Força Magnética. Página 1

Tamanho: px
Começar a partir da página:

Download "Força Magnética. www.soexatas.com Página 1"

Transcrição

1 Força Magnética 1. (Fuvest 2014) Partículas com carga elétrica positiva penetram em uma câmara em vácuo, onde há, em todo seu interior, um campo elétrico de módulo E e um campo magnético de módulo B, ambos uniformes e constantes, perpendiculares entre si, nas direções e sentidos indicados na figura. As partículas entram na câmara com velocidades perpendiculares aos campos e de módulos v 1 (grupo 1), v 2 (grupo 2) e v 3 (grupo 3). As partículas do grupo 1 têm sua trajetória encurvada em um sentido, as do grupo 2, em sentido oposto, e as do grupo 3 não têm sua trajetória desviada. A situação está ilustrada na figura abaixo. A intensidade do campo magnético, para que o dispositivo funcione corretamente, é de 1 a) 5 b) 5 1 c) 5 d) 2 0 e) 2 Considere as seguintes afirmações sobre as velocidades das partículas de cada grupo: I. v 1 > v 2 e v 1 > E/B II. v 1 < v 2 e v 1 < E/B III. v 3 = E/B Está correto apenas o que se afirma em Note e adote: Os módulos das forças elétrica (F E ) e magnética (F M ) são: F E = qe F M = qvb a) I. b) II. c) III. d) I e III. e) II e III. 2. (Enem 2013) Desenvolve-se um dispositivo para abrir automaticamente uma porta no qual um botão, quando acionado, faz com que uma corrente elétrica i = 6A percorra uma barra condutora de comprimento L = 5cm, cujo ponto médio está preso a uma mola de constante elástica k = 5 N/cm. O sistema mola-condutor está imerso em um campo magnético uniforme perpendicular ao plano. Quando acionado o botão, a barra sairá da posição do equilíbrio a uma velocidade média de 5m/s e atingirá a catraca em 6 milissegundos, abrindo a porta. 3. (Unesp 2013) Um feixe é formado por íons de massa m 1 e íons de massa m 2, com cargas elétricas q 1 e q 2, respectivamente, de mesmo módulo e de sinais opostos. O feixe penetra com velocidade V, por uma fenda F, em uma região onde atua um campo magnético uniforme B, cujas linhas de campo emergem na vertical perpendicularmente ao plano que contém a figura e com sentido para fora. Depois de atravessarem a região por trajetórias tracejadas circulares de raios R 1 e R2 = 2 R, 1 desviados pelas forças magnéticas que atuam sobre eles, os íons de massa m 1 atingem a chapa fotográfica C 1 e os de massa m 2 a chapa C 2. Considere que a intensidade da força magnética que atua sobre uma partícula de carga q, movendo-se com velocidade v, perpendicularmente a um campo magnético uniforme de módulo B, é dada por FMAG = q v B. Indique e justifique sobre qual chapa, C 1 ou C 2, incidiram os íons de carga positiva e os de carga negativa. m1 Calcule a relação entre as massas desses íons. m2 4. (Fuvest 2013) Um equipamento, como o esquematizado na figura abaixo, foi utilizado por J.J.Thomson, no final do século XIX, para o estudo de raios catódicos em vácuo. Um feixe fino de elétrons (cada elétron tem massa m e carga e) com velocidade de módulo v 0, na direção horizontal x, atravessa a região entre um par de placas paralelas, horizontais, de comprimento L. Entre as placas, há um Página 1

2 campo elétrico de módulo constante E na direção vertical y. Após saírem da região entre as placas, os elétrons descrevem uma trajetória retilínea até a tela fluorescente T. região acinzentada quadrada de lado L= 1mm(ver figura). Nesta região acinzentada existe um campo magnético uniforme, de módulo B= 2T e direção perpendicular à velocidade inicial da partícula e ao plano da página. A partícula deixa a região acinzentada quadrada na extremidade inferior direita. Considere apenas a força magnética atuando na partícula. Quanto vale a razão q/m (em C/kg) dividida por 7? Determine a) o módulo a da aceleração dos elétrons enquanto estão entre as placas; b) o intervalo de tempo Δ t que os elétrons permanecem entre as placas; c) o desvio Δ y na trajetória dos elétrons, na direção vertical, ao final de seu movimento entre as placas; d) a componente vertical v y da velocidade dos elétrons ao saírem da região entre as placas. Note e adote: Ignore os efeitos de borda no campo elétrico; Ignore efeitos gravitacionais. 7. (Unifesp 2012) Uma mola de massa desprezível presa ao teto de uma sala, tem sua outra extremidade atada ao centro de uma barra metálica homogênea e na horizontal, com 50 cm de comprimento e 500 g de massa. A barra metálica, que pode movimentar-se num plano vertical, apresenta resistência ôhmica de 5 Ω e está ligada por fios condutores de massas desprezíveis a um gerador G de corrente contínua, de resistência ôhmica interna de 5 Ω, apoiado sobre uma mesa horizontal. O sistema barra-mola está em um plano perpendicular a um campo magnético B horizontal, cujas linhas de campo penetram nesse plano, conforme mostra a figura. 5. (Ime 2013) A figura acima apresenta uma partícula com velocidade v, carga q e massa m penetrando perpendicularmente em um ambiente submetido a um campo magnético B. Um anteparo está a uma distância d do centro do arco de raio r correspondente à trajetória da partícula. O tempo, em segundos, necessário para que a partícula venha a se chocar com o anteparo é: Dados: v = m/s; B = 0,5 T; q= μc; 2 d= r. 2 a) 40π b) 20π c) π d) 5π e) 2,5π 0 m kg; = 6. (Ufpe 2013) Uma partícula de massa m e carga q ingressa, com velocidade horizontal de módulo v = 1500km/s, na extremidade superior esquerda da Determine: a) a força eletromotriz, em volts, produzida pelo gerador e a potência elétrica dissipada pela barra metálica, em watts. b) a deformação, em metros, sofrida pela mola para manter o sistema barra-mola em equilíbrio mecânico. Suponha que os fios elétricos não fiquem sujeitos a tensão mecânica, isto é, esticados. 8. (Pucrj 2012) Em uma experiência de física, observa-se que uma carga elétrica puntiforme com carga elétrica 3 q= 2 C se movimenta com velocidade constante v = 4 m/s, paralela ao eixo y, como ilustra a trajetória tracejada da figura. Sabendo que a região do espaço por onde a carga se movimenta possui campo elétrico E = 2 N/C ao longo do eixo z e campo magnético B ao longo do eixo x, ambos uniformes, também representados na figura, determine: Página 2

3 a) módulo, direção e sentido da força feita pelo campo elétrico sobre a carga q; N s b) módulo do campo magnético em atuando na m C carga. 9. (Ufpr 2011) Uma experiência interessante, que permite determinar a velocidade v com em que partículas elementares se movem, consiste em utilizar um campo magnético B em combinação com um campo elétrico E. Uma partícula elementar com carga Q negativa move-se com velocidade v paralelamente ao plano do papel (referencial inercial) e entra em uma região onde há um campo magnético B uniforme, constante e orientado para dentro do plano do papel, como mostra a figura. Ao se deslocar na região do campo magnético, a partícula fica sujeita a uma força magnética F M. a) Obtenha uma expressão literal para o módulo de F M e represente na figura o vetor F M para a posição indicada da partícula. b) Dispõe-se de um sistema que pode gerar um campo elétrico E uniforme, constante e paralelo ao plano do papel, que produz uma força elétrica F E sobre a partícula. Represente na figura o vetor E necessário para que a partícula de carga Q mova-se em movimento retilíneo uniforme. Em seguida, obtenha uma expressão literal para o módulo da velocidade v da partícula quando ela executa esse movimento, em função das grandezas apresentadas no enunciado.. (Ufpe 2011) Um elétron entra com velocidade 6 ve = m/sentre duas placas paralelas carregadas eletricamente. As placas estão separadas pela distância d = 1,0 cm e foram carregadas pela aplicação de uma diferença de potencial V = 200 volts. Qual é o módulo do campo magnético, B, que permitirá ao elétron passar entre as placas sem ser desviado da trajetória tracejada? 3 Expresse B em unidades de tesla. 11. (Epcar(Afa) 2011) Uma partícula de massa m e carga elétrica +q é lançada obliquamente com velocidade v 0 numa região R onde existe um campo elétrico uniforme E, vertical, conforme ilustrado na figura abaixo. Devido à ação deste campo elétrico E e do gravitacional g, enquanto a partícula estiver nessa região R, sua aceleração vetorial a) nunca poderá ser nula. b) varia de ponto para ponto. c) independe do ângulo θ 0. d) sempre formará o mesmo ângulo θ0 com o vetor velocidade instantânea. 12. (Ime 20) A figura ilustra um plano inclinado com ânguloθ= 30º cuja superfície apresenta atrito. Um bloco de massa m = 1 kg, carregado eletricamente com a carga negativa q= C, apresenta velocidade inicial v0 = 2 m/s e realiza um movimento retilíneo sobre o eixo x (paralelo ao plano horizontal) a partir do instante t = 0. Além disso, este bloco se encontra submetido à força constante F = 4,5 N na direção x e a um campo magnético B = 0 T normal à superfície (direção z). Considerando que o gráfico ilustra o trabalho da força resultante R que age sobre o bloco em função da distância percorrida, determine: a) o tempo gasto e a velocidade do bloco após percorrer 60 m; b) os gráficos das componentes da força de atrito (direções x e y) em função do tempo até o bloco percorrer 60 m. Dado: aceleração da gravidade: 2 g= m/s Página 3

4 13. (Fuvest 20) A figura a seguir mostra o esquema de um instrumento (espectrômetro de massa), constituído de duas partes. Na primeira parte, há um campo elétrico E, paralelo a esta folha de papel, apontando para baixo, e também um campo magnético B 1, perpendicular a esta folha, entrando nela. Na segunda, há um campo magnético, B 2 de mesma direção que B 1, mas em sentido oposto. Íons positivos, provenientes de uma fonte, penetram na primeira parte e, devido ao par de fendas F 1e F 2, apenas partículas com velocidade v, na direção perpendicular aos vetores E e B 1, atingem a segunda parte do equipamento, onde os íons de massa m e carga q tem uma trajetória circular com raio R. a) Obtenha a expressão do módulo da velocidade v em função de E e de B 1. b) Determine a razão m/q dos íons em função dos parâmetros E, B, 1 B 2 e R. c) Determine, em função de R, o raio R da trajetória circular dos íons, quando o campo magnético, na segunda parte do equipamento, dobra de intensidade, mantidas as demais condições. NOTE E ADOTE: Felétrica = q E(na direção do campo elétrico). Fmagnética = q v B senθ (na direção perpendicular a v e a B ; θ e o angulo formado por v e B ). 14. (Fuvest 2005) Assim como ocorre em tubos de TV, um feixe de elétrons move-se em direção ao ponto central O de uma tela, com velocidade constante. A trajetória dos elétrons é modificada por um campo magnético vertical B, na direção perpendicular à trajetória do feixe, cuja intensidade varia em função do tempo t como indicado no gráfico. Devido a esse campo, os elétrons incidem na tela, deixando um traço representado por uma das figuras a seguir. A figura que pode representar o padrão visível na tela é: 15. (Fuvest 2003) Um feixe de elétrons, todos com mesma velocidade, penetra em uma região do espaço onde há um campo elétrico uniforme entre duas placas condutoras, planas e paralelas, uma delas carregada positivamente e a outra, negativamente. Durante todo o percurso, na região entre as placas, os elétrons têm trajetória retilínea, perpendicular ao campo elétrico. Ignorando efeitos gravitacionais, esse movimento é possível se entre as placas houver, além do campo elétrico, também um campo magnético, com intensidade adequada e a) perpendicular ao campo elétrico e à trajetória dos elétrons. b) paralelo e de sentido oposto ao do campo elétrico. c) paralelo e de mesmo sentido que o do campo elétrico. d) paralelo e de sentido oposto ao da velocidade dos elétrons. e) paralelo e de mesmo sentido que o da velocidade dos elétrons. 16. (Fuvest 2001) Um próton de massa 7 M 1,6 kg, com carga elétrica 19 Q= 1,6 C, é lançado em A, com velocidade V 0, em uma região onde atua um campo magnético uniforme B, na direção x. A velocidade V 0, que forma um ângulo θ com o eixo x tem componentes 6 6 V0x = 4,0 m/s e V0y = 3,0 m/s. O próton descreve um movimento em forma de hélice, voltando a cruzar o eixo x, em P, com a mesma velocidade inicial, a uma distância L0 = 12 m do ponto A. Desconsiderando a ação do campo gravitacional e utilizando π 3, determine: Página 4

5 a) O intervalo de tempo t, em s, que o próton leva para ir de A a P. b) O raio R, em m, do cilindro que contém a trajetória em hélice do próton. c) A intensidade do campo magnético B, em tesla, que provoca esse movimento. Uma partícula com carga Q, que se move em um campo B, com velocidade V, fica sujeita a uma força de intensidade F= Q Vn B, normal ao plano formado por B e V n, sendo V n a componente da velocidade V normal a B. carga passa a descrever uma trajetória circular de raio R e o módulo da sua velocidade permanece constante. Finalmente, ao penetrar na região III, percorre uma trajetória parabólica até sair dessa região. A tabela a seguir indica algumas configurações possíveis dos campos nas três regiões. 17. (Fuvest 2000) Uma partícula, de massa m e com carga elétrica Q, cai verticalmente com velocidade constante v 0. Nessas condições, a força de resistência do ar pode ser R ar = kv, sendo k uma constante e considerada como ( ) v a velocidade. A partícula penetra, então, em uma região onde atua um campo magnético uniforme e constante B, perpendicular ao plano do papel e, nele entrando, conforme a figura. A velocidade da partícula é, então, alterada, adquirindo, após certo intervalo de tempo, um novo valor v 2, constante. (Lembre-se de que a intensidade da força magnética F( M ) = q. v. B, em unidades SI, para v perpendicular a B). a) Expresse o valor da constante k em função de m, g e v 0. b) Esquematize os vetores das forças [Peso, R(ar) e F(M)] que agem sobre a partícula, em presença do campo B, na situação em que a velocidade passa a ser a velocidade v 2. Represente, por uma linha tracejada, direção e sentido de v 2. c) Expresse o valor da velocidade v 2 da partícula, na região onde atua o campo B, em função de m, g, k, B e Q. 18. (Fuvest 1999) Em cada uma das regiões I, II, e III da figura a seguir existe um campo elétrico constante ± E x NA DIREÇÃO X ou um campo elétrico constante ± E y NA DIREÇÃO Y, ou um campo magnético constante ± B NA DIREÇÃO Z (perpendicular ao plano do papel). Quando uma carga positiva q é abandonada no ponto P da região I, ela é acelerada uniformemente, mantendo uma trajetória retilínea, até atingir a região II. Ao penetrar na região II, a A única configuração dos campos, compatível com a trajetória da carga, é aquela descrita em: a) A b) B c) C d) D e) E 19. (Mackenzie 1999) Quando um elétron penetra num campo de indução magnéticae uniforme, com velocidade de direção perpendicular às linhas de indução, descreve um movimento cujo período é: a) diretamente proporcional à intensidade de E. b) inversamente proporcional à intensidade de E. c) diretamente proporcional ao quadrado da intensidade de E. d) inversamente proporcional ao quadrado da intensidade de E. e) independente da intensidade de E. 20. (Mackenzie 1998) Em trabalhos de Física Nuclear, são utilizadas diversas partículas elementares com inúmeras finalidades. Duas destas partículas são: partícula alfa ( q=+ 3,2 C e m= 6,7 kg) partícula beta ( q= 1,6 C e m= 9,1 kg) Quando uma partícula alfa e uma partícula beta são disparadas separadamente com a mesma velocidade, perpendicularmente às linhas de indução de um mesmo campo magnético uniforme, a figura que melhor representa as trajetórias distintas dessas partículas é: Página 5

6 a) Localize, dando suas coordenadas, o ponto onde a partícula, após sua segunda entrada na caixa, atinge pela primeira vez uma parede. b) Determine o valor de v em função de B, a e q/m. 21. (Fuvest 1994) Uma partícula de carga q > 0 e massa m, com velocidade de módulo v e dirigida ao longo do eixo x no sentido positivo (veja figura adiante), penetra, através de um orifício, em O, de coordenadas (0,0), numa caixa onde há um campo magnético uniforme de módulo B, perpendicular ao plano do papel e dirigido "para dentro" da folha. Sua trajetória é alterada pelo campo, e a partícula sai da caixa passando por outro orifício, P, de coordenadas (a,a), com velocidade paralela a ao eixo y. Percorre, depois de sair da caixa, o trecho PQ, paralelo ao eixo y, livre de qualquer força. Em Q sofre uma colisão elástica, na qual sua velocidade é simplesmente invertida, e volta pelo mesmo caminho, entrando de novo na caixa, pelo orifício P. A ação da gravidade nesse problema é desprezível. 22. (Fuvest 1991) Raios cósmicos são partículas de grande velocidade, proveniente do espaço, que atingem a Terra de todas as direções. Sua origem é, atualmente, objeto de estudos. A Terra possui um campo magnético semelhante ao criado por um ímã em forma de barra cilíndrica, cujo eixo coincide com o eixo magnético da Terra. Uma partícula cósmica P com carga elétrica positiva, quando ainda longe da Terra, aproxima-se percorrendo uma reta que coincide com o eixo magnético da Terra, como mostra a figura adiante. Desprezando ezando a atração gravitacional, podemos afirmar que a partícula, ao se aproximar da Terra: a) aumenta sua velocidade e não se desvia de sua trajetória retilínea. b) diminui sua velocidade e não se desvia de sua trajetória retilínea. c) tem sua trajetória desviada para Leste. d) tem sua trajetória desviada para Oeste. e) não altera sua velocidade nem se desvia de sua trajetória retilínea. Página 6

Força Magnética. 0, atingem a Terra em um mesmo ponto com velocidades, VA V B,

Força Magnética. 0, atingem a Terra em um mesmo ponto com velocidades, VA V B, Força Magnética 1. (Espcex (Aman) 013) Partículas com grande velocidade, provenientes do espaço, atingem todos os dias o nosso planeta e algumas delas interagem com o campo magnético terrestre. Considere

Leia mais

Força Magnética (Força de Lorentz) sobre Carga Lançada em Campo Magnético

Força Magnética (Força de Lorentz) sobre Carga Lançada em Campo Magnético PROESSOR Edney Melo ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: orça Magnética (orça de Lorentz) sobre Carga Lançada em Campo Magnético magnética, a força magnética tem o sentido de um tapa dado com

Leia mais

LISTA DE EXERCÍCIOS CAMPO MAGNÉTICO

LISTA DE EXERCÍCIOS CAMPO MAGNÉTICO 1. (Fuvest 96) A figura esquematiza um ímã permanente, em forma de cruz de pequena espessura, e oito pequenas bússolas, colocadas sobre uma mesa. As letras N e S representam, respectivamente, pólos norte

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Professor: Renato Medeiros EXERCÍCIOS NOTA DE AULA IV Goiânia - 2014 EXERCÍCIOS 1. Uma partícula eletrizada positivamente é

Leia mais

FUVEST 2000-2 a Fase - Física - 06/01/2000 ATENÇÃO

FUVEST 2000-2 a Fase - Física - 06/01/2000 ATENÇÃO ATENÇÃO VERIFIQUE SE ESTÃO IMPRESSOS EIXOS DE GRÁFICOS OU ESQUEMAS, NAS FOLHAS DE RESPOSTAS DAS QUESTÕES 1, 2, 4, 9 e 10. Se notar a falta de uma delas, peça ao fiscal de sua sala a substituição da folha.

Leia mais

Fortaleza Ceará TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014

Fortaleza Ceará TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014 TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014 1. Uma ave marinha costuma mergulhar de uma altura de 20 m para buscar alimento no mar. Suponha que um desses mergulhos tenha sido feito em sentido

Leia mais

Bacharelado Engenharia Civil

Bacharelado Engenharia Civil Bacharelado Engenharia Civil Disciplina: Física Geral e Experimental I Força e Movimento- Leis de Newton Prof.a: Msd. Érica Muniz Forças são as causas das modificações no movimento. Seu conhecimento permite

Leia mais

Refração da Luz Prismas

Refração da Luz Prismas Refração da Luz Prismas 1. (Fuvest 014) Um prisma triangular desvia um feixe de luz verde de um ângulo θ A, em relação à direção de incidência, como ilustra a figura A, abaixo. Se uma placa plana, do mesmo

Leia mais

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20.

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20. 11 FÍSICA Um bloco de granito com formato de um paralelepípedo retângulo, com altura de 30 cm e base de 20 cm de largura por 50 cm de comprimento, encontra-se em repouso sobre uma superfície plana horizontal.

Leia mais

LISTA 10 INDUÇÃO ELETROMAGNÉTICA

LISTA 10 INDUÇÃO ELETROMAGNÉTICA 1. (Ufmg 95) Esta figura mostra uma espira retangular, de lados a = 0,20 m e b = 0,50 m, sendo empurrada, com velocidade constante v = 0,50 m/s, para uma região onde existe um campo magnético uniforme

Leia mais

RECUPERAÇÃO TURMAS: 2º ANO FÍSICA

RECUPERAÇÃO TURMAS: 2º ANO FÍSICA RECUPERAÇÃO TURMAS: 2º ANO Professor: XERXES DATA: 22 / 11 / 2015 RECUPERAÇÃO FINAL FORÇA ELÉTRICA (LEI DE COULOMB) FÍSICA Para todas as questões, considere a constante eletrostática no vácuo igual a 9.10

Leia mais

TEXTO PARA A PRÓXIMA QUESTÃO (Ufpe) Constantes físicas necessárias para a solução dos problemas:

TEXTO PARA A PRÓXIMA QUESTÃO (Ufpe) Constantes físicas necessárias para a solução dos problemas: TEXTO PARA A PRÓXIMA QUESTÃO (Ufpe) Constantes físicas necessárias para a solução dos problemas: aceleração da gravidade: 10 m/s constante de Planck: 6,6 x 10 J.s 3. (Fuvest) A figura adiante mostra, num

Leia mais

Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA

Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Carga Elétrica e Lei de Coulomb 1. Consideremos o ponto P no centro de um quadrado

Leia mais

EXERCÍCIOS 2ª SÉRIE - LANÇAMENTOS

EXERCÍCIOS 2ª SÉRIE - LANÇAMENTOS EXERCÍCIOS ª SÉRIE - LANÇAMENTOS 1. (Unifesp 01) Em uma manhã de calmaria, um Veículo Lançador de Satélite (VLS) é lançado verticalmente do solo e, após um período de aceleração, ao atingir a altura de

Leia mais

Eletricidade e Magnetismo - Lista de Exercícios IV CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA

Eletricidade e Magnetismo - Lista de Exercícios IV CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Eletricidade e Magnetismo - Lista de Exercícios IV CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Campo Magnético (Fundamentos de Física Vol.3 Halliday, Resnick e Walker, Cap.

Leia mais

(a) a aceleração do sistema. (b) as tensões T 1 e T 2 nos fios ligados a m 1 e m 2. Dado: momento de inércia da polia I = MR / 2

(a) a aceleração do sistema. (b) as tensões T 1 e T 2 nos fios ligados a m 1 e m 2. Dado: momento de inércia da polia I = MR / 2 F128-Lista 11 1) Como parte de uma inspeção de manutenção, a turbina de um motor a jato é posta a girar de acordo com o gráfico mostrado na Fig. 15. Quantas revoluções esta turbina realizou durante o teste?

Leia mais

Trabalho e potência. 1º caso: a força F não é paralela a d. 2º caso: a força F é paralela a d. 3º caso: a força F é perpendicular a d

Trabalho e potência. 1º caso: a força F não é paralela a d. 2º caso: a força F é paralela a d. 3º caso: a força F é perpendicular a d Trabalho e potência Trabalho mecânico Realizar trabalho, em Física, implica a transferência de energia de um sistema para outro e, para que isso ocorra, são necessários uma força e um deslocamento adequados.

Leia mais

TD DE FÍSICA 2 Questões de Potencial elétrico e Trabalho da Força Elétrica PROF.: João Vitor

TD DE FÍSICA 2 Questões de Potencial elétrico e Trabalho da Força Elétrica PROF.: João Vitor 1. (Ita) Considere as afirmações a seguir: I. Em equilíbrio eletrostático, uma superfície metálica é equipotencial. II. Um objeto eletrostaticamente carregado induz uma carga uniformemente distribuída

Leia mais

FÍSICA 3ª Série LISTA DE EXERCÍCIOS/ELETROSTÁTICA Data: 20/03/07

FÍSICA 3ª Série LISTA DE EXERCÍCIOS/ELETROSTÁTICA Data: 20/03/07 1. O campo elétrico de uma carga puntiforme em repouso tem, nos pontos A e B, as direções e sentidos indicados pelas flechas na figura a seguir. O módulo do campo elétrico no ponto B vale 24V/m. O módulo

Leia mais

Lista de Eletromagnetismo - Tubarão. amostra em relação à localização dos. 1. Num laboratório de biofísica, um. lagos de onde vieram.

Lista de Eletromagnetismo - Tubarão. amostra em relação à localização dos. 1. Num laboratório de biofísica, um. lagos de onde vieram. 1. Num laboratório de biofísica, um pesquisador realiza uma experiência com "bactérias magnéticas", bactérias que tem pequenos ímãs no seu interior. Com auxílio desses imãs, amostra em relação à localização

Leia mais

TC 1 UECE 2012 FASE 2. PROF.: Célio Normando

TC 1 UECE 2012 FASE 2. PROF.: Célio Normando TC 1 UECE 01 FASE PROF.: Célio Normando Conteúdo: Aritmética Ordem de Grandeza 1. Racionalizar o uso da água significa usá-la sem desperdício e considerá-la uma prioridade social e ambiental, para que

Leia mais

3) Uma mola de constante elástica k = 400 N/m é comprimida de 5 cm. Determinar a sua energia potencial elástica.

3) Uma mola de constante elástica k = 400 N/m é comprimida de 5 cm. Determinar a sua energia potencial elástica. Lista para a Terceira U.L. Trabalho e Energia 1) Um corpo de massa 4 kg encontra-se a uma altura de 16 m do solo. Admitindo o solo como nível de referência e supondo g = 10 m/s 2, calcular sua energia

Leia mais

CPV seu pé direito também na medicina

CPV seu pé direito também na medicina CPV seu pé direito também na medicina unifesp 6/dezembro/0 física. Em uma manhã de calmaria, um Veículo Lançador de Satélite (VLS) é lançado verticalmente do solo e, após um período de aceleração, ao atingir

Leia mais

Nome 3ª série Nº Conceito

Nome 3ª série Nº Conceito Prova Recuperação do 2º Semestre (Novembro) Física Prof. Reinaldo Nome 3ª série Nº Conceito Nº de questões 14 Tempo 100 min Data 13/11/15 Não é permitido o uso de calculadora. 0 = 4..10 7 T.m/A B = 0.i

Leia mais

n 1 L 1 n 2 L 2 Supondo que as ondas emergentes podem interferir, é correto afirmar que

n 1 L 1 n 2 L 2 Supondo que as ondas emergentes podem interferir, é correto afirmar que QUESTÃO 29 QUESTÃO 27 Uma escada de massa m está em equilíbrio, encostada em uma parede vertical, como mostra a figura abaixo. Considere nulo o atrito entre a parede e a escada. Sejam µ e o coeficiente

Leia mais

4.1 MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES

4.1 MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES CAPÍTULO 4 67 4. MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES Consideremos um bloco em contato com uma superfície horizontal, conforme mostra a figura 4.. Vamos determinar o trabalho efetuado por uma

Leia mais

CORTESIA Prof. Renato Brito www.vestseller.com.br Espaço

CORTESIA Prof. Renato Brito www.vestseller.com.br Espaço INSTITUTO TECNOLÓGICO DE AERONÁUTICA ESTIBULAR 983/984 PROA DE FÍSICA 0. (ITA-84) Colocou-se uma certa quantidade de bolinhas de chumbo numa seringa plástica e o volume lido na própria escala da seringa

Leia mais

FÍSICA - 3 o ANO MÓDULO 13 CINEMÁTICA VETORIAL E COMPOSIÇÃO DE MOVIMENTOS

FÍSICA - 3 o ANO MÓDULO 13 CINEMÁTICA VETORIAL E COMPOSIÇÃO DE MOVIMENTOS FÍSICA - 3 o ANO MÓDULO 13 CINEMÁTICA VETORIAL E COMPOSIÇÃO DE MOVIMENTOS Como pode cair no enem (UERJ) Pardal é a denominação popular do dispositivo óptico-eletrônico utilizado para fotografar veículos

Leia mais

1 a QUESTÃO Valor 1,0

1 a QUESTÃO Valor 1,0 1 a QUESTÃO Valor 1,0 Um esquimó aguarda a passagem de um peixe sob um platô de gelo, como mostra a figura abaixo. Ao avistá-lo, ele dispara sua lança, que viaja com uma velocidade constante de 50 m/s,

Leia mais

LISTA de ELETROMAGNETISMO PROFESSOR ANDRÉ

LISTA de ELETROMAGNETISMO PROFESSOR ANDRÉ LISTA de ELETROMAGNETISMO PROFESSOR ANDRÉ 1. (Espcex (Aman) 014)Dois fios A e B retos, paralelos e extensos, estão separados por uma distância de m. Uma espira circular de raio igual a π 4m encontra-se

Leia mais

sendo as componentes dadas em unidades arbitrárias. Determine: a) o vetor vetores, b) o produto escalar e c) o produto vetorial.

sendo as componentes dadas em unidades arbitrárias. Determine: a) o vetor vetores, b) o produto escalar e c) o produto vetorial. INSTITUTO DE FÍSICA DA UFRGS 1 a Lista de FIS01038 Prof. Thomas Braun Vetores 1. Três vetores coplanares são expressos, em relação a um sistema de referência ortogonal, como: sendo as componentes dadas

Leia mais

FÍSICA CADERNO DE QUESTÕES

FÍSICA CADERNO DE QUESTÕES CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 2015 1 a QUESTÃO Valor: 1,00 Uma mola comprimida por uma deformação x está em contato com um corpo de massa m, que se encontra

Leia mais

Vestibulando Web Page www.vestibulandoweb.com.br

Vestibulando Web Page www.vestibulandoweb.com.br 1. (Ufv 2000) Um aluno, sentado na carteira da sala, observa os colegas, também sentados nas respectivas carteiras, bem como um mosquito que voa perseguindo o professor que fiscaliza a prova da turma.

Leia mais

FÍSICA 3. k = 1/4πε 0 = 9,0 10 9 N.m 2 /c 2 1 atm = 1,0 x 10 5 N/m 2 tan 17 = 0,30. a (m/s 2 ) 30 20 10 1,0 2,0 3,0 4,0 5,0.

FÍSICA 3. k = 1/4πε 0 = 9,0 10 9 N.m 2 /c 2 1 atm = 1,0 x 10 5 N/m 2 tan 17 = 0,30. a (m/s 2 ) 30 20 10 1,0 2,0 3,0 4,0 5,0. FÍSIC 3 Valores de algumas grandezas físicas celeração da gravidade: 1 m/s Carga do elétron: 1,6 x 1-19 C Constante de Planck: 6,6 x 1-34 J Velocidade da luz: 3 x 1 8 m/s k = 1/4πε = 9, 1 9 N.m /c 1 atm

Leia mais

CAMPO ELÉTRICO. Introdução. Campo de uma carga elétrica puntiforme. Sentido do campo elétrico E =

CAMPO ELÉTRICO. Introdução. Campo de uma carga elétrica puntiforme. Sentido do campo elétrico E = CAMPO ELÉTRICO Introdução O campo elétrico é a região do espaço que fica ao redor de uma carga elétrica. Em um ponto do espaço existe um campo elétrico se uma carga elétrica, denominada carga de prova,

Leia mais

a) os módulos das velocidades angulares ωr NOTE E ADOTE

a) os módulos das velocidades angulares ωr NOTE E ADOTE 1. Um anel condutor de raio a e resistência R é colocado em um campo magnético homogêneo no espaço e no tempo. A direção do campo de módulo B é perpendicular à superfície gerada pelo anel e o sentido está

Leia mais

tem Note e adote: ELETROSTÁTICA 3ª SÉRIE 3,2 10 kg, permanecia com velocidade constante no interior da câmara. Essa esfera carga do elétron 1,6 10 C

tem Note e adote: ELETROSTÁTICA 3ª SÉRIE 3,2 10 kg, permanecia com velocidade constante no interior da câmara. Essa esfera carga do elétron 1,6 10 C 1. (Mackenzie 015) Uma esfera metálica A, eletrizada com carga elétrica igual a 0,0 μc, é colocada em contato com outra esfera idêntica B, eletricamente neutra. Em seguida, encosta-se a esfera B em outra

Leia mais

professordanilo.com Considerando a intensidade da aceleração da gravidade de tração em cada corda é de g 10 m / s, a intensidade da força

professordanilo.com Considerando a intensidade da aceleração da gravidade de tração em cada corda é de g 10 m / s, a intensidade da força 1. (Espcex (Aman) 015) Em uma espira condutora triangular equilátera, rígida e homogênea, com lado medindo 18 cm e massa igual a 4,0 g, circula uma corrente elétrica i de 6,0 A, no sentido anti-horário.

Leia mais

Hoje estou elétrico!

Hoje estou elétrico! A U A UL LA Hoje estou elétrico! Ernesto, observado por Roberto, tinha acabado de construir um vetor com um pedaço de papel, um fio de meia, um canudo e um pedacinho de folha de alumínio. Enquanto testava

Leia mais

Trabalho Mecânico. A força F 2 varia de acordo com o gráfico a seguir: Dados sem 30º = cos = 60º = 1/2

Trabalho Mecânico. A força F 2 varia de acordo com o gráfico a seguir: Dados sem 30º = cos = 60º = 1/2 Trabalho Mecânico 1. (G1 - ifce 2012) Uma pessoa sobe um lance de escada, com velocidade constante, em 1,0 min. Se a mesma pessoa subisse o mesmo lance, também com velocidade constante em 2,0 min, ela

Leia mais

Exercícios de Física Eletromagnetismo

Exercícios de Física Eletromagnetismo Exercícios de Física Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte

Leia mais

Exercícios de Física Eletromagnetismo

Exercícios de Física Eletromagnetismo Exercícios de Física Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte

Leia mais

Exercícios Eletromagnetismo

Exercícios Eletromagnetismo Exercícios Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte e norte, ou

Leia mais

3º Bimestre. Física I. Autor: Geraldo Velazquez

3º Bimestre. Física I. Autor: Geraldo Velazquez 3º Bimestre Autor: Geraldo Velazquez SUMÁRIO UNIDADE III... 4 Capítulo 3: Eletromagnetismo... 4 3.1 Introdução... 4 3.2 Campo Magnético (B)... 6 3.3 Campo Magnético Gerado Por Corrente... 7 3.4 Campo

Leia mais

Eletromagnetismo: imãs, bobinas e campo magnético

Eletromagnetismo: imãs, bobinas e campo magnético Eletromagnetismo: imãs, bobinas e campo magnético 22 Eletromagnetismo: imãs, bobinas e campo magnético 23 Linhas do campo magnético O mapeamento do campo magnético produzido por um imã, pode ser feito

Leia mais

Lançamento Horizontal

Lançamento Horizontal Lançamento Horizontal 1. (Ufsm 2013) Um trem de passageiros passa em frente a uma estação, com velocidade constante em relação a um referencial fixo no solo. Nesse instante, um passageiro deixa cair sua

Leia mais

c) diretamente proporcional ao quadrado da distância entre as partículas. d) diretamente proporcional à distância entre as partículas.

c) diretamente proporcional ao quadrado da distância entre as partículas. d) diretamente proporcional à distância entre as partículas. LISTA 0 ELETOSTÁTICA POFESSO MÁCIO 01 - (UFJ ) Três cargas q 1, q e q 3 ocupam três vértices de um quadrado, como mostra a figura a seguir. Sabendo que q 1 e q têm o mesmo módulo e que a força que q 1

Leia mais

Lista de Eletrostática - Mackenzie

Lista de Eletrostática - Mackenzie Lista de Eletrostática - Mackenzie 1. (Mackenzie 1996) Uma esfera eletrizada com carga de + mc e massa 100 g é lançada horizontalmente com velocidade 4 m/s num campo elétrico vertical, orientado para cima

Leia mais

a) Um dos fatores que explicam esse fenômeno é a diferença da velocidade da água nos dois rios, cerca de vn

a) Um dos fatores que explicam esse fenômeno é a diferença da velocidade da água nos dois rios, cerca de vn 1. (Unicamp 014) Correr uma maratona requer preparo físico e determinação. A uma pessoa comum se recomenda, para o treino de um dia, repetir 8 vezes a seguinte sequência: correr a distância de 1 km à velocidade

Leia mais

PROCESSO SELETIVO TURMA DE 2010 FASE 1 PROVA DE FÍSICA E SEU ENSINO

PROCESSO SELETIVO TURMA DE 2010 FASE 1 PROVA DE FÍSICA E SEU ENSINO PROCESSO SELETIVO TURM DE 2010 FSE 1 PROV DE FÍSIC E SEU ENSINO Caro professor, esta prova tem 4 (quatro) questões, com valores diferentes indicados nas próprias questões. Duas das questões são objetivas,

Leia mais

Lista de Exercícios para Recuperação Final. Nome: Nº 1 º ano / Ensino Médio Turma: A e B Disciplina(s): Física LISTA DE EXERCÍCIOS RECUPERAÇÃO - I

Lista de Exercícios para Recuperação Final. Nome: Nº 1 º ano / Ensino Médio Turma: A e B Disciplina(s): Física LISTA DE EXERCÍCIOS RECUPERAÇÃO - I Lista de Exercícios para Recuperação Final Nome: Nº 1 º ano / Ensino Médio Turma: A e B Disciplina(s): Física Data: 04/12/2014 Professor(a): SANDRA HELENA LISTA DE EXERCÍCIOS RECUPERAÇÃO - I 1. Dois móveis

Leia mais

= + + = = + = = + 0 AB

= + + = = + = = + 0 AB FÍSIC aceleração da gravidade na Terra, g 0 m/s densidade da água, a qualquer temperatura, r 000 kg/m 3 g/cm 3 velocidade da luz no vácuo 3,0 x 0 8 m/s calor específico da água @ 4 J/(ºC g) caloria @ 4

Leia mais

Exercícios com Gabarito de Física Movimento de Cargas no Interior de um Campo Elétrico

Exercícios com Gabarito de Física Movimento de Cargas no Interior de um Campo Elétrico Exercícios com Gabarito de Física Movimento de Cargas no Interior de um Campo Elétrico 1) (AFA-003) Um elétron desloca-se na direção x, com v velocidade inicial 0. Entre os pontos x 1 e x, existe um campo

Leia mais

Dinâmica de um Sistema de Partículas Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Dinâmica de um Sistema de Partículas Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Dinâmica de um Sistema de Partículas Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Profa. Dra. Diana Andrade & Prof. Dr. Sergio Pilling Parte 1 - Movimento Retilíneo Coordenada de posição, trajetória,

Leia mais

Escolha sua melhor opção e estude para concursos sem gastar nada

Escolha sua melhor opção e estude para concursos sem gastar nada Escolha sua melhor opção e estude para concursos sem gastar nada VALORES DE CONSTANTES E GRANDEZAS FÍSICAS - aceleração da gravidade g = 10 m/s 2 - calor específico da água c = 1,0 cal/(g o C) = 4,2 x

Leia mais

MAGNETISMO - ELETROMAGNETISMO

MAGNETISMO - ELETROMAGNETISMO MAGNETISMO - ELETROMAGNETISMO MAGNETISMO Estuda os corpos que apresentam a propriedade de atrair o ferro. Estes corpos são denominados imãs ou magnetos. Quando suspendemos um imã deixando que ele gire

Leia mais

FORÇA MAGNÉTICA. Força magnética sobre cargas em um campo magnético uniforme

FORÇA MAGNÉTICA. Força magnética sobre cargas em um campo magnético uniforme FORÇA MAGNÉTICA Força magnética sobre cargas em um campo magnético uniforme Em eletrostática vimos que quando uma carga penetra em uma região onde existe um campo elétrico, fica sujeita a ação de uma força

Leia mais

Lista de Exercícios Física 2 - Prof. Mãozinha Tarefa 15 Eletromagnetismo. Resumo de fórmulas. Fórmulas para cargas elétricas

Lista de Exercícios Física 2 - Prof. Mãozinha Tarefa 15 Eletromagnetismo. Resumo de fórmulas. Fórmulas para cargas elétricas Resumo de fórmulas Força magnética em uma carga elétrica em movimento F = q. v. B. senθ Fórmulas para cargas elétricas Raio de uma trajetória circular gerada por uma partícula em um campo magnético R =

Leia mais

Trabalho e Potencial de uma carga elétrica

Trabalho e Potencial de uma carga elétrica Trabalho e Potencial de uma carga elétrica 1. (Uem 2011) Uma carga puntual positiva, 6 q 2 10 C 6 Q 510 C, está disposta no vácuo. Uma outra carga puntual positiva,, é abandonada em um ponto A, situado

Leia mais

Exercícios com Gabarito de Física Potencial Elétrico e Energia Potencial Elétrica

Exercícios com Gabarito de Física Potencial Elétrico e Energia Potencial Elétrica Exercícios com Gabarito de Física Potencial Elétrico e Energia Potencial Elétrica 1) (Fuvest-1995) Um sistema formado por três cargas puntiformes iguais, colocadas em repouso nos vértices de um triângulo

Leia mais

Força Eletromotriz Induzida

Força Eletromotriz Induzida Força Eletromotriz Induzida 1. (Uerj 2013) Um transformador que fornece energia elétrica a um computador está conectado a uma rede elétrica de tensão eficaz igual a 120 V. A tensão eficaz no enrolamento

Leia mais

DATA: 17/12/2015 VALOR: 20,0 NOTA: NOME COMPLETO:

DATA: 17/12/2015 VALOR: 20,0 NOTA: NOME COMPLETO: DISCIPLINA: FÍSICA PROFESSORES: Erich/ André NOME COMPLETO: I N S T R U Ç Õ E S DATA: 17/12/2015 VALOR: 20,0 NOTA: ASSUNTO: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 1 a EM Circule a sua turma: Funcionários:

Leia mais

Lista de Eletrostática da UFPE e UPE

Lista de Eletrostática da UFPE e UPE Lista de Eletrostática da UFPE e UPE 1. (Ufpe 1996) Duas pequenas esferas carregadas repelem-se mutuamente com uma força de 1 N quando separadas por 40 cm. Qual o valor em Newtons da força elétrica repulsiva

Leia mais

3a. prova Simulado 5 Dissertativo 27.09.06 FÍSICA INSTRUÇÕES PARA REALIZAÇÃO DO SIMULADO

3a. prova Simulado 5 Dissertativo 27.09.06 FÍSICA INSTRUÇÕES PARA REALIZAÇÃO DO SIMULADO Simulado 5 Padrão FUVEST Aluno: N o do Cursinho: Sala: FÍSICA INSTRUÇÕES PARA REALIZAÇÃO DO SIMULADO 1. Aguarde a autorização do fiscal para abrir o caderno de questões e iniciar a prova. 2. Duração da

Leia mais

Interbits SuperPro Web Física XIII Paulo Bahiense, Naldo, Wilson e Ausgusto

Interbits SuperPro Web Física XIII Paulo Bahiense, Naldo, Wilson e Ausgusto 1. (Unesp 015) Em um experimento de eletrostática, um estudante dispunha de três esferas metálicas idênticas, A, B e C, eletrizadas, no ar, com cargas elétricas 5Q, 3Q e Q, respectivamente. Utilizando

Leia mais

Mecânica 2007/2008. 3ª Série

Mecânica 2007/2008. 3ª Série Mecânica 2007/2008 3ª Série Questões: 1. Se o ouro fosse vendido a peso, preferia comprá-lo na serra da Estrela ou em Lisboa? Se fosse vendido pela massa em qual das duas localidades preferia comprá-lo?

Leia mais

Considerando a polaridade do ímã, as linhas de indução magnética criadas por ele e o sentido da corrente elétrica induzida no tubo condutor de cobre

Considerando a polaridade do ímã, as linhas de indução magnética criadas por ele e o sentido da corrente elétrica induzida no tubo condutor de cobre 1. Em uma aula de laboratório, os estudantes foram divididos em dois grupos. O grupo A fez experimentos com o objetivo de desenhar linhas de campo elétrico e magnético. Os desenhos feitos estão apresentados

Leia mais

Fichas de sistemas de partículas

Fichas de sistemas de partículas Capítulo 3 Fichas de sistemas de partículas 1. (Alonso, pg 247) Um tubo de secção transversal a lança um fluxo de gás contra uma parede com uma velocidade v muito maior que a agitação térmica das moléculas.

Leia mais

Departamento de Ciências da Natureza Física Prof. Rafael

Departamento de Ciências da Natureza Física Prof. Rafael 1. (FCC-Londrina-PR) Uma carga elétrica pontual de +1, x 1-6 C situa-se num dos vértices de um triângulo equilátero de,3m de lado. Com centro no segundo vértice, se localiza uma esfera isolante com diâmetro

Leia mais

PROVA G1 FIS 1033 23/08/2011 MECÅNICA NEWTONIANA

PROVA G1 FIS 1033 23/08/2011 MECÅNICA NEWTONIANA PROVA G1 FIS 1033 23/08/2011 MECÅNICA NEWTONIANA NOME LEGÇVEL: Gabarito TURMA: ASSINATURA: MATRÇCULA N o : QUESTÉO VALOR GRAU REVISÉO 1 1,0 2 1,0 3 4,0 4 4,0 TOTAL 10,0 Dados: r/ t = (v + v 0 )/2; v v

Leia mais

Problemas de eletricidade

Problemas de eletricidade Problemas de eletricidade 1 - Um corpo condutor está eletrizado positivamente. Podemos afirmar que: a) o número de elétrons é igual ao número de prótons. b) o número de elétrons é maior que o número de

Leia mais

Questão 2 Uma esfera de cobre de raio R0 é abandonada em repouso sobre um plano inclinado de forma a rolar ladeira abaixo. No entanto, a esfera

Questão 2 Uma esfera de cobre de raio R0 é abandonada em repouso sobre um plano inclinado de forma a rolar ladeira abaixo. No entanto, a esfera Questão 1 Na figura abaixo, vê-se um trecho de uma linha de produção de esferas. Para testar a resistência das esferas a impacto, são impulsionadas a partir de uma esteira rolante, com velocidade horizontal

Leia mais

Lentes. Parte I. www.soexatas.com Página 1

Lentes. Parte I. www.soexatas.com Página 1 Parte I Lentes a) é real, invertida e mede cm. b) é virtual, direta e fica a 6 cm da lente. c) é real, direta e mede cm. d) é real, invertida e fica a 3 cm da lente. 1. (Ufg 013) Uma lente convergente

Leia mais

Engenharias, Física Elétrica, prof. Simões. Eletromagnetismo. Campo magnético produzido em um fio percorrido por uma corrente elétrica. Exercícios 1.

Engenharias, Física Elétrica, prof. Simões. Eletromagnetismo. Campo magnético produzido em um fio percorrido por uma corrente elétrica. Exercícios 1. Engenharias, Física Elétrica, prof. Simões Eletromagnetismo. Campo magnético produzido em um fio percorrido por uma corrente elétrica. Exercícios 1. 1.(EEM-SP) É dado um fio metálico reto, muito longo,

Leia mais

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Magnetismo

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Magnetismo Lista de Exercícios Pré Universitário Uni-Anhanguera Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Magnetismo 01 - (PUC SP) Na figura abaixo temos a representação de dois

Leia mais

TIPO-A FÍSICA. x v média. t t. x x

TIPO-A FÍSICA. x v média. t t. x x 12 FÍSICA Aceleração da gravidade, g = 10 m/s 2 Constante gravitacional, G = 7 x 10-11 N.m 2 /kg 2 Massa da Terra, M = 6 x 10 24 kg Velocidade da luz no vácuo, c = 300.000 km/s 01. Em 2013, os experimentos

Leia mais

CINEMÁTICA VETORIAL. Observe a trajetória a seguir com origem O.Pode-se considerar P a posição de certo ponto material, em um instante t.

CINEMÁTICA VETORIAL. Observe a trajetória a seguir com origem O.Pode-se considerar P a posição de certo ponto material, em um instante t. CINEMÁTICA VETORIAL Na cinemática escalar, estudamos a descrição de um movimento através de grandezas escalares. Agora, veremos como obter e correlacionar as grandezas vetoriais descritivas de um movimento,

Leia mais

Resolução Vamos, inicialmente, calcular a aceleração escalar γ. Da figura dada tiramos: para t 0

Resolução Vamos, inicialmente, calcular a aceleração escalar γ. Da figura dada tiramos: para t 0 46 a FÍSICA Um automóvel desloca-se a partir do repouso num trecho retilíneo de uma estrada. A aceleração do veículo é constante e algumas posições por ele assumidas, bem como os respectivos instantes,

Leia mais

Exercícios Tensão e Corrente

Exercícios Tensão e Corrente Exercícios Tensão e Corrente TEXTO PARA A PRÓXIMA QUESTÃO: Atualmente há um número cada vez maior de equipamentos elétricos portáteis e isto tem levado a grandes esforços no desenvolvimento de baterias

Leia mais

ELETROMAGNETISMO MOVIMENTO DE CARGAS

ELETROMAGNETISMO MOVIMENTO DE CARGAS 1. (Fuvest) Uma partícula, de massa m e com carga elétrica Q, cai verticalmente com velocidade constante v³. Nessas condições, a força de resistência do ar pode ser considerada como R(ar)=kv, sendo k uma

Leia mais

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo.

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Os conceitos mais básicos dessa matéria são: Cinemática Básica: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Velocidade: Consiste na taxa de variação dessa distância

Leia mais

www.enemdescomplicado.com.br

www.enemdescomplicado.com.br Exercícios de Física Gravitação Universal 1-A lei da gravitação universal de Newton diz que: a) os corpos se atraem na razão inversa de suas massas e na razão direta do quadrado de suas distâncias. b)

Leia mais

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de?

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de? Física 01. Um fio metálico e cilíndrico é percorrido por uma corrente elétrica constante de. Considere o módulo da carga do elétron igual a. Expressando a ordem de grandeza do número de elétrons de condução

Leia mais

HISTÓRIA. De acordo com o trecho acima, e com base em seus estudos:

HISTÓRIA. De acordo com o trecho acima, e com base em seus estudos: HISTÓRIA 01) Cabral só estava no comando da esquadra porque era cavaleiro da Ordem de Cristo e, como tal, tinha duas missões: criar feitorias na Índia e, no caminho, tomar posse de uma terra já conhecida,

Leia mais

Exercícios 3 Movimentos em 2 Dimensões, Movimento Circular e Aplicações

Exercícios 3 Movimentos em 2 Dimensões, Movimento Circular e Aplicações Exercícios 3 Movimentos em 2 Dimensões, Movimento Circular e Aplicações Movimentos em 2D 1) Você está operando um modelo de carro com controle remoto em um campo de tênis vazio. Sua posição é a origem

Leia mais

EXPERIMENTO DE OERSTED 313EE 1 TEORIA

EXPERIMENTO DE OERSTED 313EE 1 TEORIA EXPERIMENTO DE OERSTED 313EE 1 TEORIA 1. UM BREVE HISTÓRICO No século XIX, o período compreendido entre os anos de 1819 e 1831 foi dos mais férteis em descobertas no campo da eletricidade. Os fenômenos

Leia mais

e R 2 , salta no ar, atingindo sua altura máxima no ponto médio entre A e B, antes de alcançar a rampa R 2

e R 2 , salta no ar, atingindo sua altura máxima no ponto médio entre A e B, antes de alcançar a rampa R 2 FÍSICA 1 Uma pista de skate, para esporte radical, é montada a partir de duas rampas R 1 e R 2, separadas entre A e B por uma distância D, com as alturas e ângulos indicados na figura. A pista foi projetada

Leia mais

1 a QUESTÃO: (1,5 ponto) Avaliador Revisor

1 a QUESTÃO: (1,5 ponto) Avaliador Revisor 1 a QUESTÃO: (1,5 ponto) Avaliador Revisor Um mol de um gás ideal é levado do estado A para o estado B, de acordo com o processo representado no diagrama pressão versus volume conforme figura abaixo: a)

Leia mais

Recuperação. - Mecânica: ramo da Física que estuda os movimentos;

Recuperação. - Mecânica: ramo da Física que estuda os movimentos; Recuperação Capítulo 01 Movimento e repouso - Mecânica: ramo da Física que estuda os movimentos; - Um corpo está em movimento quando sua posição, em relação a um referencial escolhido, se altera com o

Leia mais

Lista de Exercícios - Unidade 8 Eu tenho a força!

Lista de Exercícios - Unidade 8 Eu tenho a força! Lista de Exercícios - Unidade 8 Eu tenho a força! Forças 1. (UFSM 2013) O uso de hélices para propulsão de aviões ainda é muito frequente. Quando em movimento, essas hélices empurram o ar para trás; por

Leia mais

Capítulo 4 Trabalho e Energia

Capítulo 4 Trabalho e Energia Capítulo 4 Trabalho e Energia Este tema é, sem dúvidas, um dos mais importantes na Física. Na realidade, nos estudos mais avançados da Física, todo ou quase todos os problemas podem ser resolvidos através

Leia mais

Agrupamento de Escolas Anselmo de Andrade Avaliação Sumativa - Ciências Físico - Químicas 11.º Ano - Ano Lectivo 09/10

Agrupamento de Escolas Anselmo de Andrade Avaliação Sumativa - Ciências Físico - Químicas 11.º Ano - Ano Lectivo 09/10 Agrupamento de Escolas Anselmo de Andrade Avaliação Sumativa - Ciências Físico - Químicas 11.º Ano - Ano ectivo 09/10 Duração da Actividade: 90 minutos Data: 04/ 12 / 09 Responda com clareza às questões

Leia mais

DATA: / / 2014 ETAPA: 3ª VALOR: 20,0 pontos NOTA:

DATA: / / 2014 ETAPA: 3ª VALOR: 20,0 pontos NOTA: DISCIPLINA: Física PROFESSORES: Fabiano Vasconcelos Dias DATA: / / 2014 ETAPA: 3ª VALOR: 20,0 pontos NOTA: NOME COMPLETO: ASSUNTO: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 3ª SÉRIE EM TURMA: Nº: I N S T R

Leia mais

ROTEIRO DE RECUPERAÇÃO ANUAL DE FÍSICA 2 a SÉRIE

ROTEIRO DE RECUPERAÇÃO ANUAL DE FÍSICA 2 a SÉRIE ROTEIRO DE RECUPERAÇÃO ANUAL DE FÍSICA 2 a SÉRIE Nome: Nº Série: 2º EM Data: / /2015 Professores Gladstone e Gromov Assuntos a serem estudados - Movimento Uniforme. Movimento Uniformemente Variado. Leis

Leia mais

Faculdades Anhanguera

Faculdades Anhanguera 2º Aula de Física 2.1 Posição A posição de uma partícula sobre um eixo x localiza a partícula em relação á origem, ou ponto zero do eixo. A posição é positiva ou negativa, dependendo do lado da origem

Leia mais

UFMG - 2005 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

UFMG - 2005 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR UFMG - 2005 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Física Questão 01 Durante um voo, um avião lança uma caixa presa a um paraquedas. Após esse lançamento, o paraquedas abre-se e uma força F,

Leia mais

Física II Curso Licenciatura em Química Selma Rozane 2015.2

Física II Curso Licenciatura em Química Selma Rozane 2015.2 Física II Curso Licenciatura em Química Selma Rozane 2015.2 INTRODUÇÃO A palavra magnetismo tem sua origem na Grécia Antiga, porque foi em Magnésia, região da Ásia Menor (Turquia), que se observou um minério

Leia mais

Lista de Exercício 3 MUV

Lista de Exercício 3 MUV Nome: Curso: Disciplina: FÍSICA I / MECÂNICA CLÁSSICA Lista de Exercício 3 MUV 1) Um móvel, cujo espaço inicial é S0 8m, se desloca a favor da trajetória, em movimento acelerado, com velocidade inicial

Leia mais

A velocidade escalar constante do caminhão é dada por:

A velocidade escalar constante do caminhão é dada por: 46 c Da carroceria de um caminhão carregado com areia, pinga água à razão constante de 90 gotas por minuto. Observando que a distância entre as marcas dessas gotas na superfície plana da rua é constante

Leia mais

Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta

Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta Classificação dos movimentos Introdução Velocidade Média

Leia mais