solos A turfa 10-10-2000 Francisco José Simões Roque, nº9 11ºA INTRODUÇÃO Os solos são sistemas trifásicos pois são constituídos por componentes sólidos, líquidos e gasosos. Cerca

Leia mais

SUMÁRIO 2.0 - SONDAGENS, AMOSTRAGENS E ENSAIOS DE LABORATÓRIO E CAMPO

SUMÁRIO 2.0 - SONDAGENS, AMOSTRAGENS E ENSAIOS DE LABORATÓRIO E CAMPO ESPECIFICAÇÃO PARA ELABORAÇÃO DO PROJETO DE SERVIÇOS GEOTÉCNICOS ADICIONAIS SUMÁRIO 1.0 INTRODUÇÃO 2.0 - SONDAGENS, AMOSTRAGENS E ENSAIOS DE LABORATÓRIO E CAMPO 2.1 - CORTES 2.2 - ATERROS 2.3 - OBRAS DE

Leia mais

CIMENTO. 1.5 Tipos de Cimento Portland produzidos no Brasil. - Cimento Branco. - Cimentos resistentes a sulfato

CIMENTO. 1.5 Tipos de Cimento Portland produzidos no Brasil. - Cimento Branco. - Cimentos resistentes a sulfato CIMENTO 1.5 Tipos de Cimento Portland produzidos no Brasil - Cimento Branco - Cimentos resistentes a sulfato 1.6. Composição química do clínquer do Cimento Portland Embora o cimento Portland consista essencialmente

Leia mais

Medição da resistividade do solo

Medição da resistividade do solo 30 Apoio Aterramentos elétricos Capítulo XI Medição da resistividade do solo Jobson Modena e Hélio Sueta* O projeto da norma ABNT NBR 7117, atualmente em revisão, estabelece os requisitos para a medição

Leia mais

e-mail: ederaldoazevedo@yahoo.com.br

e-mail: ederaldoazevedo@yahoo.com.br Disciplina: Materiais de Construção I Assunto: Concreto II Prof. Ederaldo Azevedo Aula 5 e-mail: ederaldoazevedo@yahoo.com.br A trabalhabilidade é influenciada pela consistência e pela coesão. As principais

Leia mais

Professor Douglas Constancio. 1 Elementos especiais de fundação. 2 Escolha do tipo de fundação

Professor Douglas Constancio. 1 Elementos especiais de fundação. 2 Escolha do tipo de fundação Professor Douglas Constancio 1 Elementos especiais de fundação 2 Escolha do tipo de fundação Americana, junho de 2005 0 Professor Douglas Constancio 1 Elementos especiais de fundação Americana, junho de

Leia mais

Processamento de materiais cerâmicos + H 2 O. Ivone

Processamento de materiais cerâmicos + H 2 O. Ivone + H 2 O Ivone Umidade (%) Colagem 100 Líquido Plástico Semi-Sólido Índice de Plasticidade - IP Limite de Liquidez - LL Limite de Plasticidade - LP COLAGEM EXTRUSÃO Sólido Limite de Contração - LC PRENSAGEM

Leia mais

RELATÓRIO TÉCNICO ARGOPAR PARTICIPAÇÔES LTDA FUNDAÇÕES ITABORAÍ SHOPPING ITABORAÍ - RJ ÍNDICE DE REVISÕES

RELATÓRIO TÉCNICO ARGOPAR PARTICIPAÇÔES LTDA FUNDAÇÕES ITABORAÍ SHOPPING ITABORAÍ - RJ ÍNDICE DE REVISÕES CLIENTE: FOLHA 1 de 17 PROGRAMA: FUNDAÇÕES AREA: ITABORAÍ SHOPPING ITABORAÍ - RJ RESP: SILIO LIMA CREA: 2146/D-RJ Nº GEOINFRA ÍNDICE DE REVISÕES REV DESCRIÇÃO E / OU FOLHAS ATINGIDAS Emissão inicial DATA

Leia mais

ESTADO DE MATO GROSSO SECRETARIA DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP DEPARTAMENTO DE

ESTADO DE MATO GROSSO SECRETARIA DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP DEPARTAMENTO DE ESTADO DE MATO GROSSO SECRETARIA DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP DEPARTAMENTO DE ENGENHARIA CIVIL Definição de solo Ciências aplicadas Contexto

Leia mais

5. CONSIDERAÇÕES FINAIS

5. CONSIDERAÇÕES FINAIS 148 5. CONSIDERAÇÕES FINAIS 5.1 CONCLUSÕES A partir dos resultados apresentados e analisados anteriormente, foi possível chegar às conclusões abordadas neste item. A adição tanto de cinza volante, como

Leia mais

Departamento de Engenharia Civil, Materiais de Construção I 3º Ano 1º Relatório INDÍCE

Departamento de Engenharia Civil, Materiais de Construção I 3º Ano 1º Relatório INDÍCE INDÍCE 1- Introdução/ Objectivos... 2- Análise Granulométrica... 2.1- Introdução e descrição dos ensaios... 2.2- Cálculos efectuados, resultados encontrados e observações... 2.3- Conclusão... 3- Ensaio

Leia mais

INTEMPERISMO, FORMAÇÃO DOS SOLOS E ÁGUA SUBTERRÂNEA. Profa. Andrea Sell Dyminski UFPR

INTEMPERISMO, FORMAÇÃO DOS SOLOS E ÁGUA SUBTERRÂNEA. Profa. Andrea Sell Dyminski UFPR INTEMPERISMO, FORMAÇÃO DOS SOLOS E ÁGUA SUBTERRÂNEA Profa. Andrea Sell Dyminski UFPR INTEMPERISMO Def: É o conjunto de modificações de ordem física (desagregação) e química (decomposição) que as rochas

Leia mais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais LEI DE OHM Conceitos fundamentais Ao adquirir energia cinética suficiente, um elétron se transforma em um elétron livre e se desloca até colidir com um átomo. Com a colisão, ele perde parte ou toda energia

Leia mais

CONCRETO SUSTENTÁVEL: SUBSTITUIÇÃO DA AREIA NATURAL POR PÓ DE BRITA PARA CONFECÇÃO DE CONCRETO SIMPLES

CONCRETO SUSTENTÁVEL: SUBSTITUIÇÃO DA AREIA NATURAL POR PÓ DE BRITA PARA CONFECÇÃO DE CONCRETO SIMPLES 1 UNIVERSIDADE ESTADUAL DO MARANHÃO CONCRETO SUSTENTÁVEL: SUBSTITUIÇÃO DA AREIA NATURAL POR PÓ DE BRITA PARA CONFECÇÃO DE CONCRETO SIMPLES Prof Dr.Jorge Creso Cutrim Demetrio OBJETIVOS 1. Analisar a viabilidade

Leia mais

ÁGUA NO SOLO. Geografia das Águas Continentais. Profª Rosângela Leal

ÁGUA NO SOLO. Geografia das Águas Continentais. Profª Rosângela Leal ÁGUA NO SOLO Geografia das Águas Continentais Profª Rosângela Leal A ÁGUA E O SOLO Os solos são constituídos de elementos figurados, água e ar. Os elementos figurados são contituídos partículas minerais

Leia mais

ESTUDO DAS PROPRIEDADES HIDRÁULICAS DE SOLOS DE ENCOSTA DO RIO DE JANEIRO

ESTUDO DAS PROPRIEDADES HIDRÁULICAS DE SOLOS DE ENCOSTA DO RIO DE JANEIRO ESTUDO DAS PROPRIEDADES HIDRÁULICAS DE SOLOS DE ENCOSTA DO RIO DE JANEIRO Alunos: Breno Verly Rosa e Alexandre da Rocha Rodrigues Orientador: Eurípides Vargas do Amaral Junior João Luis Teixeira de Mello

Leia mais

Fundações I. UNIVERSIDADE: Curso: Escoramento de Escavação / Abaixamento de Lençol Freático. Aluno: RA: Professor Douglas Constancio

Fundações I. UNIVERSIDADE: Curso: Escoramento de Escavação / Abaixamento de Lençol Freático. Aluno: RA: Professor Douglas Constancio UNIVERSIDADE: Curso: Fundações: Escoramento de Escavação / Abaixamento de Lençol Freático Aluno: RA: Professor: Disciplina: Professor Douglas Constancio Fundações I Data: Americana, agosto de 2004. 0 FUNDAÇÕES:

Leia mais

Reconhecer as diferenças

Reconhecer as diferenças A U A UL LA Reconhecer as diferenças Nesta aula, vamos aprender que os solos são o resultado mais imediato da integração dos processos físicos e biológicos na superfície da Terra. A formação e o desenvolvimento

Leia mais

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente:

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente: Rumo ao ITA Física Análise Dimensional Ivan Guilhon Mitoso Rocha A análise dimensional é um assunto básico que estuda as grandezas físicas em geral, com respeito a suas unidades de medida. Como as grandezas

Leia mais

Materiais de Construção. Prof. Aline Fernandes de Oliveira, Arquiteta Urbanista 2010

Materiais de Construção. Prof. Aline Fernandes de Oliveira, Arquiteta Urbanista 2010 Materiais de Construção de Oliveira, Arquiteta Urbanista 2010 AGREGADOS AGREGADOS DEFINIÇÃO É o material particulado, incoesivo, de atividade química praticamente nula, constituído de misturas de partículas

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3 Linhas de Força Mencionamos na aula passada que o físico inglês Michael Faraday (79-867) introduziu o conceito de linha de força para visualizar a interação elétrica entre duas cargas. Para Faraday, as

Leia mais

DINÂMICA. Força Resultante: É a força que produz o mesmo efeito que todas as outras aplicadas a um corpo.

DINÂMICA. Força Resultante: É a força que produz o mesmo efeito que todas as outras aplicadas a um corpo. DINÂMICA Quando se fala em dinâmica de corpos, a imagem que vem à cabeça é a clássica e mitológica de Isaac Newton, lendo seu livro sob uma macieira. Repentinamente, uma maçã cai sobre a sua cabeça. Segundo

Leia mais

PAVIMENTOS INTERTRAVADO PERMEÁVEL COM JUNTAS ALARGADAS

PAVIMENTOS INTERTRAVADO PERMEÁVEL COM JUNTAS ALARGADAS PAVIMENTOS INTERTRAVADO PERMEÁVEL COM JUNTAS ALARGADAS Introdução Pavimentos permeáveis são definidos como aqueles que possuem espaços livres na sua estrutura onde a água pode atravessar. (FERGUSON, 2005).

Leia mais

TEXTURA DO SOLO. Conceito. Representa a distribuição quantitativa das partículas sólidas do solo, quanto ao tamanho (areia, silte e argila).

TEXTURA DO SOLO. Conceito. Representa a distribuição quantitativa das partículas sólidas do solo, quanto ao tamanho (areia, silte e argila). Conceito Representa a distribuição quantitativa das partículas sólidas do solo, quanto ao tamanho (areia, silte e argila). Sistemas de classificação Quadro 1. Frações granulométricas encontradas nos sistemas

Leia mais

BIOENGENHARIA DE SOLOS ENGENHARIA NATURAL AULA 2 PROPRIEDADES FÍSICAS E MECÂNICAS DO SOLO

BIOENGENHARIA DE SOLOS ENGENHARIA NATURAL AULA 2 PROPRIEDADES FÍSICAS E MECÂNICAS DO SOLO BIOENGENHARIA DE SOLOS ENGENHARIA NATURAL AULA 2 PROPRIEDADES FÍSICAS E MECÂNICAS DO SOLO IGOR PINHEIRO DA ROCHA ENGENHEIRO FLORESTAL, M.Sc. AS FASES DO SOLO Fase sólida (Matriz do solo) Material mineral

Leia mais

ANÁLISE DO ESCOAMENTO DE UM FLUIDO REAL: água

ANÁLISE DO ESCOAMENTO DE UM FLUIDO REAL: água UFF Universidade Federal Fluminense Escola de Engenharia Departamento de Engenharia Química e de Petróleo Integração I Prof.: Rogério Fernandes Lacerda Curso: Engenharia de Petróleo Alunos: Bárbara Vieira

Leia mais

Quanto aos esforços: compressão, tração e flexão; Flexibilidade de formas; Durabilidade; Transmissão de calor

Quanto aos esforços: compressão, tração e flexão; Flexibilidade de formas; Durabilidade; Transmissão de calor 1. CONCEITO: Produto resultante da associação íntima entre um aglomerante mais um agregado miúdo, mais um agregado graúdo e água (+ ferragens). 2. CARACTERÍSTICAS Quanto aos esforços: compressão, tração

Leia mais

A ALTERAÇÃO DAS ROCHAS QUE COMPÕEM OS MORROS E SERRAS DA REGIÃO OCEÂNICA ARTIGO 5. Pelo Geólogo Josué Barroso

A ALTERAÇÃO DAS ROCHAS QUE COMPÕEM OS MORROS E SERRAS DA REGIÃO OCEÂNICA ARTIGO 5. Pelo Geólogo Josué Barroso A ALTERAÇÃO DAS ROCHAS QUE COMPÕEM OS MORROS E SERRAS DA REGIÃO OCEÂNICA ARTIGO 5 Pelo Geólogo Josué Barroso No Artigo 3 e no Artigo 4, fez-se breves descrições sobre a formação das rochas que estruturam

Leia mais

GENERALIDADES SOBRE PAVIMENTOS

GENERALIDADES SOBRE PAVIMENTOS GENERALIDADES SOBRE PAVIMENTOS Pavimento x outras obras civis Edifícios: Área de terreno pequena, investimento por m 2 grande FS à ruptura grande Clima interfere muito pouco no comportamento estrutural

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = = Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo

Leia mais

DENSIDADE DO SOLO E DENSIDADE DE PARTÍCULAS. Laura F. Simões da Silva

DENSIDADE DO SOLO E DENSIDADE DE PARTÍCULAS. Laura F. Simões da Silva DENSIDADE DO SOLO E DENSIDADE DE PARTÍCULAS Laura F. Simões da Silva DENSIDADE DO SOLO A densidade do solo é definida como sendo a relação existente entre a massa de uma amostra de solo seca a 105ºC e

Leia mais

Água e Solução Tampão

Água e Solução Tampão União de Ensino Superior de Campina Grande Faculdade de Campina Grande FAC-CG Curso de Fisioterapia Água e Solução Tampão Prof. Dra. Narlize Silva Lira Cavalcante Fevereiro /2015 Água A água é a substância

Leia mais

(Desconsidere a massa do fio). SISTEMAS DE BLOCOS E FIOS PROF. BIGA. a) 275. b) 285. c) 295. d) 305. e) 315.

(Desconsidere a massa do fio). SISTEMAS DE BLOCOS E FIOS PROF. BIGA. a) 275. b) 285. c) 295. d) 305. e) 315. SISTEMAS DE BLOCOS E FIOS PROF. BIGA 1. (G1 - cftmg 01) Na figura, os blocos A e B, com massas iguais a 5 e 0 kg, respectivamente, são ligados por meio de um cordão inextensível. Desprezando-se as massas

Leia mais

ESTADO DE MATO GROSSO SECRETARIA DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP DEPARTAMENTO DE

ESTADO DE MATO GROSSO SECRETARIA DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP DEPARTAMENTO DE ESTADO DE MATO GROSSO SECRETARIA DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP DEPARTAMENTO DE ENGENHARIA CIVIL SONDAGENS Em virtude da dificuldade de se prever

Leia mais

Estrada de Rodagem Terraplanagem

Estrada de Rodagem Terraplanagem Estrada de Rodagem Terraplanagem Prof. Dr. Rodrigo de Alvarenga Rosa rodrigoalvarengarosa@gmail.com (27) 9941-3300 1 O motivo para realizar terraplenagem é que o terreno natural não é adequado ao tráfego

Leia mais

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 4

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 4 Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica Módulo 4 Faraday Lenz Henry Weber Maxwell Oersted Conteúdo 4 - Capacitores e Indutores...1 4.1 - Capacitores...1 4.2 - Capacitor

Leia mais

PROPRIEDADES DO CONCRETO FRESCO

PROPRIEDADES DO CONCRETO FRESCO PROPRIEDADES DO CONCRETO FRESCO Consistência Textura Trabalhabilidade Integridade da massa Segregação Poder de retenção de água Exsudação Massa específica TRABALHABILIDADE É a propriedade do concreto fresco

Leia mais

3.2 Equilíbrio de Fases Vapor - Líquida - Sólida numa Substância Pura Consideremos como sistema a água contida no conjunto êmbolo - cilindro abaixo:

3.2 Equilíbrio de Fases Vapor - Líquida - Sólida numa Substância Pura Consideremos como sistema a água contida no conjunto êmbolo - cilindro abaixo: - Resumo do Capítulo 0 de Termodinâmica: Capítulo - PROPRIEDADES DE UMA SUBSTÂNCIA PURA Nós consideramos, no capítulo anterior, três propriedades familiares de uma substância: volume específico, pressão

Leia mais

1. 2 Ocorrência de Água Subterrânea. b) - Solos Pedogênicos (Lateríticos):

1. 2 Ocorrência de Água Subterrânea. b) - Solos Pedogênicos (Lateríticos): b) - Solos Pedogênicos (Lateríticos): Evolução Pedogênica ou Pedogenética - por esse nome se agrupa uma complexa série de processos físico-químicos e biológicos que governam a formação de alguns solos.

Leia mais

Exercícios de Mecânica dos solos I 1 ao 12 (Pág 40 a 43)

Exercícios de Mecânica dos solos I 1 ao 12 (Pág 40 a 43) Exercícios de Mecânica dos solos I 1 ao 12 (Pág 40 a 43) Nome: Robson Tete 1) Uma amostra de solo úmido em cápsula de alumínio tem uma massa de 462 g. Após a secagem em estufa se obteve a massa seca da

Leia mais

Permeabilidade dos Solos. Mecânica de Solos Prof. Fabio Tonin

Permeabilidade dos Solos. Mecânica de Solos Prof. Fabio Tonin Permeabilidade dos Solos Mecânica de Solos Prof. Fabio Tonin Permeabilidade É a propriedade que o solo apresenta de permitir o escoamento de água através dele. (todos os solos são mais ou menos permeáveis)

Leia mais

APOSTILA TECNOLOGIA MECANICA

APOSTILA TECNOLOGIA MECANICA FACULDADE DE TECNOLOGIA DE POMPEIA CURSO TECNOLOGIA EM MECANIZAÇÃO EM AGRICULTURA DE PRECISÃO APOSTILA TECNOLOGIA MECANICA Autor: Carlos Safreire Daniel Ramos Leandro Ferneta Lorival Panuto Patrícia de

Leia mais

GEOLOGIA PARA ENGENHARIA CIVIL SEDIMENTOS E PROCESSOS SEDIMENTARES: DO GRÃO À ROCHA SEDIMENTAR

GEOLOGIA PARA ENGENHARIA CIVIL SEDIMENTOS E PROCESSOS SEDIMENTARES: DO GRÃO À ROCHA SEDIMENTAR GEOLOGIA PARA ENGENHARIA CIVIL SEDIMENTOS E PROCESSOS SEDIMENTARES: DO GRÃO À ROCHA SEDIMENTAR Prof. Dr. Daniel Caetano 2012-1 Objetivos Compreender onde e como se formam os grãos Como ocorre o transporte

Leia mais

ME-4 MÉTODOS DE ENSAIO SOLO DETERMINAÇÃO DO LIMITE DE LIQUIDEZ

ME-4 MÉTODOS DE ENSAIO SOLO DETERMINAÇÃO DO LIMITE DE LIQUIDEZ ME-4 MÉTODOS DE ENSAIO DOCUMENTO DE CIRCULAÇÃO EXTERNA 1 ÍNDICE PÁG. 1. INTRODUÇÃO... 3 2. OBJETIVO... 3 3. S E NORMAS COMPLEMENTARES... 3 4. APARELHAGEM... 3 5. EXECUÇÃO DO ENSAIO... 5 6. RESULTADOS...

Leia mais

FATEC FACULDADE DE TECNOLOGIA DE SÃO PAULO Departamento de Transportes e Obras de Terra

FATEC FACULDADE DE TECNOLOGIA DE SÃO PAULO Departamento de Transportes e Obras de Terra I - OS SOLOS SOB O PONTO DE VISTA DA ENGENHARIA CIVIL 1) Definição de solo, sob o ponto de vista da Engenharia A palavra solo, na expressão Mecânica dos Solos, não tem um significado intuitivo imediato.

Leia mais

Mecânica dos Solos 1

Mecânica dos Solos 1 Mecânica dos Solos 1 Aula 1 Origem e Formação dos Solos 2º semestre/2012 Bibliografia CAPUTO, H. P. Mecânica dos Solos e suas Aplicações. Volumes 1 (1996), 2 (1995) e 3 (1994). Editora: LTC. PINTO, C.

Leia mais

Granulometria. Marcio Varela

Granulometria. Marcio Varela Granulometria Marcio Varela Granulometria Definição: É a distribuição, em porcentagem, dos diversos tamanhos de grãos. É a determinação das dimensões das partículas do agregado e de suas respectivas porcentagens

Leia mais

Dosagem de Concreto INTRODUÇÃO OBJETIVO. Materiais Naturais e Artificiais

Dosagem de Concreto INTRODUÇÃO OBJETIVO. Materiais Naturais e Artificiais Dosagem de Concreto INTRODUÇÃO Atualmente, no Brasil, são produzidos cerca de 20 milhões de m3 de concreto/ano em Centrais de Concreto, denominadas Empresas de Serviços de Concretagem. Uma economia de

Leia mais

Universidade Federal do Amazonas Instituto de Ciências Exatas Departamento de Geociências. Capítulo 11:

Universidade Federal do Amazonas Instituto de Ciências Exatas Departamento de Geociências. Capítulo 11: Universidade Federal do Amazonas Instituto de Ciências Exatas Departamento de Geociências Geologia Capítulo 11: Movimento de Massa Clauzionor Lima da Silva Movimento de Massa Inclui todos os processos

Leia mais

Tecnologia da Construção I CRÉDITOS: 4 (T2-P2)

Tecnologia da Construção I CRÉDITOS: 4 (T2-P2) UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO DECANATO DE ENSINO DE GRADUAÇÃO DEPARTAMENTO DE ASSUNTOS ACADÊMICOS E REGISTRO GERAL DIVISÃO DE REGISTROS ACADÊMICOS PROGRAMA ANALÍTICO DISCIPLINA CÓDIGO: IT836

Leia mais

Ensaio de torção. Diz o ditado popular: É de pequenino que

Ensaio de torção. Diz o ditado popular: É de pequenino que A UU L AL A Ensaio de torção Diz o ditado popular: É de pequenino que se torce o pepino! E quanto aos metais e outros materiais tão usados no nosso dia-a-dia: o que dizer sobre seu comportamento quando

Leia mais

TESTES REFERENTES A PARTE 1 DA APOSTILA FUNDAMENTOS DA CORROSÃO INDIQUE SE AS AFIRMAÇÕES A SEGUIR ESTÃO CERTAS OU ERRADAS

TESTES REFERENTES A PARTE 1 DA APOSTILA FUNDAMENTOS DA CORROSÃO INDIQUE SE AS AFIRMAÇÕES A SEGUIR ESTÃO CERTAS OU ERRADAS TESTES REFERENTES A PARTE 1 DA APOSTILA FUNDAMENTOS DA CORROSÃO INDIQUE SE AS AFIRMAÇÕES A SEGUIR ESTÃO CERTAS OU ERRADAS 1) Numa célula eletroquímica a solução tem que ser um eletrólito, mas os eletrodos

Leia mais

DIODO SEMICONDUTOR. Conceitos Básicos. Prof. Marcelo Wendling Ago/2011

DIODO SEMICONDUTOR. Conceitos Básicos. Prof. Marcelo Wendling Ago/2011 DIODO SEMICONDUTOR Prof. Marcelo Wendling Ago/2011 Conceitos Básicos O diodo semicondutor é um componente que pode comportar-se como condutor ou isolante elétrico, dependendo da forma como a tensão é aplicada

Leia mais

Ensaios Mecânicos de Materiais. Aula 12 Ensaio de Impacto. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Ensaios Mecânicos de Materiais. Aula 12 Ensaio de Impacto. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Ensaios Mecânicos de Materiais Aula 12 Ensaio de Impacto Tópicos Abordados Nesta Aula Ensaio de Impacto. Propriedades Avaliadas do Ensaio. Tipos de Corpos de Prova. Definições O ensaio de impacto se caracteriza

Leia mais

- Pisos e revestimentos Industriais (pinturas especiais, autonivelantes, uretânicas, vernizes...);

- Pisos e revestimentos Industriais (pinturas especiais, autonivelantes, uretânicas, vernizes...); A TECNIKA iniciou suas atividades em meados de 2003, impulsionada pela demanda do mercado, sempre preocupada em buscar e oferecer soluções técnicas inovadoras, tendo como focos principais as áreas de impermeabilização

Leia mais

CURSO: PPGA DISCIPLINA: MAPEAMENTO E CLASSIFICAÇÃO DO SOLO

CURSO: PPGA DISCIPLINA: MAPEAMENTO E CLASSIFICAÇÃO DO SOLO CURSO: PPGA DISCIPLINA: MAPEAMENTO E CLASSIFICAÇÃO DO SOLO Adaptado de Solos do Brasil (Benjamim Pereira Vilela e Selma Simões de Castro) PROF. RENATA SANTOS MOMOLI Eng. Agrônoma Dra. em Solos e Nutrição

Leia mais

Disciplina: Mecânica dos Solos e Fundações

Disciplina: Mecânica dos Solos e Fundações Disciplina: Mecânica dos Solos e Fundações Caracterização e Estado dos solos Prof. Caio Rubens Caracterização dos solos 2) Índices de Consistência (Limites de Atterberg) Somente a distribuição granulométrica

Leia mais

INVESTIGAÇÕES GEOTÉCNICAS PARA O

INVESTIGAÇÕES GEOTÉCNICAS PARA O INVESTIGAÇÕES GEOTÉCNICAS PARA O PROJETO DE FUNDAÇÕES O SOLO, NUM PROBLEMA DE FUNDAÇÕES DEVE SER ACEITO TAL COMO SE APRESENTA Para um projeto de fundações bem elaborado, deve-se conhecer: -os tipos de

Leia mais

Força atrito. Forças. dissipativas

Força atrito. Forças. dissipativas Veículo motorizado 1 Trabalho Ocorrem variações predominantes de Por ex: Forças constantes Sistema Termodinâmico Onde atuam Força atrito É simultaneamente Onde atuam Sistema Mecânico Resistente Ocorrem

Leia mais

Componentes Minerais Minerais s primários: Minerais s se s cu c ndários: Fraçã ç o argila:

Componentes Minerais Minerais s primários: Minerais s se s cu c ndários: Fraçã ç o argila: Universidade Estadual Paulista Campus de e Dracena Curso Zootecnia Disciplina: Solos Composição do Solo Prof. Dr. Reges Heinrichs 2010 Introdução O Solo é composto por três fases: Sólido (matéria orgânica

Leia mais

Ensaio de tração: cálculo da tensão

Ensaio de tração: cálculo da tensão Ensaio de tração: cálculo da tensão A UU L AL A Você com certeza já andou de elevador, já observou uma carga sendo elevada por um guindaste ou viu, na sua empresa, uma ponte rolante transportando grandes

Leia mais

Ensaio de impacto. Os veículos brasileiros têm, em geral, suspensão

Ensaio de impacto. Os veículos brasileiros têm, em geral, suspensão A UU L AL A Ensaio de impacto Os veículos brasileiros têm, em geral, suspensão mais reforçada do que a dos similares europeus. Não é à toa. As condições de nossas estradas e ruas requerem esse reforço,

Leia mais

Eletricidade Aula 1. Profª Heloise Assis Fazzolari

Eletricidade Aula 1. Profª Heloise Assis Fazzolari Eletricidade Aula 1 Profª Heloise Assis Fazzolari História da Eletricidade Vídeo 2 A eletricidade estática foi descoberta em 600 A.C. com Tales de Mileto através de alguns materiais que eram atraídos entre

Leia mais

A Durabilidade das Estruturas de Concreto e o Cimento Egydio Hervé Neto 1

A Durabilidade das Estruturas de Concreto e o Cimento Egydio Hervé Neto 1 A Durabilidade das Estruturas de Concreto e o Cimento Egydio Hervé Neto 1 Num passado recente nossas estruturas correntes usavam concretos com resistências da ordem de 135, 150, no máximo 180 kgf/cm2.

Leia mais

Erosão e Voçorocas. Curso: Arquitetura e Urbanismo Disciplina: Estudos Ambientais Professor: João Paulo Nardin Tavares

Erosão e Voçorocas. Curso: Arquitetura e Urbanismo Disciplina: Estudos Ambientais Professor: João Paulo Nardin Tavares Erosão e Voçorocas Curso: Arquitetura e Urbanismo Disciplina: Estudos Ambientais Professor: João Paulo Nardin Tavares O que é erosão? A erosão caracteriza-se pela abertura de enormes buracos no chão pela

Leia mais

A Matéria Química Geral

A Matéria Química Geral Química Geral A Matéria Tudo o que ocupa lugar no espaço e tem massa. A matéria nem sempre é visível Noções Preliminares Prof. Patrícia Andrade Mestre em Agricultura Tropical Massa, Inércia e Peso Massa:

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais