II.9 LIGAÇÕES EXCÊNTRICAS

Documentos relacionados
TIPOS DE CONECTORES. Conector: Meio de união que trabalha através de furos feitos nas chapas.

3 DIMENSIONAMENTO À TRAÇÃO SIMPLES 3.1 CONCEITOS GERAIS 3.2 EQUAÇÃO DE DIMENSIONAMENTO FORÇA AXIAL RESISTENTE DE CÁLCULO

Estruturas de Aço e Madeira Aula 03 Peças de Aço Tracionadas (1)

Flexão. Tensões na Flexão. e seu sentido é anti-horário. Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras.

I. TIPOS DE LIGAÇÃO I.1. INTRODUÇÃO:

Barras prismáticas submetidas à força axial de tração

Exercícios de Ligações Parafusadas Resolvidos

ESTRUTURAS METÁLICAS E DE MADEIRAS PROF.: VICTOR MACHADO

Exercícios de Ligações Soldadas Resolvidos

Estruturas de Aço e Madeira Aula 10 Ligações com Solda

Construções Metálicas I AULA 5 Compressão

ESTRUTURAS METÁLICAS VIGAS EM TRELIÇAS. Prof. Alexandre Augusto Pescador Sardá

Estruturas de Aço e Madeira Aula 05 Peças de Aço Comprimidas

1- TIPOS DE ESFORÇOS

LIGAÇÕES EM ESTRUTURAS METÁLICAS VOLUME 2. 4ª. Edição revisada e atualizada

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I. Capítulo 6 Flexão

ESTRUTURAS METÁLICAS LIGAÇÕES - APOIOS. Prof. Alexandre Augusto Pescador Sardá

RESISTÊNCIA DOS MATERIAIS 2 Marcel Merlin dos Santos

Figura 8.1: Alguns tipos de ligações.

Seleção de materiais sem forma

ESTRUTURAS METÁLICAS E DE MADEIRAS PROF.: VICTOR MACHADO

Controlo da fendilhação

Estruturas de Aço e Madeira Aula 05a Flambagem Local em Peças de Aço Comprimidas

Características Geométricas de Figuras Planas PROF. ESP. DIEGO FERREIRA

III. LIGAÇÕES PARAFUSADAS

Resistência dos Materiais


Exercícios de Ligações Parafusadas. 9.1 Resolvidos

Propriedades Mecânicas e Geométricas dos Perfis Estruturais. Curso de Projeto e Cálculo de Estruturas metálicas

MORFOLOGIA DAS ESTRUTURAS

Capítulo 2 Cargas e esforços

SOLDAGEM. Engenharia Mecânica Prof. Luis Fernando Maffeis Martins

II. LIGAÇÕES SOLDADAS

Capítulo 5. Torção Pearson Prentice Hall. Todos os direitos reservados.

TORÇÃO. Prof. Dr. Carlos A. Nadal

ESTRUTURAS METÁLICAS PEÇAS TRACIONADAS. Prof. Alexandre Augusto Pescador Sardá

MAC de outubro de 2009

RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica

7 FLEXÃO COMPOSTA 7.1 FLEXÃO COMPOSTA NORMAL

Características Geométricas

Disciplina de Estruturas Metálicas

Treliças Definição Métodos dos Nós ou Método de Cremona

P-Δ deslocamentos horizontais dos nós da estrutura ou efeitos globais de segunda ordem;

UNIVERSIDADE CATÓLICA DE GOIÁS

LISTA DE EXERCÍCIOS RESISTÊNCIA DOS MATERIAIS 2

SEÇÃO DE ENSINO DE ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO MAJ MONIZ DE ARAGÃO. Generalidades. (Item 6.1 da NBR 8800/2008)

P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II ADERÊNCIA

Sistemas Estruturais

CAPÍTULO VI FLEXÃO ELÁSTICA EM VIGAS

Curso de Dimensionamento de Pilares Mistos EAD - CBCA. Módulo

SAPATAS - DIMENSIONAMENTO

Várias formas da seção transversal

O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal.

Estruturas de Aço e Madeira Aula 09 Ligações com Conectores

DIMENSIONAMENTO DE BARRA COMPRIMIDAS

270 Estruturas metálicas

Construções Metálicas I AULA 6 Flexão

Resistência dos. Materiais. Capítulo 3. - Flexão

Figura 1: Corte e planta da estrutura, seção transversal da viga e da laje da marquise

Professor Assistente do Departamento de Engenharia de Estruturas e Geotécnica da Escola Politécnica da USP.

1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional = 4200 knm²

Estruturas de Aço e Madeira Aula 14 Peças de Madeira em Compressão Simples Centrada

LIGAÇÕES SOLDADAS Maj Moniz de Aragão

Estudo Comparativo Entre Ligações Parafusadas e Soldadas em Estruturas Metálicas

Em uma estrutura, quando se avalia a sua estabilidade, pode-se diferenciar dois tipos básicos de instabilidade:

TENSÕES DE FLEXÃO e de CISALHAMENTO EM VIGAS

Carga axial. Princípio de Saint-Venant. Princípio de Saint-Venant

Capítulo 5 Carga Axial

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

Exercícios de Resistência dos Materiais A - Área 3

AULA 03: DIMENSIONAMENTO DE LIGAÇÕES PARAFUSADAS

Curso de Dimensionamento de Estruturas de Aço EAD - CBCA. Módulo2. Parte 2

A B. P/l. l l l. a a a B 2P. Articulação ideal A B. a/2 a/2

Sergio Persival Baroncini Proença

UFJF - Professores Elson Toledo e Alexandre Cury MAC003 - Resistência dos Materiais II LISTA DE EXERCÍCIOS 03

Dimensionamento de Estruturas em Aço. Parte 1. Módulo. 2ª parte

CURSO SUPERIOR DE ENGENHARIA CIVIL TEORIA DAS ESTRUTURAS II

MEMORIAL DE CÁLCULO / 1-0. PLATAFORMA PARA ANDAIME SUSPENSO 0,60 m X 6,00 m MODELO RG PFM 6.1

MEMORIAL DE CÁLCULO / 1-0. PLATAFORMA PARA ANDAIME SUSPENSO 0,60 m X 5,00 m MODELO RG PFM 5.1

PILARES EM CONCRETO ARMADO

Resistência dos Materiais

Ligações Soldadas FACULDADE DE TECNOLOGIA DE SÃO PAULO - FATEC SP DISCIPLINA: ESTRUTURAS III DEPARTAMENTO: EDIFÍCIOS

Carga última de pilares de betão armado em situação de incêndio

P 2 M a P 1. b V a V a V b. Na grelha engastada, as reações serão o momento torçor, o momento fletor e a reação vertical no engaste.

Carregamentos Combinados Mecânica Dos Materiais II

Flambagem PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL

Conteúdo. Resistência dos Materiais. Prof. Peterson Jaeger. 3. Concentração de tensões de tração. APOSTILA Versão 2013

Assim, é possível dizer que as deformações e os deslocamentos são linearmente dependentes dos esforços que atuam nas estruturas.

Professor: José Junio Lopes

CARACTERÍSTICAS GEOMÉTRICAS DAS SEÇÕES TRANSVERSAIS

Barras prismáticas submetidas a momento fletor e força cortante

Resistência dos Materiais

Tensões associadas a esforços internos

, Equação ESFORÇO NORMAL SIMPLES 3.1 BARRA CARREGADA AXIALMENTE

Ações Normais. Ações permanentes diretas agrupadas

1. Ligações em estruturas de aço

Flexão Vamos lembrar os diagramas de força cortante e momento fletor

RESISTÊNCIA DE MATERIAIS II

PROJETO ESTRUTURAL. Marcio R.S. Corrêa ASSOCIAÇÃO BRASILEIRA DE CIMENTO PORTLAND

1ª Lista de exercícios Resistência dos Materiais IV Prof. Luciano Lima (Retirada do livro Resistência dos materiais, Beer & Russel, 3ª edição)

Transcrição:

II.9 LIGAÇÕES EXCÊNTRICAS Existem diversas situações onde a resultante das cargas na ligação não passa pelo centro de gravidade do grupo de soldas. Neste caso temos uma ligação excêntrica e o eeito desta excentricidade é, em algumas regiões das soldas, esorços superiores aos que ocorreriam se as cargas ossem centradas. A resultante das cargas pode estar no plano do grupo de soldas, e neste caso tem-se uma ligação excêntrica por corte (Fig. III.30a), ou ora deste plano, quando se tem uma ligação excêntrica por lexão (Fig. III.30b). Nas ligações excêntricas por corte os esorços adicionais que aparecem na solda são de corte no plano da solda; nas ligações excêntricas por lexão os esorços adicionais que aparecem nas soldas também são de corte, porém perpendiculares ao plano da solda. Fig. III.30 Exemplos de ligações soldadas excêntricas II.9.1 LIGAÇÕES EXCÊNTRICAS POR CORTE Quando a linha de ação das cargas passa no centro de gravidade do grupo de soldas de ilete que compõe uma ligação soldada, a tensão de cisalhamento na solda é uniorme e é obtida dividindose a resultante vetorial das cargas atuantes pela área total de solda. Quando a linha de aço da resultante das cargas não coincide com o centro de gravidade do conjunto de soldas a distribuição de tensões de cisalhamento nas soldas é variável e deve-se determinar o ponto mais solicitado do conjunto de soldas para eetuar a veriicação da ligação. Para determinar a resistência de um grupo de soldas submetido a cargas excêntricas utiliza-se normalmente um dos seguintes métodos:

1) Método da Resistência também conhecido como Método do Centro Instantâneo de Rotação utiliza-se de uma relação não linear entre a resistência da solda e a sua deormação para, através de um processo iterativo, chegar a uma coniguração de equilíbrio da ligação. ) Método Elástico é um processo de determinação direta dos eeitos variáveis das cargas na solda onde, através de considerações de equilíbrio, obtém-se acilmente os esorços na solda. O Método da Resistência conduz a resultados mais econômicos, porém é um processo trabalhoso o qual só é viável mediante o uso de computador ou de tabelas disponíveis no Manual do AISC. O Método Elástico é de ácil aplicação porém é mais conservador, levando a soldas maiores. As ligações excêntricas usuais não costumam necessitar de soldas pesadas mesmo que utilizando o método elástico e, portanto, devido à sua acilidade de utilização será o método adotado neste trabalho. Método Elástico para Ligações Excêntricas por Corte O método elástico baseia-se nas seguintes considerações: 1) As cargas excêntricas são transeridas para o centro de gravidade do grupo de soldas juntamente com o momento torsor que elas causam em relação ao este mesmo centro de gravidade. ) A resultante das cargas aplicada no centro de gravidade da solda causará tensão uniorme na solda, igual a esta carga dividida pela área total de solda. ) A tensão em cada ponto da solda, devida ao momento torsor, é proporcional à distância do centro de gravidade da solda ao ponto considerado. 3) A direção da tensão num ponto qualquer da solda, devida ao momento torsor, é perpendicular à reta que une o centro de gravidade da solda com o ponto em consideração. 4) A tensão inal num ponto qualquer da solda será obtido pela resultante vetorial das tensões de vidas à carga propriamente dita e ao momento torsor. Para transerir a carga para o centro de gravidade da solda, assim como para avaliar o momento torsor que ela causa, é aconselhável decompor a carga segundo as duas direções principais da ligação, direções x e (Fig.III.31). Fig.III.31 Transerência de carga para o C.G. da ligação As componentes P x e P da carga causarão tensão uniorme na solda. As componentes x e desta tensão, em qualquer ponto da solda, será dada por:

P x x1 e l t O momento torsor M é dado por: 1 P l t M P e x + P e x onde e x e e são as componentes da excentricidade e nas direções x e, respectivamente. As parcelas de tensão nas direções x e, devidas ao momento torsor M serão dadas por (Fig. III.3): x M I p M x I p onde x e deinem a posição do ponto analisado em relação ao C.G. da solda e I p é o momento de inércia polar do cordão de solda. O momento de inércia polar da solda é dado pela soma dos momentos de inércia Ix e I. Os momentos de inércia da solda podem ser calculados considerando a solda como uma linha e multiplicando-se suas propriedades geométricas pela garganta eetiva da solda: I I + I p x A Tab. III.11 ornece as propriedades geométricas para diversas ormas de cordões de solda, tratados como linha. Fig. III.3 - Tensões devidas ao momento M No caso da solda da Fig. III.31 a posição do centro de gravidade e o momento de inércia polar são dados por: x b CG b + d 3 3 4 8 b + 6 b d + d b I p 1 b + d

onde b é a dimensão horizontal da ligação e d é a dimensão vertical da ligação. Adotam-se como dimensões da ligação os comprimentos dos lados da chapa nos quais a solda de ilete está apoiada, em vez do centro da garganta eetiva. Isto az pouca dierença no resultado e simpliica muito o cálculo. As componentes inais da tensão de cisalhamento nas direções x e são dadas por: x x1 + x Px l t M + I p 1 + P l t M x + I p A tensão de cisalhamento resultante é obtida então pela soma vetorial de x e : v x + As propriedades geométricas dos cordões de solda da Tab. III.11 são diretamente proporcionais às espessuras da garganta eetiva da solda. Desta orma podemos trabalhar com as propriedades das linhas deixando a garganta eetiva da solda em evidência. Método da Resistência para Ligações Excêntricas por Corte Devido à sua complexidade o método da resistência não é viável para cálculos manuais. Entretanto pode-se utilizar as tabelas constantes no Manual do AISC para encontrar a resistência de ligações excêntricas calculadas por este método. Nas tabelas 8.38 a 8.43, extraídas do Manual do AISC, entra-se com a proporção entre diversas dimensões da solda e uma dimensão básica. Seja o caso da Tab. 8.4, por exemplo: o comprimento vertical l é a dimensão característica da solda, o comprimento horizontal da solda é dado por k.l e a excentricidade da carga é dada por a.l. Determinados os valores de a e de k entra-se na tabela para obter o valor de C. Deinido o valor de C determina-se a resistência da ligação φ.r n, dada por: onde φ R n 1 C C D l φ.r n resistência da solda, em kips (1 kip 4,448 kn) C 1 coeiciente para considerar o tipo de eletrodo (1,0 para E70 e 0,857 para E60) D número de 1/16 de polegada (1,6 mm) na dimensão nominal do ilete de solda l comprimento característico da solda, em polegadas (1 in 5,4 mm) Para se ter o resultado em kn, entrando-se com D e l em mm, a equação se torna: φ 0,11 C C D l R n 1 A equação acima não considera o cisalhamento na ace de usão do ilete de solda. Para considerar este estado limite basta multiplicar o resultado obtido da equação acima pela razão entre a resistência do metal base e a resistência da solda (0,90.A MB. /0,75.A. 1,70. / ).

Tab. III.11 Propriedades das soldas tratadas como linha

II.9. LIGAÇÕES EXCÊNTRICAS POR FLEXÃO Quando a carga aplicada é excêntrica ao plano que contém a solda (Fig. III.33) a ligação é chamada de ligação excêntrica por lexão. O momento letor causado pela excentricidade da carga ocasiona esorços adicionais de cisalhamento na direção normal ao plano da solda. Fig. III.33 Ligação excêntrica por lexão Para determinar a resistência de uma ligação soldada excêntrica por lexão tem-se dois métodos de cálculo: o Método da Resistência que, como já oi explanado, é de execução complexa, e o Método Elástico que é de aplicação mais simples, porém é mais conservador. O Manual do AISC ornece a resistência de cálculo, obtida pelo método da resistência, para um único caso de ligação excêntrica por lexão. Este caso particular consiste de dois iletes verticais e está na Tab. 8.38 do Manual do AISC (reproduzida na página III.61 deste trabalho). Nesta tabela utilizase a coluna k0 para obter o coeiciente C, o qual é utilizado nas órmulas da página III.59 para determinar a resistência da ligação. Método Elástico para Ligações Excêntricas por Flexão O método elástico de avaliação dos esorços na solda poder ser eito de duas ormas distintas:. Método Elástico 1 considera como seção resistente somente a área eetiva de solda. Este método está ilustrado na Fig. III.34 e utiliza o módulo resistente à lexão S ornecido pela Tab. III.11. As tensões no plano da solda e perpendicular ao plano da solda são dadas respectivamente por: l P t M x S A tensão resultante no ponto mais solicitado da solda é dada por: v x +

Fig. III.34 - Tensões nas soldas da ligação excêntrica por lexão Método Elástico 1 ) Método Elástico utilizado quando se tem peças mais largas sendo ligadas. Neste caso admite-se que a compressão devida à lexão é transmitida por contato entre as peças soldadas, utilizando uma distribuição triangular (Fig. III.35). Os cálculos a seguir demonstram a utilização deste método. Fig. III.35 Tensões perpendiculares ao plano da solda Método Elástico c c b c 1 1 t c b c1 c (a) t c 1 + c h (b) Com (a) e (b) obtém-se c 1 e c. Deinidos c 1 e c determina-se o momento de inércia I e o módulo resistente à lexão S : 3 1 t c b c I + 3 3 As tensões na solda valem: 3 S I c 1 P e P P vx v v vx + S l t h t v

II.10 COLAPSO POR RASGAMENTO Alguns tipos de ligação, como os indicados na Fig. III.36, podem apresentar a possibilidade de colapso por rasgamento ao longo de seções críticas. Nas ligações da Fig. III.36 as seções indicadas por A v se rompem por cisalhamento, enquanto que as seções A t se rompem por tração. Como não existem uros nas peças as áreas A v e A t são áreas brutas e a resistência de cálculo ao colapso por rasgamento é dada por: n ( 0, A A ) φ R 0,90 6 + v t Fig. III.36 Colapso por rasgamento Para os tipos de ligação indicados na Fig. III.37 ocorre a superposição de tensões normais e tensões de cisalhamento, com valores elevados, no metal base adjacente à solda. Para estes casos as tensões de cálculo no metal base podem ser obtidas a partir das tensões de cálculo no metal da solda multiplicadas por:.t /t A no caso da chapa A (considerando-se a existência de cantoneira dupla na extremidade da peça).t /.t B no caso da chapa B As tensões de cálculo assim obtidas são consideradas de cisalhamento e devem ser limitadas em: φ R 0, 54 nv

Fig. III.37 Ligações com superposição de tensões normais e de cisalhamento