ORGANISMOS CELULARES EUCARIÓTICOS PROCARIÓTICOS Monera ou bacterias UNICELULAR Protista ou protozoa e algas unicelulares MULTICELULAR FOTOSSINTÉTICOS Plantae ou plantas ABSORTIVOS Fungi ou fungos INGESTIVOS Animalia ou animais CLASSIFICAÇÃO DOS ORGANISMOS CELULARES
FOTOSSINTÉTICOS captam a luz para converter CO2 e H20 em O2 e açúcares 6H2O + 6CO2 6O2 +C6H12O6
ABSORTIVOS ABSORTIVOS: captam nutrientes químicos dissolvidos em solução aquosa (fungos e leveduras)
INGESTIVOS INGESTIVOS: captam partículas não dissolvidas (animais)
ESQUEMA GERAL DE UM PROCESSO FERMENTATIVO microrganismo Matérias-primas Meio de cultura Esterilização Inóculo Laboratório Células Separação das células Biorreator Inóculo Industrial Industrial Caldo fermentado Ar Compressor Recuperação Produto Esterilização do Ar Produto Tratamento efluentes
Crescimento Microbiano Aumento em tamanho da população Aumento no número de células Aumento da massa celular Duplicação Fissão binária Tempo de geração Curva do crescimento microbiano 6
Crescimento Microbiano Fonte de carbono Energia Aceptor de elétrons Doador de elétrons H2O 7
Crescimento Microbiano Nutrientes orgânicos: aminoácidos, vitaminas, purinas e pirimidinas Nutrientes inorgânicos: macro e micro Condições ambientais: ph, temperatura, potencial hídrico, condutividade, pressão, potencial redox, superfície para crescimento 8
Grupos nutricionais Fotoautotróficos: luz é energia para sintetizar ATP, e CO 2 é fonte de C para sintetizar compostos orgânicos (bactérias fotossintéticas, cianobactérias, algas, etc.) Fotoheterotróficos: luz é energia para sintetizar ATP, mas o C é obtido em formas orgânicas mais complexas 9
Grupos nutricionais Quimioautotróficos: energia obtida pela oxidação de compostos inorgânicos como H2S, NH3, e Fe2+, e CO2 como fonte de C (bactérias que oxidam S, bactérias nitrificadoras, bactérias que oxidam H 2, bactérias que oxidam Fe) Quimioheterotróficos: energia e C obtidos de moléculas orgânicas complexas 10
Fatores que afetam o crescimento Fatores químicos: ph: neutrófilos ph 7.0 acidófilos ph < 7.0 alcalófilos ph > 7.0 Importância: Atividade enzimática Conformação protéica Disponibilidade de metais e elementos orgânicos 11
Fatores que afetam o crescimento Fatores químicos: O2: Aeróbicos obrigatórios Anaeróbicos obrigatórios Anaeróbicos facultativos Microaerófilos Aerotolerantes Importância: Respiração Reações de óxido-redução Atividade enzimática 12
aeróbios obrigatórios anaeróbios obrigatórios anaeróbios facultativos microaerófilos anaeróbios aerotolerantes 13
Fatores que afetam o crescimento Fatores químicos: Capacidade de troca de íons: Importância: Disponibilidade de nutrientes Ligações substrato-microrganismo Defesa Atração de íons 14
Fatores que afetam o crescimento Fatores físicos: Temperatura: Psicrófilos: - 5 C a 20 C Mesófilos: 20 C a 50 C Termófilos: 50 C a 80 C Termófilos extremos: acima de 80 C Importância: Respostas enzimáticas Respostas a choques térmicos Razão de crescimento 15
16
Fontes de Microrganismos Os microrganismos de Interesse Industrial pode ser obtidos: Isolamento de recursos naturais: (solo, água, plantas, etc); Compra em coleções de cultura: (Agricultural Research Service Culture Collection (EUA), Coleção de Cultura Tropical (Campinas); Obtenção de mutantes naturais; Obtenção de mutantes induzidas por métodos convencionais; Obtenção de microrganismos recombinantes. 17
Características Desejáveis do Microganismo Os microrganismos de Interesse Industrial devem: Apresentar elevada eficiência na conversão do substrato em produto; Permitir o acúmulo do produto no meio, de forma a ser elevada concentração do produto no caldo fermentado; Não produzir substâncias imcompatíveis com o produto; Apresentar constância quanto ao comportamento fisiológico; Não ser patogênico; Não exigir condições de processo muito complexas; Não exigir meios de cultura dispendiosos; Permitir rápida liberação do produto para o meio. 18
Características Desejáveis do Microganismo Exemplo da Fermentação Alcoólica: C6H12O6 2C2H5OH + 2CO2 Fator estequiométrico teórico=0,511 Cada grama de glicose é convertida em 0,511g de etanol Saccharomyces cerevisiae, alcança 90% deste rendimento, enquanto outros microrganimos produzem etanol, mas com rendimentos muito inferiores; 19
Características Desejáveis do Microganismo Exemplo da Fermentação Alcoólica: C6H12O6 2C2H5OH + 2CO2 Por outro lado, sabe-se que quando se atinge 8 à 10% em volume de álcool no meio, ocorre inibição da levedura e diminui a velocidade de conversão de açúcar em álcool. Portanto no caso de obtenção de álcool combustível, deve-se trabalhar com valores que não ultrapassem esta concentração alcoólica. Neste caso, a matéria prima incide em 60% do valor do custo do etanol. 20
Características Desejáveis do Microganismo Exemplo da produção de enzimas ou antibióticos: Açúcar + O2 Células + CO2 + Produtos + Intermediários Oxigênio, faz com que aumente consideravelmente a produção de células, enquanto pequena quantidade do produto é obtida. A matéria-prima é barata, mas a recuperação do produto é onerosa, chegando a 70% do valor do custo, porém o produto tem maior valor agregado. Portanto, buscar microrganismo, que cresçam menos, ou que acumulem menos intermediários, podem diminuir o custo do processo. 21
Características Desejáveis do Microganismo Exemplo da produção de glicoamilase por Aspergillus: Glicoamilase, enzima que hidrolisa amidos em glicose; Transglicosidase, enzima que polimeriza a glicose formando amido; Um microrganismo ideal, seria aquele que produz o mínimo de substâncias competitivas, ao mesmo tempo sintetize muito bem o produto pretendido. 22
Características Desejáveis do Meio de Cultivo Ser o mais barato possível; Atender as necessidades nutricionais do microrganismo; Auxiliar no controle do processo, como é o caso de ser ligeiramente tamponado, o que evita variações drásticas de ph, ou evitar excessiva formação de espuma; Não provocar problemas na recuperação do produto; Os componentes devem permitir algum tempo de armazenamento, a fim de estarem disponíveis para o uso a qualquer tempo; Ter composição razoavelmente fixa; 23
Meio de Cultivo Os microrganismos utilizam: Fonte de carbono e energia, diversos açúcares, como glicose, sacarose, frutose, polissacarideos como amido e celulose; Fonte de nitrogênio: sais como (NH4+)2SO4, (NH4)2HPO4, aminoácidos e uréia; Fonte de fósforo: Monoamônio fosfato ou Diamônio fosfato; Outros elementos: Na, K, Ca, Fe, Cu, Mg, Mn, Co, etc. em concentrações bem reduzidas, porém necessárias. Meios constituídos apenas por estas substâncias são denominados de meios sintéticos. 24
SUBSTRATOS Monossacarídeos (glicose, frutose, galactose, manose, ribose, xilose, arabinose) Dissacarídeos: Sacarose (glicose + frutose) Lactose (galactose + glicose) Maltose (glicose + glicose) Trissacarídeos: Rafinose (glicose + frutose + galactose) Maltotriose (glicose + glicose + glicose) Polímeros de alto peso molecular: Amido (amilose + amilopectina) Amilose: cadeia linear de glicose ligações alfa 1-4 Amilopectina: cadeia ramificada com ligações alfa 1-4 e alfa 1-6 Celulose: polímero de glicose em ligações beta 1-4 Glicogênio: polímero de glicose com ligações alfa 1-4 e alfa 1-6 Pectina: polímero de ácidos galacturônico, raminose, arabinose e
Perfil de Utilização de Fontes de Carbono
Meio de Cultivo Meios de cultivo preparados com fatores de crescimento: aminoácidos; Vitaminas (biotina, tiamina, riboflavina, etc.); Extratos de leveduras, extratos de malte, extratos de carne, peptona, hidrolisados de proteínas; 27
Meio de Cultivo Meios mais complexos e menos onerosos, por esta razão empregados na maioria dos processos fermentativos em grande escala: Caldo de cana-de-açúcar; Melaço, Cereais (trigo, milho, cevada, soja); Frutas (uvas, jaboticabas, laranjas, bananas) Estas matérias-primas são de composição química desconhecidas, mas os teores de açúcares, nitrogênio e fosforo, devem ser determinados para avaliar sua complementação ou não. 28
Considerações Finais A definição adequada do microrganismo a ser empregado, assim como do meio de cultura para este microganismo, é etapa fundamental para o sucesso de um processo fermentativo; No entanto, é sempre importante lembrar que a definição de um processo fermentativo mais adequado, assim como as preocupações com a recuperação do produto, são etapas da mais alta importância; 29
Considerações Finais Em alguns casos o emprego de microrganismos disponíveis em coleções de cultura pode levar ao desenvolvimento de processos produtivos que sejam atraentes; É necessário lembrar, no entanto, que presentemente se dispõem de muitos recursos para o aprimoramento de linhagens produtivas, o que torna os processos fermentativos cada vez mais promissores; 30
Considerações Finais Essas considerações trazem também um importante alerta sobre a constante necessidade de desenvolvimento do processo produtivo já instalado, justamente por essa grande variedade de desenvolvimentos possíveis; Presentemente e bastante dificial imaginar que uma dada empresa disponha do microrganimso ótimo ou do meio de cultura otimizado ; É da mais alta importância que essa empresa continue a busca por melhores condições, em termos de microrganismos e de meio, caso contrário, poderá ser ultrapassada pela concorrente. 31
ESTERILIZAÇÃO DE MEIOS ESTERILIZAÇÃO DE MEIOS DE FERMENTAÇÃO POR AQUECIMENTO A VAPOR MUITOS PROCESSOS FERMENTATIVOS EXISTEM A PRESENÇA DE MICORRGANISMOS ESTRANHOS CONTAMINANTES ; EXEMPLO: 1. PINICILINA OS CONTAMINANTES PODEM PRODUZIR PENICILINASE; 2. FERMENTAÇÃO ACETONA-BUTANÓLICA, A BACTÉRIA PODE SER DESTRUÍDA POR VIRUS BACTERIÓFAGOS; OS CONTAMINANTES CONSOMEM AÇÚCARES E NUTRIENTES, COMPETINDO COM OS MICRORGANISMOS DE INTERESSE. O GRAU DE ELIMINTAÇÃO DOS CONTAMINANTES DEPENDE 32 DE CADA CASO.
ESTERILIZAÇÃO DE MEIOS PROCESSOS DE ESTERILIZAÇÃO POR AQUECIMENTO PROCESSOS DESCONTÍNUO: O MEIO É COLOCADO NO FERMENTADOR E ENTÃO TODO O SISTEMA É AQUECIDO COM VAPOR. ESTERILIZA-SE O MEIO E O FEMENTADOR AO MESMO TEMPO, PODENDO SER POR VAPOR DIRETO OU INDIRETO; O AQUECIMENTO COM VAPOR DIRETO, PROVOCA DILUIÇÃO DO MEIO ENTRE 10 E 15%; A ESTERILIZAÇÃO DESCONTÍNUCA TEM AS SEGUINTES FASES: 1. AQUECIMENTO: elevação da temperatura próximo de 120 oc; 2. ESTERILIZAÇÃO: temperatura é mantida constante durante o tempo de esterilização; 3. RESFRIAMENTO: refrigera-se o sistema por serpentina ou pela 33 camisa do fermentador.
ESTERILIZAÇÃO DE MEIOS PROCESSOS DE ESTERILIZAÇÃO POR AQUECIMENTO A DESTRUIÇÃO TÉRMICA DOS MICRORGANISMOS OCORREM QUANDO A TEMPERATURA ESTÁ ACIMA DA TEMPERATURA MÍNIMA LETAL (80 A 100 oc). DESVANTAGENS DA ESTERILIZAÇÃO DESCONTÍNUA: a) Manutenção do meio em teperaturas relativamente altas por períodos longos, favorecendo o desenvolvimento de reações químicas e decomposição de nutrientes; 34
ESTERILIZAÇÃO DE MEIOS DESVANTAGENS DA ESTERILIZAÇÃO DESCONTÍNUA: a) Elevados consumos de vapores no aquecimento e de água no resfriamento; c) Problemas de corrosão nos equipamentos; d) Tempo não produtivo relativamente elevados, 35
ESTERILIZAÇÃO DE MEIOS ESTERILIZAÇÃO CONTÍNUA: Pode ser por vapor direto ou indireto também. O meio preparado é bombeado para um trocador de calor de placas ou tubos, A temperatura sobe instantâneamente e mantida por um determinado tempo de residência; O meio é enviado para outro trocador de calor para o resfriamento; O meio é enviado para um fermentador, já esterilizado; 36
ESTERILIZAÇÃO DE MEIOS ESTERILIZAÇÃO CONTÍNUA: ALGUNS VALORES NUMÉRICOS DE ESTERILIZAÇÃO CONTÍNUA a) vapor de aquecimento: vapor saturado (6,8 a 8,5 atm b) bombas de recalque do mosto não esterilizado podem ser bombas centrífugas, rotativas ou de pistão; c) tempo de enchimento do fermentador: não superior a 8 hs; d) temperatura de esterilização: 130 A 165 oc; 37
ESTERILIZAÇÃO DE MEIOS VANTAGENS DA ESTERILIZAÇÃO CONTÍNUA: Temperaturas mais altas, porém tempos de permanência entre 5 e 10 minutos, o que diminui a destruição dos nutrientes melhorando a fermentação; Meios com densidade ou viscosidade altas, como mostos de cereais, o processo contínuo dispensa motores de potencia elevada, o que seria necessário no caso do processo descontínuo; 38
ESTERILIZAÇÃO DE MEIOS VANTAGENS DA ESTERILIZAÇÃO CONTÍNUA: Economia de vapor, de água de resfriamento; Os esterilizadores podem ser utilizados nos processos de cozimentos e de sacarificação; 39
ESTERILIZAÇÃO DE MEIOS CINÉTICA DA DESTRUIÇÃO TÉRMICA DOS MICRORGANISMOS: A VELOCIDADE DE DESTRUIÇÃO DEPENDE: a) dos microrganismos b) do meio c) da temperatura Do ponto vista cinético a destruição é dada pela equação de primeira ordem: onde: N= número de mo vivos dn dt = K *N 40