Em outras palavras, no regime elástico há uma dependência linear entre F e a deformação x. Este é o comportamento descrito pela lei de Hooke: F = k x

Documentos relacionados
Lei de Hooke. 1 Objetivo. 2 Introdução Teórica

BC 0208 Fenômenos Mecânicos. Experimento 3 - Roteiro

Figura 1. Ilustração de uma mola distendida por uma massa m.

Aula 7 OSCILADOR DE MOLA - LEI DE HOOKE. Menilton Menezes. META Aplicar a lei de Hooke num sistema massa mola.

Análise experimental do sistema massa-mola através da Lei de Hooke. Experimental analysis of the mass-spring system by Hooke's Law

Relatório da Prática nº5 Molas

Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo EXPERIMENTO 7

EXPERIÊNCIA M018-TE CONSTANTE ELÁSTICA DA MOLA

Noções Básicas de Física Arquitectura Paisagística LEI DE HOOKE (1)

Força de interação entre qualquer corpo de massa m com um campo gravitacional e pode ser calculado com a equação:

Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo EXPERIMENTO 8

Análise Experimental do Sistema Massa-Mola através da Lei de Hooke Experimental Analysis of the Mass-Spring System by Hooke s Law

Universidade Federal do Recôncavo da Bahia GCET095.P - Física Geral e Experimental I Roteiro para Experimento: Lei de Hooke

FORÇA ELÁSTICA. Lei de Hooke

Prática VI ELASTICIDADE

Experimento 4 Forças Centrais

ANÁLISE EXPERIMENTAL DO SISTEMA MASSA-MOLA ATRAVÉS DA LEI DE HOOKE

FORÇA ELÁSTICA. Onde: F: intensidade da força aplicada (N); k: constante elástica da mola (N/m); x: deformação da mola (m).

UNIDADE 15 OSCILAÇÕES

ANÁLISE EXPERIMENTAL DO SISTEMA MASSA-MOLA ATRAVÉS DA LEI DE HOOKE

Movimento Harmônico Simples e Amortecido

Por outro lado, sabemos que o módulo e o sentido da força que atua sobre uma partícula em MHS são dados, genericamente, por:

FSC Exercício preparatório para experiências Lei de Hooke e a constante elástica da mola

1- Medidas Simples e Diretas

ANÁLISE EXPERIMENTAL DO SISTEMA MASSA-MOLA ATRAVÉS DA LEI DE HOOKE

LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO:

Laboratório de Física 2

Laboratório de Física

Verificar as equações para a constante de mola efetiva em um sistema com molas em série e outro com molas em paralelo.

LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO:

EXPERIMENTO V DETERMINAÇÃO DA CONSTANTE ELÁSTICA E DO PERÍODO PARA O OSCILADOR MASSA MOLA NA HORIZONTAL

PRÁTICA CONSTRUÇÃO DE GRÁFICOS E DETERMINAÇÃO DOS COEFICIENTES ANGULAR E LINEAR PELO MÉTODO GRÁFICO MMQ 4.

2ª sessão na área da Física de preparação para a EUSO2010

Forças de atrito e elástica. Física Geral e Experimental I, Eng. Civil 2018 Prof. Dr. Gustavo A. Lanfranchi

Fís. Semana. Leonardo Gomes (Guilherme Brigagão)

Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo EXPERIMENTO 3

(Versão 2014/2) (b) (d)

Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros

Força Elástica da Mola

F129 LINEARIZAÇÃO DE GRÁFICOS LEI DE POTÊNCIA. Prof. Jonhson Ordoñez VERSÃO 14

4ª Experiência: Molas

Relatório: Experimento 3

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Departamento de Física - ICE/UFJF Laboratório de Física II

Laboratório de Física

6.1 Relatório 1 74 CAPÍTULO 6. PRÉ-RELATÓRIOS E RELATÓRIOS. Nome 1: Assinatura 1: Nome 2: Assinatura 2: Nome 3: Assinatura 3: Turma:

MOVIMENTO OSCILATÓRIO

LISTA DE EXERCÍCIOS PLANO INCLINADO PROF. PEDRO RIBEIRO

EXPERIÊNCIA M003-3 PÊNDULO SIMPLES

Massa: uma abordagem experimental

Laboratório de Física

Relatório: Experimento 1

LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2)

Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção.

TC de Revisão Cap. 19

Tópico 8. Aula Prática: Pêndulo Simples

Experimento científico para a determinação da aceleração da gravidade local empregando materiais de baixo custo

Lista de revisão para a prova

Física I Prova 2 10/05/2014

EXPERIMENTO II MOVIMENTO RETILÍNEO UNIFORME E MOVIMENTO RETILÍNEO UNIFORMEMENTE VARIADO.

Experimento: Determinação da constante elástica de uma mola

Trabalho. 1.Introdução 2.Resolução de Exemplos

Prova Experimental. (em português)

As seguintes considerações devem ser feitas inicialmente ou ao longo do trabalho:

DEFORMAÇÃO NORMAL e DEFORMAÇÃO POR CISALHAMENTO

3B SCIENTIFIC FÍSICA. Aparelho de torsão Conjunto de extensão do aparelho de torsão Instruções de uso

Diretoria de Ciências Exatas. Laboratório de Física. Roteiro 04. Física Geral e Experimental I (2011/01) Experimento: Queda Livre e Anamorfose

O Sistema Massa-Mola

Introdução às Medidas em Física a Aula

Aula 4: Gráficos lineares

Exemplos de aplicação das leis de Newton e Conservação da Energia

LEI DE COULOMB. estão amarradas à extremidade de um fio isolante. A carga q possui massa m gira em uma trajetória de raio R fixa.

Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção.

Laboratório de Física Trabalho mecânico de um material Semi-Elástico Autor: Prof. Luiz de Oliveira Xavier

Professor: José Junio Lopes

Sala de Estudos FÍSICA - Lucas 2 trimestre Ensino Médio 3º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Força Elástica e Trabalho Mecânico

Construção e Análise de Gráficos. CF Laboratório de Física Básica 1

Cada questão objetiva vale 0,7 ponto

Lista Básica Aulas 22 e 23 Frente 3

LISTA DE EXERCÍCIOS 1

Fís. Fís. Monitor: Leonardo Veras

PRÁTICA 11: LEI DE HOOKE E OSCILADOR MASSA-MOLA MOLA

FACULDADE EDUCACIONAL DE MEDIANEIRA MISSÃO: FORMAR PROFISSIONAIS CAPACITADOS, SOCIALMENTE RESPONSÁVEIS E APTOS A PROMOVEREM AS TRANSFORMAÇÕES FUTURAS

Laboratório de Física 2

Parte 2 - P2 de Física I Nota Q Nota Q2 Nota Q3 NOME: DRE Teste 1

EQUILÍBRIO ESTÁTICO. Material Utilizado:

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I EQUILÍBRIO. Prof.

Lista 10: Energia. Questões. encontrar razões plausíveis para justificar suas respostas sem o uso de equações.

Estática. Vista da estrutura da ponte Golden Gate, São Francisco, Califórnia (EUA).

- Papel milimetrado. Para o coeficiente linear: LEIA A COORDENADA DO PONTO no qual a reta cruza o eixo da função y para x = 0.

CINEMÁTICA E DINÂMICA

Equações Diferenciais

Entender o funcionamento de um pêndulo, correlacioná-lo com o pêndulo simples, determinar a aceleração da gravidade e o momento de inércia do corpo.

PROCESSO SELETIVO TURMA DE 2009 FASE 1 PROVA DE CONHECIMENTOS DE FÍSICA

Experimento 5 Colisões Bidimensionais

, Equação ESFORÇO NORMAL SIMPLES 3.1 BARRA CARREGADA AXIALMENTE

BC Fenômenos Mecânicos. Experimento 1 - Roteiro

Lista de revisão para a prova

Transcrição:

Aula 6: Lei de Hooke 1 Introdução A lei de Hooke descreve a força restauradora que existe em diversos sistemas quando comprimidos ou distendidos. Qualquer material sobre o qual exercermos uma força sofrerá uma deformação, que pode ou não ser observada. Apertar ou torcer uma borracha, esticar ou comprimir uma mola, são situações onde a deformação nos materiais pode ser notada com facilidade. Mesmo ao pressionar uma parede com a mão, tanto o concreto quanto a mão sofrem deformações, apesar de não serem visíveis. A força restauradora surge sempre no sentido de recuperar o formato original do material e tem origem nas forças intermoleculares que mantém as moléculas e/ou átomos unidos. Assim, por exemplo, uma mola esticada ou comprimida irá retornar ao seu comprimento original devido à ação dessa força restauradora. Enquanto a deformação for pequena diz-se que o material está no regime elástico, ou seja, retorna à sua forma original quando a força que gerou a deformação cessa. Quando as deformações são grandes, o material pode adquirir uma deformação permanente, caracterizando o regime plástico. Nesta aula trataremos de deformações pequenas em molas, ou seja, no regime elástico. A figura 1a mostra uma mola com comprimento natural x o. Se esta for comprimida até um comprimento x<x o, a força F (também chamada de força restauradora) surge no sentido de recuperar o comprimento original, mostrado Figura 1: Lei de Hooke na figura 1b. Caso a mola seja esticada até um comprimento x>x o a força restauradora F terá o sentido mostrado em 1c. Em todas as situações descritas a força F é proporcional à deformação x, definida como x = x x o. 1

Em outras palavras, no regime elástico há uma dependência linear entre F e a deformação x. Este é o comportamento descrito pela lei de Hooke: onde k é a constante de proporcionalidade chamada de constante elástica da mola, e é uma grandeza característica da mola. O sinal negativo indica o fato de que a força F tem sentido contrário a x. Se k é muito grande significa que devemos realizar forças muito grandes para esticar ou comprimir a mola, portanto seria o caso de uma mola dura. Se k é pequeno quer dizer que a força necessária para realizar uma deformação é pequena, o que corresponde a uma mola macia. As figuras 2a e 2b mostram a situação que iremos tratar nesta experiência. Consiste de uma mola não distendida suspensa verticalmente, com comprimento natural x o. Em 1b, temos a mesma mola F = k x Figura 2: (a) Mola sem ação de força externa. x o corresponde ao seu comprimento natural. (b) Mola sob ação de um corpo de peso P=mg, o qual deforma a mola de um valor x = x x o. sujeita à ação de uma força que a distende até um comprimento x=x o + x. A força que distende a mola é devida ao peso P de um corpo com massa m, pendurado na extremidade inferior da mola. Na situação de equilíbrio mostrada na figura 1b, temos duas forças de módulos iguais e sentidos contrários F e P agindo sobre o corpo. Uma delas é devida ao peso P =mg, onde g é a aceleração da gravidade. A outra deve-se à força restauradora da mola e é tal que F=-P. Temos então da Lei de Hooke: Ou, analisando a equação em módulo: F = k x = P = P=k x P = k x 2

Pode-se notar que a equação acima descreve uma dependência linear entre P e a deformação da mola x. Escrevendo esta dependência na forma y=ax+b, temos a seguinte correspondência: Ou seja, em um gráfico do módulo do peso P versus a deformação x da mola, teremos o coeficiente angular a correspondendo ao valor Figura 3: da constante elástica k da mola, e o coeficiente linear correspondendo a b=0. Portanto, é possível determinar a constante elástica da mola graficamente. 2 Experiência: Para determinarmos experimentalmente a constante k utilizaremos o seguinte procedimento. Mediremos a deformação x da mola, para diferentes pesos colocados em sua extremidade livre e traçaremos o gráfico do peso empregado contra x, conforme ilustra a figura 3. Figura 4: Coeficientes angular e linear para a Lei de Hooke. 3

2.1 Material: 2 molas de 14 cm, pesos diversos, 1 suporte para as molas, 1 régua milimetrada, 1 caçamba, 1 balança. Figura 5: Montagem experimental. 2.2 Roteiro Antes de iniciar a experiência alguns pontos devem ser notados: * Não esticar as molas demasiadamente, pois podem ficar deformadas. * Não colocar pesos em excesso na caçamba. * Colocar as massas segurando a caçamba e ir soltando lentamente. * Distribuir uniformemente as massas, tomando cuidado para não cairem. 1. Medir o comprimento natural das molas. 2. Montar a experiência conforme a figura 4a, considerando apenas 1 mola. 3. Medir a massa da caçamba. 4. Selecionar um conjunto de massas, na faixa de 50 a 150g. Perguntas orientadoras importantes: (a) Qual deve ser o ponto de referência para medir as deformações x? (b) A distribuição das massas na caçamba pode afetar o resultado? Por que? 5. Cada aluno deve medir a deformação da mola e anotar na tabela. Obs: Considere o primeiro ponto medido como a caçamba vazia e não esqueça de somar a massa da caçamba na massa total que estica a mola. x é o valor médio das medidas x 1, x 2, x 3 e x 4. 4

Massa (g) x 1 (cm) x 2 (cm) x 3 (cm) x 4 (cm) x(cm) 6. Representar os dados num gráfico P versus x, determinar o valor da constante elástica k. Obs: utilize o método gráfico e o dos mínimos quadrados. 7. Repetir os procedimentos anteriores, mas agora com uma associação de duas molas iguais em paralelo, conforme mostra a figura 4b.Considere agora massas múltiplas de 100g até a massa máxima de 500g. 8. Calcular a constante elástica do sistema composto pelas 2 molas em paralelo. Massa (g) x 1 (cm) x 2 (cm) x 3 (cm) x 4 (cm) x(cm) 9. Repetir os procedimentos anteriores, mas agora com uma associação de duas molas iguais em série, conforme mostra a figura 4c. Note que neste caso o comprimento natural da associação em série (x o) é diferente do comprimento natural de cada uma das molas e deve ser medido. As deformações da associação x devem ser medidas em relação a x o. Considere agora massas múltiplas de 20g até a massa máxima de 120g. Massa (g) x 1 (cm) x 2 (cm) x 3 (cm) x 4 (cm) x (cm) 2.3 Para o relatório: 1. Que alterações sofreria o gráfico feito no item 6 para 1 mola, se esta fosse mais dura ou mais macia? 2. Qual é a relação entre a constante elástica do sistema de duas molas e a constante elástica com apenas 1 mola? 3. A massa das molas é de 10,80 g. Qual seria o efeito da massa da mola se esta fosse mais pesada? 5

Universidade Federal de Juiz de Fora Instituto de Ciências Exatas Departamento de Física Laboratório de Física I Prof.:... Data:.../.../... Turma:... Experiência:... Equipe:............ Massa das caçambas:... Massa do suporte de molas:... 1 Mola Comprimento natural:... Massa (g) x 1 (cm) x 2 (cm) x 3 (cm) x 4 (cm) 2 molas em paralelo Comprimento natural:... Massa (g) x 1 (cm) x 2 (cm) x 3 (cm) x 4 (cm) 2 molas em série Comprimento natural (x o):... Massa (g) x 1(cm) x 2(cm) x 3(cm) x 4(cm) 6