ou lugar geométrico dos pontos da superfície da água no subsolo, submetidos à ação da pressão atmosférica.

Documentos relacionados
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL GEOTECNIA I

1. PERMEABILIDADE Definição

TC MECÂNICA DOS SOLOS PERMEABILIDADE E FLUXO PARTE I

AULA 10: A ÁGUA NO SOLO - PERCOLAÇÃO. Prof. Augusto Montor Mecânica dos Solos

LABORATÓRIO de MECÂNICA dos SOLOS Permeabilidade do Solo SUMÁRIO

Laboratório de Mecânica dos Solos. Primeiro Semestre de 2017

Permeabilidade e Fluxo Unidimensional em solos

UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL GEOTECNIA III

Capítulo 7. Permeabilidade. Prof. MSc. Douglas M. A. Bittencourt GEOTECNIA I SLIDES 08.

Controle de Obras Mecânica dos solos

Notas de aulas de Mecânica dos Solos I (parte 12)

MOVIMENTO DE ÁGUA NOS SOLOS TRAÇADO DE REDES DE FLUXO

PONTIFICIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE ENGENHARIA CURSOS DE ENGENHARIA CIVIL E AMBIENTAL HIDROLOGIA APLICADA.

PONTIFICIA UNIVERSIDADE CATÓLICA DE GOIÁS ESCOLA DE ENGENHARIA CURSOS DE ENGENHARIA CIVIL E AMBIENTAL HIDROLOGIA APLICADA

Notas de aulas de Mecânica dos Solos I (parte 13)

MECÂNICA DOS SOLOS E DAS ROCHAS Aula 01

BARRAGENS DE TERRA E DE ENROCAMENTO AULA 3. Prof. Romero César Gomes - Departamento de Engenharia Civil / UFOP

Permeabilidade e Fluxo Unidimensional em solos - continuação

3 - ESCOAMENTOS EM MEIOS POROSOS

DETERMINAÇÃO DA PERMEABILIDADE DO SOLO

Capítulo 3 - COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS

UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL GEOTECNIA III

Ensaios de Laboratório em Mecânica dos Solos Fluxo Unidimensional Ensaios de Condutividade Hidráulica

Permeabilidade dos Solos

Universidade Tecnológica Federal do Paraná. CC54Z - Hidrologia. Infiltração e água no solo. Prof. Fernando Andrade Curitiba, 2014

EMPUXOS DE TERRA E ESTEDO DE TENCOES EM MACISSOS TERROSOS

Mecânica dos Solos TC 035

LABORATÓRIO de MECÂNICA dos SOLOS - Permeabilidade do Solo

Notas de aulas de Mecânica dos Solos I (parte 14)

Permeabilidade e Fluxo Unidimensional em solos - continuação

V - TENSÕES NOS SOLOS

Lista de Exercícios de Adensamento

CÓDIGO: IT822. Estudo dos Solos CRÉDITOS: 4 (T2-P2) INSTITUTO DE TECNOLOGIA DEPARTAMENTO DE ARQUITETURA E URBANISMO

Capítulo 5 Percolação

BARRAGENS DE REJEITO: PROJETO,CONSTRUÇÃO E OPERAÇÃO 17/04/2019

EXERCÍCIOS PROPOSTOS

Unidade 1 - HIDRÁULICA DOS SOLOS

TC MECÂNICA DOS SOLOS TENSÕES NO SOLO PARTE II

p γ Se imaginarmos um tubo piezométrico inserido no ponto em questão, a água subirá verticalmente numa altura igual à altura piezométrica.

p γ Se imaginarmos um tubo piezométrico inserido no ponto em questão, a água subirá verticalmente numa altura igual à altura piezométrica.

Exercício resolvido - nº 1 Exercícios para resolução fora do âmbito das aulas teórico-práticas - n os 6 e 9

Capítulo 4 Tensões no Solo

Água nos Solos Princípio das Tensões Efetivas. Fernando A. M. Marinho 2017

Água nos Solos Princípio das Tensões Efetivas

BARRAGENS DE TERRA E DE ENROCAMENTO AULA 2. Prof. Romero César Gomes - Departamento de Engenharia Civil /UFOP

UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL GEOTECNIA III

CARACTERÍSTICAS FÍSICAS DOS SOLOS E INTERAÇÃO COM ÁGUAS SUBTERRÂNEAS

CURSO DE CAPACITAÇÃO EM ESTRUTURAS DE BARRAGENS: TERRA, ENROCAMENTO E REJEITOS. Sistemas de vedação e de drenagem interna

Notas de aula prática de Mecânica dos Solos I (parte 12)

Controle de Obras Mecânica dos solos

5. Infiltração. Hidrologia cap5 5.1 OCORRÊNCIA

Teoria do adensamento: Evolução dos recalques com o tempo

Mec. Solos II - Aula 02 Capítulo 05. Tensões nos Solos. Faculdade de Engenharia de Ilha Solteira FEIS/UNESP Departamento de Engenharia Civil Geotecnia

IV.11- TRANSIÇÕES. Apresenta-se na Figura IV.11.1 exemplo de transições na barragem de Porto Primavera.

HIDROLOGIA AULA 06 e semestre - Engenharia Civil INFILTRAÇÃO. Profª. Priscila Pini

Julgue o próximo item, relativo a noções de sistema cartográfico.

CURSO DE CAPACITAÇÃO EM ESTRUTURAS DE BARRAGENS: TERRA, ENROCAMENTO E REJEITOS. Análises de percolação

Geotecnia de Fundações TC 041

OBRAS DE TERRA BARRAGENS DE REJEITO OTIMIZAÇÃO DA DEPOSIÇÃO DE REJEITOS DE MINERAÇÃO

Notas de aulas de Mecânica dos Solos II (parte 1)

Compressibilidade e Teoria do adensamento. Mecânica de Solos Prof. Fabio Tonin

José Jorge Nader Maurício Abramento Pedro Wellngton (Com base em apresentações dos professores Waldemar Hachich, Fernando Marinho e Heloísa Gonçalves

Laboratório de Mecânica dos Solos. Primeiro Semestre de 2017

Compressilidade e Adensamento

MECÂNICA DOS SOLOS II COMPRESSIBILIDADE DOS SOLOS

Solicitações Não Drenadas

MECÂNICA DOS SOLOS. Márcio Marangon. Professor Titular - UFJF

Projeto de Usinas Hidrelétricas - Passo a Passo Cap. 6: Barragens

3 Aspectos Geológicos e Geotécnicos

Controle de Obras Mecânica dos solos

Caderno de questões. Processo seletivo de ingresso para o 1º. Semestre de 2018 CONHECIMENTOS ESPECIFICOS GEOTECNIA Mestrado e Doutorado

30/04/2012. Controle de Obras Mecânica dos solos. Resistência ao cisalhamento das areias e argilas. Prof. Ilço Ribeiro Jr. Solicitações Drenadas

Profa. Dra. Lizandra Nogami

ESTADO DE MATO GROSSO SECRETARIA DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP DEPARTAMENTO DE

COMPRESSIBILIDADE E CONSOLIDAÇÃO

Faculdade de Engenharia Departamento de Estruturas e Fundações. Lista de Exercicios

Cap. 2 CONSTRUÇÃO DE ATERROS

7 Hidrologia de Água Subterrânea

INFILTRAÇÃO* E ARMAZENAMENTO NO SOLO. Prof. José Carlos Mendonça

4 Análise Probabilística de Ruptura da Barragem de Curuá- Una para Diversos Níveis do Reservatório.

Princípios da Mecânica Força

CURSO DE CAPACITAÇÃO EM ESTRUTURAS DE BARRAGENS: TERRA, ENROCAMENTO E REJEITOS

HIDRÁULICA. REVISÃO 1º Bimestre

1. DEFINIÇÕES 1. DISTRIBUIÇÃO VERTICAL DA ÁGUA

Fluxo Bidimensional em solos

CAPÍTULO VI: HIDRODINÂMICA

UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL GEOTECNIA III

Escoamento completamente desenvolvido

Programa Analítico de Disciplina CIV332 Mecânica dos Solos I

5 Modelo em Elementos Finitos

HIDRODINÂMICA CONDUTOS SOB PRESSÃO

Aula 1 Taludes e Movimentos de Massa. CIV 247 OBRAS DE TERRA Prof. Romero César Gomes

4 Fluxo na barragem de terra de Macusani - Peru

Universidade Federal do Paraná - UFPR Setor de Tecnologia Departamento de Construção Civil DCC

O que é compatação? Por que? Técnica de melhoria do terreno, onde o solo é densificado através de um esforço de compactação externo.

PEF3305 Mecânica dos Solos e das Rochas I Experimento P Laboratório

Transcrição:

PERMEABILIDADE NOS SOLOS 1 Capilaridade 1.1 Fenômenos Capilares Quando um tubo é colocado em contato com a superfície da água livre, forma-se uma superfície curva a partir do contato água-tubo. A curvatura é função das propriedades do material do tubo. A água sobe pelo tubo capilar até que seja estabelecido o equilíbrio das pressões internas e externas à superfície fenômeno de ascensão capilar. Posição do lençol freático variável varia segundo as estações do ano, clima da região, etc. Períodos de estiagem posição do lençol freático sofre normalmente um abaixamento. Período de cheias posição do lençol freático se eleva. zona saturada ou freática zona onde os vazios, poros e fraturas se encontram totalmente preenchidos d água. Figura 27 Distribuição de Umidade do Solo nível freático ou lençol freático linha abaixo da qual o solo estará na condição de submersão, e acima estará o solo saturado até uma determinada altura, ou lugar geométrico dos pontos da superfície da água no subsolo, submetidos à ação da pressão atmosférica. Nos solos, por capilaridade, a água se eleva por entre os interstícios de pequenas dimensões deixados pelas partículas sólidas, além do nível do lençol freático. A altura alcançada depende da natureza do solo. O corte, na Figura 27, mostra uma distribuição de umidade do solo e os diferentes níveis e condições da água subterrânea em uma massa de solo. Verifica-se que o solo não se apresenta saturado ao longo de toda a altura de ascensão capilar. Observa-se que o fenômeno de capilaridade ocorre em maiores proporções em solos argilosos. A altura capilar é calculada pela teoria do tubo capilar, que considera o solo um conjunto de tubos capilares e é dada pela seguinte relação: 2 T hc = (11) r 100

Onde T é a tensão superficial (energia dispendida para produzir o encurvamento da superfície líquida e o seu aumento de uma unidade de área) em N m, r é o raio do tubo ( m ). Como se pode notar da equação, a altura de ascensão capilar é inversamente proporcional ao raio do tubo. 1.2 O comportamento da água capilar nos solos Os vazios no solo são muito pequenos, comparáveis aos tubos capilares, embora muito irregulares e interconectados. A situação da água capilar no solo depende do histórico do NA. Quando um solo seco é colocado em contato com água livre, esta sobe por capilaridade até uma altura que é função do diâmetro dos vazios, este relacionado com o diâmetro das partículas. Como bolhas de ar ficam enclausuradas, o solo mantém parcial e decrescente saturação até a altura máxima de ascensão capilar. 1.3 A Pressão Negativa na Água do Solo A água capilar acima do NA assume poropressão negativa. Na realidade assume valores menores que a pressão atmosférica (pressão de referência). A poropressão negativa da água nos solos devido ao efeito da capilaridade é chamada de sucção matricial. Pelo conceito de tensão efetiva para u( ) σ > σ. O acréscimo de tensão efetiva por efeito da pressão neutra negativa representa um acréscimo na força de contato entre os grãos e como consequência uma parcela adicional de resistência ao cisalhamento dos solos não saturados chamada de coesão aparente. 101

1.4 Importância dos Fenômenos Capilares Construção de Aterros e Pavimentos Rodoviários: a água que sobe por capilaridade tende a comprometer a durabilidade de pavimentos; Sifonamento capilar em barragens: a água pode, por capilaridade, ultrapassar barreiras impermeáveis e gerar por efeito de sifonamento (percolação da água sobre o núcleo impermeável da barragem), a percolação através do corpo da barragem (Figura 28). Ocorre quando a altura capilar do material que cobre o núcleo impermeável é maior que a distância entre a crista do núcleo e o NA de montante. Figura 28 Sifonamento capilar em barragens Coesão Aparente: parcela de resistência gerada pelos meniscos capilares presentes em solos não saturados. Em areias úmidas, permite converter uma praia numa pista firme com taludes muito inclinados. Quando seca ou saturada a areia, a pista se desfaz e o talude desmorona. 2 A Água no Solo 2.1 A Permeabilidade dos Solos Permeabilidade: é a maior ou menor facilidade que as partículas de água encontram para fluir por entre os vazios do solo. Constitui a parte mais importante da hidráulica dos solos. É a propriedade que o solo apresenta de permitir o escoamento de água através dele. O estudo de fluxo de água nos solos é de vital importância para o engenheiro, pois a água ao se mover no interior de um maciço de solo exerce em suas partículas sólidas forças que influenciam o estado de tensão do maciço. Os valores de pressão neutra (da água) e com isso os valores de tensão efetiva (na estrutura granular) em cada ponto do maciço são alterados em decorrência de alterações de regime de fluxo. De uma forma geral, os conceitos de fluxo de água nos solos são aplicados nos seguintes problemas: Estimativa da vazão de água (perda de água do reservatório da barragem), através da zona de fluxo; Instalação de poços de bombeamento e rebaixamento do lençol freático; 102

Dimensionamento de sistemas de drenagem; Previsão de recalques no tempo (adensamento de solos moles baixa permeabilidade); Análise da influência do fluxo de água sobre a estabilidade geral da massa de solo (estabilidade de taludes); Análise da possibilidade da água de infiltração produzir erosão, arraste de material sólido no interior do maciço, etc. A Tabela 4 apresenta valores típicos de coeficientes de permeabilidade. Tabela 4 Coeficientes de permeabilidade de solos típicos (baseado em Casagrande) 2.1.1 Fatores que Influenciam a Permeabilidade Características do fluido que está percolando (peso específico e a viscosidade função da temperatura); Tipo de solo Tamanho das partículas φ K Índice de vazios e K Forma e rugosidade das partículas - + irregularidades + rugosidade K Grau de saturação S K Estrutura K estado disperso < K estado floculado Compactação K H > K V 2.1.2 A Lei de Darcy A experiência de Darcy (Figura 29) consistiu em percolar água através de uma amostra de solo de comprimento L e área A, a partir de dois reservatórios de nível constante, sendo h a diferença de cota entre ambos. Os resultados indicaram que a velocidade de percolação v= Q A é proporcional ao gradiente hidráulico i= hl. 103

h Q= K A L Q= K i A (12) Figura 29 Experiência de Darcy 3 Q é vazão de percolação ( m s ), k é o coeficiente de permeabilidade do solo ( ms ), a relação hl representa a carga que dissipa na percolação por unidade de comprimento é chamada de coeficiente hidráulico ( i ) e A é a área transversal ao escoamento A vazão dividida pela área indica a velocidade de percolação. Em função dela, a lei de Darcy fica sendo: 2 m Q K i A v= = = K i (13) A A 2.2 Cargas Hidráulicas (Conservação da Energia) Para estudar as forças que controlam o escoamento d água através de um solo é necessário avaliar as variações de energia no sistema. No estudo do fluxo d água nos solos é conveniente expressar as componentes de energia pelas correspondentes cargas ou alturas (energia por unidade de massa) Equação de Bernoulli princípio da Conservação de Energia ao escoamento de um fluido incompressível, não viscoso em regime permanente. Figura 30 Cargas atuantes numa seção do escoamento A energia potencial total de um fluido em escoamento (carga total) é a soma de várias parcelas: carga altimétrica ( a ) + carga cinética ( h c ). h + carga piezométrica ( h p ) Carga Altimétrica é a diferença de cota entre o ponto considerado e qualquer cota definida como referência. Carga Piezométrica é a pressão neutra no ponto, expressa em altura de coluna d água. 104

ht = ha + hp + hc (14) 2 2 p1 v1 p2 v2 z + 1 z2 h + 2g = + + 2g + (15) z p carga altimétrica, de posição ou geométrica. u = carga piezométrica ou carga de pressão. 2 v 2g do fluido desconsiderado em fluxo nos solos devido à baixa velocidade de percolação h perda de devida a resistência do meio ao escoamento (devido ao atrito viscoso da água com as partículas do solo). Logo, a carga hidráulica total ( h t ) num dado ponto do solo será dada por: h t u = z+ (16) Imaginando-se um piezômetro (um tubo de pequeno diâmetro) colocado num ponto qualquer do solo, a água se eleva até certa cota. A carga total é a diferença entre a cota atingida pela água no piezômetro e a cota do plano de referência. A carga piezométrica é a altura à qual a água se eleva neste tubo, em relação ao ponto do solo em que foi colocado. 2.3 Movimento da Água Através do Solo SÓ HAVERÁ FLUXO QUANDO HOUVER DIFERENÇA DE CARGA TOTAL ENTRE OS PONTOS! Em condição de fluxo, a água escoa de um ponto de maior potencial hidráulico para outro de menor potencial hidráulico, ou seja, submetida a um gradiente hidráulico ( i ) que representa a dissipação de energia numa distância Onde L. Este gradiente é dado por: h i = (17) L L é a distância entre os pontos, medida paralelamente à direção do fluxo. 105

2.4 Determinação do Coeficiente de Permeabilidade 2.4.1 Correlações Empíricas Fórmula de Hazen: para areias finas e uniformes ( Cu < 5,0) Ensaio de adensamento: K = cv mv, onde c v e compressibilidade do solo obtidos do ensaio de adensamento. 2.4.2 Permeâmetro de Carga constante k = 100 D 2 10 m v são parâmetros de Figura 31 Esquema de permeâmetro de carga constante São utilizados para solos de elevada permeabilidade; Mantida a carga h durante um certo tempo, a água percolada é colhida e seu volume é medido. V Q = t Conhecida as vazões e as características geométricas, o coeficiente de permeabilidade é calculado diretamente pela Lei de Darcy: Q= K i A Q K = Ai 2.4.3 Permeâmetro de Carga Variável Figura 32 Esquema de permeâmetro de carga variável São utilizados para solos de baixa permeabilidade; Verifica-se o tempo que a água no tubo superior leva para baixar da altura inicial h i.até a altura final num instante t qualquer, a partir do inicio, a carga é h e o gradiente hl. A vazão será: h Q= K A L A fórmula para a determinação do coeficiente de permeabilidade será: a L h K = 2,3 log i At hf h f Onde A é a área da seção transversal da amostra, a a área da seção transversal do tubo superior, h i a altura inicial da coluna d água no tubo, o intervalo de tempo decorrido para a coluna d água passar de h i a h f a altura final da coluna d água e t é h f. 106

2.5 Força de Percolação A perda de carga ( h) é dissipada através de uma amostra de solo, de seção A ao longo de uma distância L, na forma de atrito viscoso. Este atrito provoca um esforço de arraste das partículas na direção do movimento. Esta força de percolação ( F p ) é dada por: F = h A (18) p Esta força de percolação por unidade de volume j é: j h A h AL L = = = i (19) É uma força efetiva (transfere-se partícula partícula) e tem o mesmo sentido do fluxo. Pode causar problemas de instabilidade cortes, aterros, barragens, etc. A força de percolação é uma unidade semelhante ao peso específico. De fato, a força de percolação atua da mesma forma que a força gravitacional. As duas se somam quando atuam no mesmo sentido (fluxo d água de cima para baixo) e se subtraem quando em sentido contrário (fluxo d água de baixo para cima). 2.6 Tensões no Solo Submetido à Percolação Analisemos as tensões no solo em três condições: sem fluxo, fluxo ascendente e fluxo descendente. 2.6.1 Sem Fluxo As tensões na base da amostra: σ = z + L ( ) ( ) u = z+ L σ = L= L sub (20) Figura 33 Tensões no solo num permeâmetro sem fluxo 107

2.6.2 Com Fluxo Ascendente As tensões na base da amostra: σ = z + L ( ) L( ) u = z+ L+ h σ = h sub σ = L h (21) Figura 34 Tensões no solo num permeâmetro com fluxo ascendente Uma vez que h é a perda de carga, podemos escrever: sub sub ( ) σ = L Li = L j (22) 2.6.3 Com Fluxo Descendente As tensões na base da amostra: σ = z + L ( ) L( ) u = z+ L h σ = + h sub σ = L + h (23) Figura 35 Tensões no solo num permeâmetro com fluxo descendente Analogamente, temos: sub sub ( ) σ = L + Li = L + j (24) 2.7 Gradiente Crítico Considere agora que na Figura 34 a carga hidráulica h aumente progressivamente. A tensão efetiva ao longo de toda a espessura irá diminuindo até o instante em que se torne nula. Nesta situação, as forças transmitidas de grão para grão vão se anulando até chegar a zero. 108

Os grãos permanecem, teoricamente, nas mesmas posições, mas não transmitem forças através dos pontos de contato. A ação do peso dos grãos se contrapõe à ação de arraste por atrito da água que percola para cima. Como a resistência das areias é proporcional à tensão efetiva, quando esta se anula, a areia perde completamente sua resistência. A areia fica num estado definido com areia movediça. Para se conhecer o gradiente que provoca o estado da areia movediça, pode-se determinar o valor que conduz o gradiente que conduz a tensão efetiva a zero, na expressão abaixo determinada: σ = L Li = 0 sub ( i ) σ = L = 0 sub (25) Então: i crit sub = (26) Este gradiente é chamado gradiente crítico. Seu valor é da ordem de um, pois o peso específico submerso dos solos é da ordem do peso específico da água. O fenômeno de areia movediça é típico de areias finas e tem rara ocorrência natural. Porém certas obras geotécnicas podem gerar esta situação. Figura 36 fluxo ascendente junto ao pé de jusante de barragens sobre areia fina Figura 37 fluxo ascendente de fundo de escavações escoradas por cortinas de estacas pranchas envolvendo areias finas A perda da resistência e da estabilidade de uma massa de solo por efeito das forças de percolação é chamada de Ruptura hidráulica. Quando a perda de resistência se inicia em um ponto, ocorre erosão neste local, o que provoca ainda maior concentração de fluxo nesta região; com o aumento do gradiente, surge maior erosão e assim, progressivamente, forma-se um furo que progride 109

regressivamente para o interior do solo. Este fenômeno, conhecido pelo nome de piping ou erosão progressiva é uma das formas mais freqüentes de ruptura de barragens. 2.8 Filtros de Proteção Filtros de proteção são empregados em obras hidráulicas de terra onde se deseja reduzir o gradiente hidráulico com o uso de um material que ofereça menor perda de carga (mais permeável. A redução no gradiente é necessária para se evitar o fenômeno de areia movediça em circunstâncias de fluxo ascendente e para reduzir as forças de percolação responsávia pelo arraste de partículas e capazes de gerar processos de erosão interna (piping). Erosão interna as forças de percolação superam as forças de ligação entre partículas, deslocando os grãos através do maciço de solo. O fenômeno é progressivo iniciando com o carregamento de finos e chegando a formação de canais internos de grande diâmetro. Materiais grosseiros (areias grossas e pedregulhos) determinam menor perda de carga, entretanto tem vazios muito abertos que não oferecem barreira física a erosão interna devem ser seguidos critério de seleção granulométrica dos materiais. Na prática os filtros são construídos em camadas de granulometria crescente. Filtros de proteção são empregados principalmente em zonas de percolação onde há transição de materiais muito diferentes (argila compactada e enrocamento). 2.8.1 Condições para material de filtro Deve ser suficientemente fino para evitar a passagem das partículas do solo adjacente pelos seus vazios; Deve ser suficientemente grosso de modo a reduzir a perda de carga. Os critérios para projetos de filtro propostos por Terzaghi são: 1. Para evitar a erosão interna: D < 5 D (27) 15( filtro) 85( solo) 2. Para garantir menor perda de carga: D > 5 D (28) 15( filtro) 15( solo) Outra recomendação do U.S. Corps of Engeneers para garantir redução de perda de carga: D > 25 D (29) 50( filtro) 50( solo) 110

Figura 38 Critério de seleção de filtro (Terzaghi) 111