Interbits SuperPro Web



Documentos relacionados
TD DE FÍSICA 2 Questões de Potencial elétrico e Trabalho da Força Elétrica PROF.: João Vitor

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física Eletrostática. Pré Universitário Uni-Anhanguera 01 - (MACK SP)

Lista de Eletrostática da UFPE e UPE

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r

Trabalho e Potencial de uma carga elétrica

Considerando que = 9,0

FÍSICA 3ª Série LISTA DE EXERCÍCIOS/ELETROSTÁTICA Data: 20/03/07

Problemas de eletricidade

POTENCIAL ELÉTRICO E FORÇA ELÉTRICA

Lista de Eletrostática - Mackenzie

Prof. Rogério Porto. Assunto: Eletrostática

RECUPERAÇÃO TURMAS: 2º ANO FÍSICA

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Magnetismo

01-(ENEM-MEC) R- B 02- (ENEM-MEC)

ELETROSTÁTICA 3ª SÉRIE

LISTÃO DE MAGNETISMO PARA REVISÃO

Departamento de Ciências da Natureza Física Prof. Rafael

Primeira lista de física para o segundo ano 1)

Aula de Véspera - Inv-2008

TURMA: 3º ANO: Campo Elétrico

Hoje estou elétrico!

Exercícios Campo elétrico

Capítulo 4 Trabalho e Energia

COLÉGIO SANTA MARIA 2009 RUMO AOS 70 ANOS AVALIAÇÃO 2ª ETAPA 1º BLOCO ENSINO MÉDIO

F q. Vetor campo elétrico O campo elétrico pode ser representado, em cada ponto do espaço por um vetor, usualmente simbolizado por E.

ELETROSTÁTICA: EXERCÍCIOS

CAMPO ELÉTRICO. Introdução. Campo de uma carga elétrica puntiforme. Sentido do campo elétrico E =

Potencial Elétrico. e dividindo-se pela carga de prova q 0 temos o campo elétrico E:

Lista de Exercícios - Unidade 6 Aprendendo sobre energia

Trabalho e potencial elétrico

Sobriedade e objetividade nessa caminhada final e que a chegada seja recheado de SUCESSO! Vasco Vasconcelos

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de?

Exercícios com Gabarito de Física Potencial Elétrico e Energia Potencial Elétrica

Fortaleza Ceará TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014

POTENCIAL ELÉTRICO. por unidade de carga

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =

2. Um pedaço de ferro é posto nas proximidades de um ímã, conforme a figura abaixo.

TC DE FÍSICA 2 a SÉRIE ENSINO MÉDIO

A figura a seguir representa um atleta durante um salto com vara, em três instantes distintos

Introdução à Eletricidade e Lei de Coulomb

FISICA. Justificativa: Taxa = 1,34 kw/m 2 Energia em uma hora = (1,34 kw/m 2 ).(600x10 4 m 2 ).(1 h) ~ 10 7 kw. v B. v A.

( ) ( ) ( ( ) ( )) ( )

POTENCIAL ELÉTRICO. Seção 30-2 Energia Potencial Elétrica

AULA 3 FORÇA ELÉTRICA. O conceito de força é a capacidade de provocar a mudança de intensidade, direção e sentido da velocidade.

tem Note e adote: ELETROSTÁTICA 3ª SÉRIE 3,2 10 kg, permanecia com velocidade constante no interior da câmara. Essa esfera carga do elétron 1,6 10 C

E irr = P irr T. F = m p a, F = ee, = C N. C kg = m/s 2.

d) F 4 ; F 9 e F 16 e) 4F; 6F e 8F Dado: Lei de COULOMB F = K.Q Q d CIÊNCIAS DA NATUREZA E SUAS TECNOLOGIAS - Vol. II 39

ELETROMAGNETISMO MOVIMENTO DE CARGAS

horizontal, se choca frontalmente contra a extremidade de uma mola ideal, cuja extremidade oposta está presa a uma parede vertical rígida.

COLÉGIO NOSSA SENHORA DE FÁTIMA ALUNO(A): Nº PROF.: André Harada

TRABALHO E POTENCIAL ELÉTRICO

C mp m o p o Eléctr t ico o Un U i n fo f r o me

Capítulo 7 Conservação de Energia

UNIVERSIDADE CATÓLICA DE GOIÁS. DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof.

FORÇA MAGNÉTICA. Força magnética sobre cargas em um campo magnético uniforme

ELETROSTÁTICA. Ramo da Física que estuda as cargas elétricas em repouso.

=30m/s, de modo que a = =3m/s2. = g sen(30 o ), e substituindo os valores, tem-se. = v B

Leis de Conservação. Exemplo: Cubo de gelo de lado 2cm, volume V g. =8cm3, densidade ρ g. = 0,917 g/cm3. Massa do. ρ g = m g. m=ρ.

Unidade 10 Teoremas que relacionam trabalho e energia. Teorema da energia cinética Teorema da energia potencial Teorema da energia mecânica

PROVA UPE 2012 TRADICIONAL(RESOLVIDA)

Valores eternos. MATÉRIA. PROFESSOR(A) Hermann Para a associação da figura, a resistência equivalente entre os terminais A e B é igual a:

-----> V = 73,3V. Portanto: V2 = 73,3V e V1 = 146,6V, com isso somente L1 brilhará acima do normal e provavelmente queimará.

Prof. André Motta - mottabip@hotmail.com_ 4.O gráfico apresentado mostra a elongação em função do tempo para um movimento harmônico simples.

Física Aplicada PROF.: MIRANDA. 2ª Lista de Exercícios DINÂMICA. Física

Eletricidade Aula 1. Profª Heloise Assis Fazzolari

9) (UFMG/Adap.) Nesta figura, está representado um bloco de peso 20 N sendo pressionado contra a parede por uma força F.

Um pouco de história. Um pouco de história. Um pouco de história. Um pouco de história CORPOS ELETRIZADOS E NEUTROS CARGA ELÉTRICA

; Densidade da água ρ

Lentes. Parte I. Página 1

8 C. Determine a força de repulsão que aparecerá entre eles, se. 3 A. Qual o intervalo de tempo necessário para que uma

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

Tânia observa um lápis com o auxílio de uma lente, como representado nesta figura:

(Desconsidere a massa do fio). SISTEMAS DE BLOCOS E FIOS PROF. BIGA. a) 275. b) 285. c) 295. d) 305. e) 315.

Energia & Trabalho. Aula 3

Física: Eletromagnetismo

Física II Eng. Química + Eng. Materiais

1) Calcular, em m/s, a velocidade de um móvel que percorre 14,4Km em 3min. a) ( ) 70m/s b) ( ) 80 m/s c) ( ) 90m/s d) ( ) 60m/s

1. (Upe 2014) O deslocamento Δ x de uma partícula em função do tempo t é ilustrado no gráfico a seguir:

UNIVERSIDADE FEDERAL DE JUIZ DE FORA ELETRIZAÇÃO. Eletricidade

e) Primeira Lei de Kepler. c) Lei de Ampére;

Lista de Eletromagnetismo. 1 Analise as afirmativas seguintes e marque a opção correta.

Universidade Federal do Pampa - UNIPAMPA Prova Escrita de Física III A Professor: Jorge Pedraza Arpasi, SALA UNIPAMPA Alegrete

Força Magnética. Página 1

4 - (AFA-2003) Considere a associação da figura abaixo: As cargas, em C, de cada capacitor C1, C2 e C3 são, respectivamente:

Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo.

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão II

Exercícios Tensão e Corrente

DATA: / / 2014 ETAPA: 3ª VALOR: 20,0 pontos NOTA:

MODELO. FÍSICA Potencial elétrico 03 B CONCEITO FÍSICO DE POTENCIAL ELÉTRICO. + q. Editora Bernoulli

COLÉGIO NOSSA SENHORA DA PIEDADE. Programa de Recuperação Paralela. 2ª Etapa 2014

ELETRICIDADE UFRGS de

MUV. constante igual a a 2,0 m/s. O veículo B, distando d = 19,2 km do veículo A, parte com aceleração constante igual a veículos, em segundos.

LISTA DE EXERCÍCIOS CAMPO MAGNÉTICO

FÍSICA - 2 o ANO MÓDULO 11 ELETROSTÁTICA: POTENCIAL, TRABALHO E ENERGIA

DEPARTAMENTO DE FÍSICA FÍSICA

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3

LISTA DE EXERCÍCIOS DE FÍSICA ELETROSTÁTICA PROF. XAVIER

Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA

Exercícios com Gabarito de Física Movimento de Cargas no Interior de um Campo Elétrico

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES

Transcrição:

1. (Upe 2013) Considere a Terra como uma esfera condutora, carregada uniformemente, cuja carga total é 6,0 μ C, e a distância entre o centro da Terra e um ponto P na superfície da Lua é de aproximadamente 4 x 10 8 m. A constante eletrostática no vácuo é de aproximadamente 9 x 10 9 Nm 2 /C 2. É CORRETO afirmar que a ordem de grandeza do potencial elétrico nesse ponto P, na superfície da Lua vale, em volts, a) 10-2 b) 10-3 c) 10-4 d) 10-5 e) 10-12 2. (Epcar (Afa) 2012) A figura abaixo representa as linhas de força de um determinado campo elétrico. Sendo V A, V B e V C os potenciais eletrostáticos em três pontos A, B e C, respectivamente, com 0 < V A VC < V B V C, pode-se afirmar que a posição desses pontos é melhor representada na alternativa a) b) c) d) 3. (Epcar (Afa) 2012) A figura abaixo ilustra um campo elétrico uniforme, de módulo E, que atua na direção da diagonal BD de um quadrado de lado l. Página 1 de 11

Se o potencial elétrico é nulo no vértice D, pode-se afirmar que a ddp entre o vértice A e o ponto O, intersecção das diagonais do quadrado, é a) nula b) l 2 E 2 c) l 2E d) l E 4. (Pucrj 2012) Ao colocarmos duas cargas pontuais q1 = 5,0μ C e q2 = 2,0μ C a uma distância d = 30,0 cm, realizamos trabalho. Determine a energia potencial eletrostática, em joules, deste sistema de cargas pontuais. 9 2 2 Dado: k0 = 9 10 Nm / C. a) 1 b) 10 c) 3,0 10 1 d) 2,0 10 5 e) 5,0 10 5 5. (Ufpr 2012) Um próton movimenta-se em linha reta paralelamente às linhas de força de um campo elétrico uniforme, conforme mostrado na figura. Partindo do repouso no ponto 1 e somente sob ação da força elétrica, ele percorre uma distância de 0,6 m e passa pelo ponto 2. Entre os pontos 1 e 2 há uma diferença de potencial V igual a 32 V. Considerando a massa 27 19 do próton igual a 1,6 10 kg e sua carga igual a 1,6 10 C, assinale a alternativa que apresenta corretamente a velocidade do próton ao passar pelo ponto 2. a) b) c) d) e) 4 2,0 10 m/s 4 4,0 10 m/s 4 8,0 10 m/s 5 1,6 10 m/s 5 3,2 10 m/s TEXTO PARA A PRÓXIMA QUESTÃO: Dados: Aceleração da gravidade: Densidade do mercúrio: Pressão atmosférica: 2 10 m/s. 3 13,6 g/cm. 5 2 1,0 10 N/m. 9 2 2 Constante eletrostática: k0 = 1 4πε0 = 9,0 10 N m /C. 6. (Ufpe 2012) O gráfico mostra a dependência do potencial elétrico criado por uma carga pontual, no vácuo, em função da distância à carga. Determine o valor da carga elétrica. Dê a 9 sua resposta em unidades de 10 C. Página 2 de 11

7. (Ifsp 2011) Na figura a seguir, são representadas as linhas de força em uma região de um campo elétrico. A partir dos pontos A, B, C, e D situados nesse campo, são feitas as seguintes afirmações: I. A intensidade do vetor campo elétrico no ponto B é maior que no ponto C. II. O potencial elétrico no ponto D é menor que no ponto C. III. Uma partícula carregada negativamente, abandonada no ponto B, se movimenta espontaneamente para regiões de menor potencial elétrico. IV. A energia potencial elétrica de uma partícula positiva diminui quando se movimenta de B para A. É correto o que se afirma apenas em a) I. b) I e IV. c) II e III. d) II e IV. e) I, II e III. 8. (Ufrgs 2011) Considere uma casca condutora esférica eletricamente carregada e em equilíbrio eletrostático. A respeito dessa casca, são feitas as seguintes afirmações. I. A superfície externa desse condutor define uma superfície equipotencial. II. O campo elétrico em qualquer ponto da superfície externa do condutor é perpendicular à superfície. III. O campo elétrico em qualquer ponto do espaço interior à casca é nulo. Quais estão corretas? a) Apenas I. b) Apenas II. c) Apenas I e III. d) Apenas II e III. e) I, II e III. 9. (Ufal 2010) Um canhão de elétrons lança um elétron em direção a outros dois elétrons fixos no vácuo, como mostra a figura. Considere que o elétron lançado se encontra apenas sob a ação das forças elétricas dos elétrons fixos. Sabendo que o elétron lançado atinge velocidade nula exatamente no ponto médio entre os elétrons fixos, qual a velocidade do elétron quando ele se encontra a 2 3 cm deste ponto (ver figura)? Considere: constante eletrostática no vácuo = 9 10 9 Nm 2 /C 2 ; massa do elétron = 9 10 31 kg; carga do elétron = 1,6 10 19 C. Página 3 de 11

a) 160 m/s b) 250 m/s c) 360 m/s d) 640 m/s e) 810 m/s 10. (Pucsp 2010) Acelerador de partículas cria explosão inédita e consegue simular o Big Bang GENEBRA O Grande Colisor de Hadrons (LHC) bateu um novo recorde nesta terça-feira. O acelerador de partículas conseguiu produzir a colisão de dois feixes de prótons a 7 tera-elétronvolts, criando uma explosão que os cientistas estão chamando de um Big Bang em miniatura. A unidade elétron-volt, citada na materia de O Globo, refere-se à unidade de medida da grandeza física: a) corrente b) tensão c) potencia d) energia e) carga elétrica 11. (Mackenzie 2010) Uma partícula de massa 1 g, eletrizada com carga elétrica positiva de 40 ìc, é abandonada do repouso no ponto A de um campo elétrico uniforme, no qual o potencial elétrico é 300 V. Essa partícula adquire movimento e se choca em B, com um anteparo rígido. Página 4 de 11

Sabendo-se que o potencial elétrico do ponto B é de 100 V, a velocidade dessa partícula ao se chocar com o obstáculo é de a) 4 m/s b) 5 m/s c) 6 m/s d) 7 m/s e) 8 m/s 12. (Enem cancelado 2009) As células possuem potencial de membrana, que pode ser classificado em repouso ou ação, e é uma estratégia eletrofisiológica interessante e simples do ponto de vista físico. Essa característica eletrofisiológica está presente na figura a seguir, que mostra um potencial de ação disparado por uma célula que compõe as fibras de Purkinje, responsáveis por conduzir os impulsos elétricos para o tecido cardíaco, possibilitando assim a contração cardíaca. Observa-se que existem quatro fases envolvidas nesse potencial de ação, sendo denominadas fases 0, 1, 2 e 3. O potencial de repouso dessa célula é -100 mv, e quando ocorre influxo de íons Na + e Ca 2+, a polaridade celular pode atingir valores de até +10 mv, o que se denomina despolarização celular. A modificação no potencial de repouso pode disparar um potencial de ação quando a voltagem da membrana atinge o limiar de disparo que está representado na figura pela linha pontilhada. Contudo, a célula não pode se manter despolarizada, pois isso acarretaria a morte celular. Assim, ocorre a repolarização celular, mecanismo que reverte a despolarização e retorna a célula ao potencial de repouso. Para tanto, há o efluxo celular de íons K +. Qual das fases, presentes na figura, indica o processo de despolarização e repolarização celular, respectivamente? a) Fases 0 e 2. b) Fases 0 e 3. c) Fases 1 e 2. d) Fases 2 e 0. e) Fases 3 e 1. 13. (Unifesp 2009) A presença de íons na atmosfera é responsável pela existência de um Página 5 de 11

campo elétrico dirigido e apontado para a Terra. Próximo ao solo, longe de concentrações urbanas, num dia claro e limpo, o campo elétrico é uniforme e perpendicular ao solo horizontal e sua intensidade é de 120 V/m. A figura mostra as linhas de campo e dois pontos dessa região, M e N. O ponto M está a 1,20 m do solo, e N está no solo. A diferença de potencial entre os pontos M e N é: a) 100 V. b) 120 V. c) 125 V. d) 134 V. e) 144 V. 14. (Pucrj 2008) Uma carga positiva puntiforme é liberada a partir do repouso em uma região do espaço onde o campo elétrico é uniforme e constante. Se a partícula se move na mesma direção e sentido do campo elétrico, a energia potencial eletrostática do sistema a) aumenta e a energia cinética da partícula aumenta. b) diminui e a energia cinética da partícula diminui. c) e a energia cinética da partícula permanecem constantes. d) aumenta e a energia cinética da partícula diminui. e) diminui e a energia cinética da partícula aumenta. 15. (Unifesp 2006) Na figura, as linhas tracejadas representam superfícies equipotenciais de um campo elétrico; as linhas cheias I, II, III, IV e V representam cinco possíveis trajetórias de uma partícula de carga q, positiva, realizadas entre dois pontos dessas superfícies, por um agente externo que realiza trabalho mínimo. A trajetória em que esse trabalho é maior, em módulo, é: a) I. b) II. c) III. d) IV. e) V. Página 6 de 11

Página 7 de 11

Gabarito: Resposta da questão 1: [C] 9 6 kq 9x10 x6x10 4 4 V = = = 1,35x10 10 volts r 8 4x10 Resposta da questão 2: [C] Como 0 < V A VC < V B V C, então V A > V C, V B > V C e V B > V A. Em resumo, V B > V A > V C. Deslocando-se no sentido da linha de força, temos uma diminuição do potencial. Portanto a ordem correta é B A C. Resposta da questão 3: [A] Nulo, pois o segmento de reta AOC é uma equipotencial. Resposta da questão 4: [C] Dados: 1 = μ = 6 2 = μ = 6 = = 1 9 2 2 k0 = 9 10 Nm / C. q 5,0 C 5 10 C; q 2,0 C 2 10 C; d 30cm 3 10 m; Usando a expressão da energia potencial elétrica: k 9 6 6 0 q1 q 2 9 10 5 10 2 10 1 Ep = = = 3 10 J. 2 1 d 3 10 Resposta da questão 5: [C] Usando o conceito de ddp e o teorema do trabalho-energia cinética, temos: 1 2 W12 EC2 E mv C! 1 2 1 2 V1 V 2 2 = V 12 = = = qv12 = mv qv12 = mv q q q 2 2 19 2 1,6 10 32 4 v = = 8,0 10 m / s 27 1,6 10 Resposta da questão 6: O potencial elétrico criado por uma carga pontual é dado por: k 0.Q V =. r Do gráfico temos: V = 300 v e r = 0,15 m. Página 8 de 11

Ou seja: k 9 0.Q 9.10.Q V = 300 = r 0,15 9 Q = 5.10 C. Resposta da questão 7: [B] Analisando cada uma das afirmações: I. Correta. Quanto mais concentradas as linhas de força, mais intenso é o campo elétrico. II. Falsa. No sentido das linhas de força o potencial elétrico é decrescente, portanto V D > V C. III. Falsa. Partículas com carga negativa sofrem força em sentido oposto ao do vetor campo elétrico, movimentando-se espontaneamente para regiões de maior potencial elétrico. IV. Correta. Partículas positivamente carregadas movimentam-se espontaneamente no mesmo sentido dos menores potenciais, ganhando energia cinética, consequentemente, diminuindo sua energia potencial. Resposta da questão 8: [E] I. Correto: o potencial de qualquer ponto da casca pode ser calculado como se ela estivesse no kq centro. Sendo assim, todos os pontos têm o mesmo potencial V =. R II. Correto: o campo é tangente à linha de força que, por sua vez, é perpendicular à equipotencial (superfície). III. Correto: no interior da casca temos um somatório de pequenos campos que se anulam. Resposta da questão 9: [A] Dados: k = 9 10 9 N.m 2 /C 2 ; m = 9 10 31 kg; q = 1,6 10 19 C; b = 2 cm = 2 10 2 m; v B = 0. Aplicando Pitágoras no triângulo ABC: a 2 = b 2 + c 2 a 2 2 = ( ) + = 2 2 3 2 16 a = 4 cm = 4 10 2 m. Calculemos o potencial elétrico (V) nos pontos A e B devido às cargas presentes em C e D. 9 19 kq 9 10 ( 1,6 10 ) V A = 2 = 2 = 7,2 10 2 a 4 10 V B = 2 kq 9 19 b = 2 9 10 ( 1,6 10 ) = 14,4 10 2 2 10 8 V. 8 V. Página 9 de 11

Ignorando a ação de outras forças, a força elétrica é a força resultante. Aplicando, então, o teorema da energia cinética entre os pontos A e B, vem: mv v A,B B mv W = E q(v F cin A V B ) = 2 2 v A = 2 2 A mv 2 2 A = q( V V ) ( V ) ( ) q V 1,6 10 7,2 14,4 A B = 10 2 2 31 m 9 10 Resposta da questão 10: [D] 19 8 A B = 25.600 v = 160 m/s. O elétron-volt é uma unidade de energia. Equivale ao trabalho da força elétrica para acelerar uma partícula com carga igual à carga elementar (q = e = 1,6 10 19 C) numa ddp de 1 volt. Na eletrostática, a expressão do trabalho da força elétrica é: W = q U v Fel Fel W v = (1,6 10 19 )(1) 1 ev = 1,6 10 19 J. Resposta da questão 11: [A] Dados: m = 1 g = 10-3 kg; q = 40 µc = 4 10-5 C; V A = 300 V e V B = 100 V. Aplicando o Teorema da Energia Cinética a essa situação: τ Fel = E Cin (V A V B ) q = 2 5 mv 2(VA V B )q 2(300 100)4 10 v = = = 16 = 4 m/s. 3 2 m 10 Resposta da questão 12: [B] A despolarização ocorre na fase em que o potencial sobe, que é a fase 0. A repolarização ocorre quando o potencial está voltando ao potencial de repouso, o que ocorre na fase 3. Resposta da questão 13: [E] Resolução U = E.d U = 120.1,2 = 144 V Resposta da questão 14: [E] Resposta da questão 15: [E] Página 10 de 11