LCS E P U S P. Baterias. PTC2527 Anteprojeto de Formatura. Guido Stolfi 05 / Guido Stolfi 1 / 87

Documentos relacionados
pilha de Volta pilha Galvânica pilha voltaica rosário

Corrosão de peças metálicas à atmosfera Condições para que ocorra:

Eletroquímica PROF. SAUL SANTANA

PILHAS, BATERIAS E CÉLULAS DE COMBUSTÍVEL

PILHAS ELETROQUÍMICAS

01) (CESGRANRIO-RJ) Considere a pilha representada abaixo. Cu(s) Cu 2+ Fe 3+, Fe 2+ Pt(s) Assinale a afirmativa falsa.

MSPC INFORMAÇÕES TÉCNICAS

Redação selecionada e publicada pela Olimpíada de Química SP Pilha ou Bateria: um quase eterno dilema

Engenharia Eletrotécnica e de Computadores Grupo: MIEEC04_06

Redação selecionada e publicada pela Olimpíada de Química SP-2011 PILHAS E BATERIAS: O HOMEM À PROCURA DE ENERGIA

ELETROQUÍMICA Profº Jaison Mattei

51ª-53ª AULAS PILHAS E BATERIAS Pilhas electroquímicas Pilhas recarregáveis (baterias) Pilhas de combustível (fuel cells)

RESOLUÇÃO DE EXERCÍCIOS PROPOSTOS AULA 28 TURMA ANUAL

Departamento de Química Inorgânica IQ / UFRJ IQG 128 / IQG ELETRÓLISE

ÓXIDO-REDUÇÃO REAÇÕES REDOX : CONCEITO E IMPORTÂNCIA PILHAS E BATERIAS POTENCIAL DE ELETRODO CORROSÃO E PROTEÇÃO ELETRÓLISE

Reacções de Redução/Oxidação. Redox

3º Trimestre Sala de Estudo - Química Data: 28/09/17 Ensino Médio 2º ano classe: A_B_C Profª Danusa Nome: nº

Corrosão Eletroquímica. Sumário 21 - Baterias e Corrosão. Definições e características Baterias primárias. Baterias secundárias

b) Os elétrons fluem do ânodo para o cátodo, ou seja, do eletrodo de crômio para o eletrodo de estanho.

- Instituto de Tecnologia para o Desenvolvimento

Resposta Capítulo 17: Eletroquímica: Pilhas

Baterias de alto desempenho para armazenamento de energia em sistemas FV

RESOLUÇÃO DE EXERCÍCIOS PROPOSTOS AULA 09 TURMA INTENSIVA

Oxirredução IDENTIFICAÇÃO O QUE SOFRE ENTIDADE O QUE FAZ. Oxidante ganha e - ( NOX) oxida o redutor redução

Ciência e Tecnologia dos Materiais Elétricos. Aula 3. Prof.ª Letícia chaves Fonseca

Colégio FAAT Ensino Fundamental e Médio

INTRODUÇÃO À ELETROQUÍMICA Prof. Dr. Patricio R. Impinnisi Departamento de engenharia elétrica UFPR

UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA DEPARTAMENTO DE QUIMICA DISCIPLINA: FÍSICO-QUÍMICAII

Eletroquímica: Pilha e Eletrólise

SOLUÇÃO PRATIQUE EM CASA

Células(Pilhas/ Baterias) Comerciais

PROFESSORA: CLAUDIA BRAGA. SEMINÁRIO DE FÍSICO QUÍMICA II Célula de Níquel e Cádmio. João Pessoa, 31 de julho de 2009

PILHAS RECARREGÁVEIS 2014/2015 MIEEC02_3

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Curitiba

O que esses dispositivos tem em comum? São dispositivos móveis. O que faz os dispositivos móveis funcionarem?

Motivos da Conexão A) positivo fornecer elétrons, acelerando a oxidação

ELETROQUÍMICA OU. Profa. Marcia M. Meier QUÍMICA GERAL II

AULA DE RECUPERAÇÃO PROF. NEIF NAGIB

Sumário 20 Pilhas/Baterias

Sistemas fotovoltaicos

PILHAS E BATERIAS COMERCIAIS. Química II Professora: Raquel Malta 3ª série Ensino Médio

Química Geral e Inorgânica. QGI0001 Eng a. de Produção e Sistemas Prof a. Dr a. Carla Dalmolin. Eletroquímica

PAGQuímica Eletroquímica

ELETROQUÍMICA. paginapessoal.utfpr.edu.br/lorainejacobs. Profª Loraine Jacobs DAQBI

Resoluções de Exercícios

Estudo das reações químicas para geração de energia.

O que são pilhas? Pilhas são sistemas em que a energia química se transforma espontaneamente em energia elétrica.

PMT AULA 3. Curvas de Polarização. Pilhas e Corrosão. A. C. Neiva

Célula de Combustível

estudos 1º trimestre. Matemática-Física-Química Orientação de estudos

INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA LEIA COM MUITA ATENÇÃO

É a perda de elétrons. É o ganho de elétrons

MONTAGEM E CARACTERIZAÇÃO DE UMA PILHA DE COMBUSTÍVEL DE BOROHIDRETO/PERÓXIDO DE HIDROGÉNIO

QUÍMICA - 2 o ANO MÓDULO 25 ELETROQUÍMICA: PILHAS

01) O elemento X reage com o elemento Z, conforme o processo: Nesse processo: Z 3 + X Z 1 + X 2. b) X ganha elétrons de Z. d) X e Z perdem elétrons.

ELETRODO OU SEMIPILHA:

Aula 13 Fontes de tensão

Célula eletroquímica ou galvânica: permite interconversão de energia química e elétrica

Minicurso: Medição de ph e Íons por Potenciometria

Física Experimental III

Redação selecionada e publicada pela Olimpíada de Química SP-2011

Assunto: Eletroquímica Folha 4.1 Prof.: João Roberto Mazzei

Faculdade de Engenharia da Universidade do Porto. Bruno Santo (up ) José Santos (up ) Vitor Batista (up )

química química na abordagem do cotidiano

Química A MESTRADO INTEGRADO EM ENGENHARIA DO AMBIENTE. 1º Semestre /2013. Doutor João Paulo Noronha.

Eletroquímica. Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Química

ELETROQUÍMICA. Prof a. Dr a. Carla Dalmolin

Química A Extensivo V. 7

Eletroquímica. Coulometria

Aula 20 Eletrodeposição

Reações de oxirredução

PMT AULA 3 versão 2 SAINDO DO EQUILÍBRIO. Curvas de Polarização Pilhas e Corrosão. A. C. Neiva

Química. Eletroquímica

Cobre + Íons. Prata. Eletroquímica CURSO DE FÍSICOF

Redox: objectivos principais

08/04/2016. Aulas 8 12 Setor B

02/10/2017 ELETRÓLISE AQUOSA

Inovações Tecnológicas de Baterias para Armazenamento de Energia Maria de Fátima Rosolem - Fundação CPqD

CONSELHO REGIONAL DE QUÍMICA - IV REGIÃO (SP)

PMT2423 FÍSICO-QUÍMICA PARA METALURGIA E MATERIAIS III. PMT Físico-Química para Metalurgia e Materiais III - Neusa Alonso-Falleiros

Exercício 3: (PUC-RIO 2007) Considere a célula eletroquímica abaixo e os potenciais das semi-reações:

NOX EXERCÍCIOS QUÍMICA PROF- LEONARDO. 01)Quais são os números de oxidação do iodo nas substâncias l 2, Nal, NalO 4 e Al I 3?

Aluno (a): Data: / / Obs: Data de entrega: 12/11 (Todas as respostas devem apresentar justificativa) Resposta à caneta, organizada e completa.

Aglailson Glêdson Cabral de Oliveira (1); Eudésio Oliveira Vilar (2)

3º Trimestre Sala de Estudo Data: 11/09/17 Ensino Médio 3º ano classe: A_B_C Profª Danusa Nome: nº

Gabaritos Resolvidos Energia Química Semiextensivo V4 Frente A

BATERIAS ESTACIONÁRIAS DE CORRENTE CONTÍNUA

1- Números de oxidação (Nox) Indicam a espécie que perde elétrons e a que ganha elétrons, ou seja, é a carga elétrica da espécie química.

Eletroquímica. Exercícios Complementares - Recuperação Paralela. Classe: 2 3 a série. e) a redução ocorre no eletrodo B.

Resoluções Química. - Cálculo da massa de ferro que restou na peça sem ter sido oxidada (z): z = 56,0 2,8 = 53,2 g

CORROSÃO E ELETRODEPOSIÇÃO

REVISÃO DE QUÍMICA CEIS Prof. Neif Nagib

Cursos Técnicos Integrados ao Ensino Médio

Química A Semiextensivo V. 4

EleELETROQUÍMICA (Parte I)

Abrange todos processo químicos que envolvem transferência de elétrons.

QUI 070 Química Analítica V Análise Instrumental. Aula 7 Química Eletroanalítica

No cátodo: 1O 2 g 2H2O 4e 4OH aq

Transcrição:

Baterias PTC2527 Anteprojeto de Formatura Guido Stolfi 05 / 2017 Guido Stolfi 1 / 87

O que é uma Bateria? Célula Eletroquímica Converte energia química em elétrica através de reação de óxidoredução Estrutura: Anodo: eletrodo negativo, libera elétrons ao circuito externo enquanto é oxidado Catodo: eletrodo positivo, absorve elétrons do circuito externo enquanto é reduzido quimicamente Eletrólito: condutor iônico, transfere carga elétrica entre anodo e catodo na forma de íons Separador: permeável aos íons, evita contato elétrico entre anodo e catodo Guido Stolfi 2 / 87

O que é uma Bateria? Bateria: Estritamente, é um conjunto de células associadas em série e/ou paralelo, para aumentar a voltagem e / ou capacidade de energia Uso coloquial genérico para células recarregáveis Pilha: Denominação genérica, originária da Pilha de Volta Guido Stolfi 3 / 87

Origens Pilha de Volta Descoberta de Alessandro Volta (Itália, 1800) Pilha de células Zn-H Anodo: Zinco Catodo: Cobre ou Prata Eletrólito: Solução de Ácido Sulfúrico ou água salgada Separador: Tecido ou papel Reação anódica: Zn Zn 2+ + 2 e Reação catódica: 2 H + + 2 e H 2 Voltagem: ~ 0,7 V por célula Guido Stolfi 4 / 87

Célula Partiana (Bagdá, 250 A.C.) Guido Stolfi 5 / 87

Pilhas e Baterias Guido Stolfi 6 / 87

Classificação das Células Eletroquímicas Célula Primária Célula Secundária Célula de Reserva Célula de Combustível Guido Stolfi 7 / 87

Célula Primária Reação química irreversível Não são projetadas para (ou não podem) ser recarregadas Alta capacidade específica (Wh / kg ou Wh / cm 3 ) Longa vida em uso e armazenamento Baixo custo, ampla disponibilidade Livres de manutenção Uso geral ( Pilhas Inclusas ) Ex.: Leclanché (Zn/MnO 2 ), Alcalina (Zn/MnO 2 /KOH), Lítio (Li/SO 2, Li/MnO 2, ), Óxido de Prata (Zn/Ag 2 O), Mercúrio (Zn/HgO) Guido Stolfi 8 / 87

Célula Primária Guido Stolfi 9 / 87

Célula Secundária Reação química reversível Projetada para ser recarregada invertendo o sentido da corrente Custo maior, porém mais econômicas ao longo do uso Boa capacidade específica (Wh / kg ou Wh / cm 3 ) Alta capacidade de corrente de descarga Menor retenção de carga Uso geral e como armazenamento de energia Ex.: Chumbo-ácido (Pb/PbO 2 ), Níquel-Cádmio (Cd/NiOOH), Lítio-íon (LiC/LiCoO 2 ), Ferro-níquel (Fe/NiOOH), Sódio-enxofre (Na/S) Guido Stolfi 10 / 87

Célula Secundária Operação durante a descarga (exemplo): Reação anódica (oxidação): Cd + 2 OH Cd(OH) 2 + 2 e Reação catódica (redução): NiOOH + H 2 O + e OH + Ni(OH) 2 Reação total de descarga: Cd + 2 NiOOH + 2 H 2 O Cd(OH) 2 + 2 Ni(OH) 2 Guido Stolfi 11 / 87

Célula Secundária Operação durante a carga (exemplo): Sentido da corrente inverte Catodo e Anodo trocam de denominação Reação anódica (oxidação): Ni(OH) 2 + OH NiOOH + H 2 O + e Reação catódica (redução): Cd(OH) 2 + 2 e Cd + 2 OH Reação total de carga: Cd(OH) 2 + 2 Ni(OH) 2 Cd + 2 NiOOH + 2 H 2 O Guido Stolfi 12 / 87

Célula de Reserva Célula Primária de Ativação Um dos elementos / reagentes está separado dos demais Ativação por fusão, ruptura de barreira, gás, água do mar etc. Vida extremamente longa em reserva ( 10 ~ 50 anos) Rápida ativação ( milissegundos) Alta capacidade específica Curta vida útil após ativação Uso militar, equipamentos de emergência Ex.: Magnésio-água (Mg/AgCl + H 2 O ), Zinco-manganês + água salgada, Zinco-amônia (Zn/PbO 2 + NH 4 SCN), Lítio-clorato (Li + SOCl 2 ), Guido Stolfi 13 / 87

Célula de Reserva Ativação por Imersão em água salgada Ativação por Impacto/ centrifuga Guido Stolfi 14 / 87

Célula de Combustível Célula Primária Um ou mais dos elementos são inseridos continuamente Produtos da reação são descartados Eletrodos inertes, em geral catalisadores Em estado experimental em muitos casos Uso aeroespacial, outras aplicações emergentes Ex.: Hidrogênio-oxigênio (H 2 / O 2 ), Metanol-ar (CH 3 OH / O 2 ) Guido Stolfi 15 / 87

Célula de Combustível Membrana permeável: Freon + ácido trifluorometanosulfônico Eletrodos: PTFE / platina / carbono Reação anódica: H 2 2 H + + 2 e Reação catódica: ½ O 2 + 2 H + + 2 e H 2 O Reação total de descarga: H 2 + ½ O 2 H 2 O Guido Stolfi 16 / 87

Características Gerais das Células Eletroquímicas Guido Stolfi 17 / 87

Voltagem da Célula Potencial eletromotivo padrão para reações químicas Guido Stolfi 18 / 87

Circuito Equivalente da Célula E 0 = Voltagem teórica, depende dos materiais do anodo e catodo, do eletrólito e da temperatura Re = Resistência de condução do eletrólito (iônica) e dos eletrodos (ôhmica) Rp = Polarização de ativação (energia necessária para vencer a polarização dos eletrodos) Rc = Polarização por concentração (devida à variação de concentração dos íons na vizinhança dos eletrodos) Guido Stolfi 19 / 87

Circuito Equivalente da Célula Guido Stolfi 20 / 87

Descarga da Célula À medida que os reagentes são consumidos: Tensão em aberto diminui pouco Tensão em carga diminui mais Resistência interna aumenta Guido Stolfi 21 / 87

Efeito da Temperatura À medida que a temperatura aumenta: Capacidade total aumenta Resistência interna diminui Guido Stolfi 22 / 87

Capacidade de uma Bateria Vida útil: enquanto a tensão em operação estiver acima da tensão final Tensão final: ponto a partir do qual a energia disponível cai rapidamente, ou Ponto a partir do qual a bateria perde capacidade de recarga (células secundárias) Capacidade total: pode ser medida em A.h, W.h ou Joules (1 W.h = 3600 J) Capacidade efetiva pode ser muito menor que a capacidade teórica (calculada a partir da energia química dos reagentes) Guido Stolfi 23 / 87

Capacidade Específica de uma Bateria Energia disponível em relação à massa da bateria (em comparação com outras formas de energia) Material Energia (J / kg) Pilha alcalina, Lítio-íon 5 x 10 5 Bateria Chumbo-ácido 1,8 x 10 5 Célula de Combustível H 2 5 x 10 6 ~ 3 x 10 5 Gasolina, GLP 4,6 x 10 7 Urânio (Fissão nuclear) 8 x 10 13 Capacidade efetiva depende da forma de descarga Guido Stolfi 24 / 87

Descarga com Resistência Constante Ex.: Lanterna, rádio de pilha, etc. Desempenho varia ao longo do tempo Descarga mais rápida no início e lenta no final Guido Stolfi 25 / 87

Descarga com Corrente Constante Ex.: Circuito com regulador de tensão linear Desempenho constante ao longo do tempo Descarga mais rápida Guido Stolfi 26 / 87

Descarga com Potência Constante Ex.: Circuito com regulador de tensão chaveado Desempenho constante ao longo do tempo Descarga acelerada no final Guido Stolfi 27 / 87

Modos de Descarga Para mesma potência disponível no final da vida da célula, o modo de descarga com potência constante possui a maior eficiência (maior vida útil da carga da bateria). Capacidade da bateria depende do modo de descarga. Guido Stolfi 28 / 87

Curvas de Descarga de Células Tipos: P = Primária S = Secundária Guido Stolfi 29 / 87

Efeito da Temperatura Guido Stolfi 30 / 87

Auto Descarga (Vida Útil de Prateleira) Guido Stolfi 31 / 87

Áreas de Aplicação das Baterias Guido Stolfi 32 / 87

Capacidades Práticas e Teóricas Guido Stolfi 33 / 87

Células Primárias Guido Stolfi 34 / 87

Células Primárias Tipo Características Aplicações Zn-C / NH 4 Cl (Zn-MnO 2, Leclanché) Zn-MnO 2 +KOH (Alcalina) Baixo custo, variedade de tamanhos Excelente capacidade, custo moderado, elevada vida útil Brinquedos, lanternas, produtos de consumo de vida útil curta Uso geral em equipamentos portáteis, sem fio, altas e baixas temperaturas Lítio Zn-Ag 2 O (Prata) Alta capacidade, longa vida útil e de prateleira Maior capacidade por peso, descarga com tensão constante Backup de memórias RAM, relógios Relógios, próteses auditivas Guido Stolfi 35 / 87

Curvas de Descarga Pilhas tamanho AA Guido Stolfi 36 / 87

Pilha Leclanché Guido Stolfi 37 / 87

Pilha Alcalina Guido Stolfi 38 / 87

Pilha de Zinco - Prata Descarga com resistência constante Guido Stolfi 39 / 87

Células de Lítio Eletrólito sólido: Li-LiI(Al 2 O 3 )/PbI 2 /Pb (1,9V) etc. Catodo sólido: Li-MnO 2 (3,0V), Li-FeS 2 (1,5V), Li-CuO (1,5V) etc. Catodo Solúvel: Li-SO 2 (3,0V), Li-SOCl 2 (3,6V), Li-SO 2 Cl 2 (3,9V) etc. Guido Stolfi 40 / 87

Curvas de Descarga Célula Li-SOCl 2 (3,6V), tamanho D, Guido Stolfi 41 / 87

Curvas de Descarga Células tipo Moeda Células Li-MnO 2 (3,0V), tamanho CR2032 Guido Stolfi 42 / 87

Capacidade x Corrente x Temperatura Células Li-MnO 2 (3,0V), tamanho CR2032 Guido Stolfi 43 / 87

Células Secundárias Guido Stolfi 44 / 87

Células Secundárias Tipo Características Aplicações Chumbo-ácido Baixo custo, bom desempenho em baixas temperaturas, alta capacidade de descarga Veículos, No-Breaks, energia solar/eólica, barcos Níquel-Cádmio Baixo custo, bom desempenho em baixas temperaturas, longa vida útil Ferramentas portáteis, equipamentos de comunicação, substituição de pilhas alcalinas Níquel Hidreto Metálico Selada, capacidade maior, menores problemas ecológicos Idem, veículos elétricos, aparelhos de consumo Guido Stolfi 45 / 87

Células Secundárias Tipo Características Aplicações Níquel - Ferro Durável, longa vida, alta robustez, baixa capacidade específica Aplicações estacionárias, material ferroviário Níquel - Hidrogênio Longa vida com descargas profundas Aeroespaciais, satélites Níquel Zinco Lítio - Íon Alta capacidade específica, longa vida Alta capacidade específica, longa vida, carga rápida Veículos elétricos Equipamentos e ferramentas portáteis, veículos elétricos, aeroespaciais Guido Stolfi 46 / 87

Curvas de Descarga Guido Stolfi 47 / 87

Efeito da Temperatura Guido Stolfi 48 / 87

Vida Útil com Descarga Profunda Guido Stolfi 49 / 87

Curvas de Carga Carga a corrente constante Guido Stolfi 50 / 87

Métodos de Carga Recomendados Tipo Método recomendado Corrente de carga (xc) Tolerância a sobre-carga Faixa de tempera-tura Eficiência (Wh, %) Li - Ion CC, TC 0,2 Não -20 ~ +50 95 Pb - PbO CC, TC 0,07 Boa -40 ~ +50 75 Ni - Cd CC, TC 0,2 M. boa -50 ~ +40 60 selada CC 0,1 ~ 0,3 M. boa 0 ~ 40 60 Ni Zn CC, TC 0,1 ~ 0,4 Boa -20 ~ +40 70 Ag - Zn CC 0,05 ~ 0,1 Fraca 0 ~ +50 75 Zn MnO 2 TC 0,01 ~ 0,2 Boa +10 ~ +30 60 CC = Corrente Constante TC = Tensão Constante Guido Stolfi 51 / 87

Célula Chumbo - Ácido Guido Stolfi 52 / 87

Curvas de Descarga (Baterias seladas) Guido Stolfi 53 / 87

Método de Recarga Corrente constante 0,1 x C (carga total em 12 h) (*) Corrente constante em duas etapas (8 h) Tensão constante (2,35V) com limitação de corrente (5h) Carga pulsada (medição de tensão sem carga) Compensação da auto descarga, a 0,01 x C Flutuação, tensão constante, ~0,15V acima da tensão em aberto (**) (*) (**) Guido Stolfi 54 / 87

Célula de Níquel - Cádmio Descarga para célula tamanho AA (650 mah) RC, CC, PC Guido Stolfi 55 / 87

Célula de Níquel - Cádmio Carga de célula Ni-Cd selada Guido Stolfi 56 / 87

Métodos de Carga a) Tensão quase constante (carga com resistor) b) Controle por tempo c) Controle por temperatura d) Controle por queda de tensão (-10 mv) Guido Stolfi 57 / 87

Baterias Automotivas Ni - MH Módulos de 320V, 30 kwh (~ 10 litros de gasolina) Guido Stolfi 58 / 87

Células Secundárias de Lítio Características particulares: a) Alta densidade de energia e baixo peso (150 Wh/kg, 400 Wh/litro) b) Células de alta voltagem (até 4 V) c) Vida de prateleira longa (5 a 10 anos) d) Capacidade de corrente moderada e) Baixo desempenho em temperaturas reduzidas f) Baixa vida em número de ciclos g) Perigo de explosão Guido Stolfi 59 / 87

Célula de Lítio Polímero Laminada Guido Stolfi 60 / 87

Curvas de Carga Li-íon Carga a corrente constante (1 x C) até 4,2 V (20 o C), depois tensão constante por 2 horas Guido Stolfi 61 / 87

Baterias Li-íon Automotivas: Tesla Modelo S Célula 18650 (18 x 65 mm) Li / Ni-Co-Al 3,7 V, 3400 mah (12 Wh) Bateria: 85 kwh (300 MJ) 16 Módulos em série = 7104 células, ~350Vcc Peso: 540 kg (~5x10 5 J/kg) Volume: ~200 litros 1 Grupo = 74 células em paralelo 1 Módulo = 6 Grupos em série Guido Stolfi 62 / 87

Outras Aplicações Sistema de armazenamento de energia de 48 MWh (170 GJ) usando baterias de sódio / enxofre (alta temperatura) (NGK, Ohito, Japão) Guido Stolfi 63 / 87

Demanda Diária de Energia Elétrica Fonte: ONS, 2013 Análise do efeito do Horário de Verão Guido Stolfi 64 / 87

Demanda Diária de Energia Elétrica Curva de demanda desagregada por tipo de consumidor para o dia de demanda típico do ano de 2003 na região de concessão da CELESC (CELESC, 2004) Guido Stolfi 65 / 87

Baterias Domésticas e Industriais Powerwall (Tesla): Li / Ni-Mn-Co 7 kwh, 2 kw max. 5000 ciclos US$ 3000,00 US$ 0,10 / kwh Powerpack (Tesla): Li / Ni-Co-Al 100 kwh 1000 ciclos US$ 25000,00 US$ 0,25 / kwh Guido Stolfi 66 / 87

Consumo Diário de Energia Elétrica Guido Stolfi 67 / 87

Uso de Baterias em Circuitos Eletrônicos Guido Stolfi 68 / 87

Baterias (Associações de Células) Série Série-paralelo Série-paralelo com Diodos de proteção, fusíveis etc. Guido Stolfi 69 / 87

Reguladores para uso com baterias Situações a serem consideradas: 1- Voltagem final da bateria é maior que a tensão de trabalho da carga 2- Voltagem máxima (inicial e/ou em carga) é menor que a tensão de trabalho da carga 3- Voltagem máxima é maior e tensão final é menor que a tensão de trabalho 4- Carga suporta voltagem máxima e mínima da bateria. Guido Stolfi 70 / 87

1 ) V BAT > V LOAD Ex.: Regulador linear LDO (Low Drop-Out) (corrente constante) Guido Stolfi 71 / 87

1 ) V BAT > V LOAD Ex.: Regulador Chaveado ( Buck ou Step-Down ) (potência constante) Guido Stolfi 72 / 87

2 ) V BAT < V LOAD Ex.: Regulador Chaveado ( Step-Up ) (potência constante) Guido Stolfi 73 / 87

3 ) V BAT MIN < V LOAD < V BAT MAX Ex.: Regulador SEPIC ( Single Ended Primary Inductance Converter ) Guido Stolfi 74 / 87

3 ) V BAT MIN < V LOAD < V BAT MAX Ex.: Regulador Chaveado Inversor (bateria não aterrada) Guido Stolfi 75 / 87

4 ) V BAT MIN > V LOAD MIN e V BAT MAX < V LOAD MAX Desempenho do equipamento pode sofrer variação ao longo da vida da bateria Variação de desempenho indica estado de carga Equipamento deve prever situação além do fim da vida útil Casos típicos: relógio, calculadora, circuitos analógicos simples Considerar tecnologias específicas de baterias com tensão de descarga constante Guido Stolfi 76 / 87

Reguladores para uso com baterias Considerações: Corrente quiescente do regulador Queda de tensão em diodos Proteção por sub-tensão ( Under-Voltage Lockout ) em baterias secundárias Função ON / OFF integrada ao regulador Custo x Eficiência Guido Stolfi 77 / 87

Baterias de Back-up Ex.: Bateria de Li-MnO 2, 170 mah = 170000 uah Corrente consumida pelo relógio: 5 ua => Vida útil = 34000 h 4 anos Guido Stolfi 78 / 87

Medição de Estado de Carga Problema: determinar a carga residual em uma bateria Voltagem x temperatura Contabilidade de Carga entrando / saindo Medição de impedância Identificação do tipo de bateria Identificação de número de células Detectar células em curto Guido Stolfi 79 / 87

Exemplo de Dispositivo para Medição Guido Stolfi 80 / 87

Identificação de Estado de Operação Guido Stolfi 81 / 87

Circuito para Controle de Carga Guido Stolfi 82 / 87

Circuito para Controle de Carga Guido Stolfi 83 / 87

Referências David Linden, Handbook of Batteries McGraw-Hill Texas Instruments, Battery Management Solutions Battery University batteryuniversity.com Unipower Data Sheets Guido Stolfi 84 / 87