Rotinas para Análises Geoestatísticas Utilizando a Linguagem R: um exemplo com dados agro-ambientais



Documentos relacionados
UNIVERSIDADE DE SÃO PAULO EXPERIMENTAÇÃO AGRONÔMICA. Tutorial. Disciplina: Geoestatística

UTILIZAÇÃO DOS PROGRAMAS GS+ E VARIOWIN

Dadas a base e a altura de um triangulo, determinar sua área.

UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO IA Departamento de Solos CPGA-CIÊNCIA DO SOLO IA AGRICULTURA DE PRECISÃO

Fluxo de trabalho do Capture Pro Software: Indexação de código de barras e separação de documentos

PRINCIPAIS FUNCIONALIDADES DO SOFTWARE GLOBAL MAPPER

SIMPÓSIO INTERNACIONAL SOBRE GESTÃO DE RECURSOS HÍDRICOS. Gramado, RS, de 5 a 8 de Outubro de 1998 SISTEMA DE INVENTÁRIO DE BACIAS HIDROGRÁFICAS- SINV

Status. Barra de Título. Barra de Menu. Barra de. Ferramentas Padrão. Caixa de nomes. Barra de. Ferramentas de Formatação. Indicadores de Coluna

QGIS 2.4 Estatísticas de Grupo Somatório de Áreas

UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO IT Departamento de Engenharia CPGA-CIÊNCIA DO SOLO IA AGRICULTURA DE PRECISÃO

CONVENÇÃO DE CÓDIGO JAVA

Organização e Arquitetura de Computadores I. de Computadores

SIG - Sistemas de Informação Geográfica

4ª aba do cadastro: Mapa Orientações para upload de shapefiles

Ferramentas Web, Web 2.0 e Software Livre em EVT

UNIVERSIDADE FEDERAL DA BAHIA - UFBA

Eng. Civil, EESC/USP, Caixa Postal 359, CEP: São Carlos/SP,

Programação Estruturada e Orientada a Objetos. Fundamentos Orientação a Objetos

Não há novos parâmetros criados que habilitam os recursos da customização. Apenas a utilização de parâmetros já existentes no sistema:

APOSTILA DE EXCEL 2007

QGIS 2.4 Recorte de Raster em Lote (Clip Raster in Batch Mode)

AULA 4 VISÃO BÁSICA DE CLASSES EM PHP

Gerenciador de Log Documento Visão. Versão 2.0

Feature-Driven Development

Manual de Conversão para PDF Envio de Arquivos ao Diário Oficial

Um Driver NDIS Para Interceptação de Datagramas IP

Microsoft Word INTRODUÇÃO

DESENVOLVIMENTO DE SOFTWARE DE VOTAÇÃO WEB UTILIZANDO TECNOLOGIA TOUCHSCREEN

Treinamento Portal de Periódicos CAPES Editores: ACM, Emerald, Oxford, Blackwell e Sage

Manual de Instalação

MAPEAMENTO SISTEMÁTICO: SOFTWARE ONDE ESTOU?

Manual de Atualização de Versão

SOFTWARES PARA GESTÃO DE FAZENDAS DE ALGODÃO NO BRASIL

Santa Cruz do Sul, outubro de 2015.

Programação de Computadores - I. Profª Beatriz Profº Israel

Como Gerar documento em PDF com várias Imagens

Fluxo de trabalho do Capture Pro Software: Indexação de OCR e separação de documentos de código de correção

Bolsa de Integração na Investigação

MAPA - Orientações. Conteúdo desse documento:

Panorama do Sistema de Automação Topográfica - POSIÇÃO

AULA 15 Plugin Preenchimento de Células

CONTROLE DE QUALIDADE e VALIDAÇÃO DE PRODUTO CARTOGRÁFICO

Parceiro Oficial de Soluções Zabbix no Brasil

Basic Exchange System

1 - Crie um novo documento no ArcMap. Com o programa aberto, selecione o Dataframe Layers

Modelagem dos limites geológicos suaves

Histórico de Revisão Data Versão Descrição Autor

AULA 1 Iniciando o uso do TerraView

Prof. Marcelo Machado Cunha

SISTEMAS OPERACIONAIS

Bem-vindo! O que há de novo no PaperPort 10?

1 Instalação de Pacotes RPM no Metasys Contato...10

ANÁLISE ESPACIAL E GEOPROCESSAMENTO

Imagens: <img src="..."> src <img src="tecnologia.jpg"> único atributo que não pode ser omitido neste TAG Nota: img

Manual de Utilizador. Caderno. Recursos da Unidade Curricular. Gabinete de Ensino à Distância do IPP.

DIFERENÇAS ENTRE FUNÇÃO E BLOCO FUNCIONAL; CRIAÇÃO DE FUNÇÃO / BLOCO FUNCIONAL; UTILIZAÇÃO NO LADDER; EXEMPLO DE BLOCO FUNCIONAL;

Estatística Básica via MySQL para Pesquisas On-Line

Como conduzir com sucesso um projeto de melhoria da qualidade

Palavras-chave: i3geo, gvsig, Mapserver, integração, plugin. Contato: ou

Documentação EPL - Clientes

Este tutorial tem o objetivo de registrar os passos para a espacialização de informações georeferenciadas a partir de planilhas de arquivos e os

Aula ao vivo pela Internet - Criação de supervisório em Visual C# via serial e USB

ADMINISTRAÇÃO DE SISTEMAS DE INFORMAÇÃO (AULA 03)

Nome do Processo: Entrada de Pedidos com múltiplos endereços de entrega com NF-e Diferente

AULA 6 - Operações Espaciais

Lógica de Programação

Manual de Administração Intranet BNI

ANÁLISE GEOESTATÍSTICA DE DADOS METEOROLÓGICOS DO ESTADO DO PARANÁ UTILIZANDO UM SOFTWARE LIVRE

Analisador de Arquivo-texto Editor de Arquivo-texto

Simulador do Processador Neander T&D-Bench Simulator Manual do Usuário. por Júlio César Maccali. revisado por Prof. Christian Zambenedetti

Configuração do Ambiente de Trabalho

1. Resolução de problemas de Programação Linear utilizando Excel

NOTA FISCAL ELETRÔNICA

Manual de Instalação. Windows XP. Desenvolvedores: Patrick Duarte, Rodrigo dos Santos. Setembro de 2014.

Faculdade de Ciências da Universidade de Lisboa CURSO DE GPS. Módulo x. (Aula Prática) Reliance - Ashtech. Suas Aplicações Em SIG.

QUESTINAMENTOS AO EDITAL DE CONCORRÊNCIA 01/2013

Pesquisa e organização de informação

Sistemas Operacionais

SISTEMAS DE GESTÃO São Paulo, Janeiro de 2005

CONCEITOS INICIAIS. Agenda A diferença entre páginas Web, Home Page e apresentação Web;

WebMail Manual do cliente

Sumário 1. SOBRE O NFGoiana DESKTOP Apresentação Informações do sistema Acessando o NFGoiana Desktop

I Encontro Brasileiro de usuários QGIS

MODELAGEM DIGITAL DE SUPERFÍCIES

Software automatizado para controle de consultas da clínica de fisioterapia

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE INFORMÁTICA INFORMÁTICA APLICADA

Tutorial Gerar arquivo PDF. Gerando um documento pdf com várias imagens 1- Inserir imagem no Word

PLANIFICAÇÃO MODULAR ANO LECTIVO 2015 / 2016

Criando um script simples

Trabalho Final. Data da Submissão: das 8h do dia 16/06 às 24h do dia 17/06. Data da Entrega do Relatório: das 15h às 18h no dia 18/06.

Ambiente de workflow para controle de métricas no processo de desenvolvimento de software

Manual de Administração

1 LCE - ESALQ/USP. iabita.fabiana@gmail.com 2 Agradecimento a CAPES e ao Cnpq pelo apoio financeiro. 3 UFPR. 4 Embrapa Meio-Norte.

Instalação do ByYou ESB. Guia de Instalação e Atualização do ByYou ESB

Sistema de Digitalização e Gerenciamento de Arquivos On-Line

Disciplina: Programas de Edição de Textos Professora: Érica Barcelos

EDITAL CONCORRÊNCIA 02/2015 ANEXO VI - ESPECIFICAÇÃO DO SISTEMA DE MONITORAMENTO DA FROTA.

02 - Usando o SiteMaster - Informações importantes

Manual de Instruções TOPPER MAPS. MANU-7310-TMP Rev. A

PRO-FAE: FERRAMENTA COMPUTACIONAL PARA AUXILIO NO PROJETO PRELIMINAR DE FAZENDAS EÓLICAS.

Transcrição:

Rotinas para Análises Geoestatísticas Utilizando a Linguagem R: um exemplo com dados agro-ambientais Lucas Venezian Povoa 1, Rodrigo Lilla Manzione 2 e Edson Cesar Wendland 3 1 Graduando em Análise de Sistemas, FATEC/Ourinhos, Av. Vitalina Marcusso, 1400 CEP: 19910-206 Ourinhos/SP, lucas.povoa@fatec.sp.gov.br, URL: http://www.lucasvenezian.orgfree.com 2 Eng. Agrônomo, UNESP/Ourinhos, Av. Vitalina Marcusso, 1500 CEP: 19910-206 Ourinhos/SP, manzione@ourinhos.unesp.br 3 Eng. Civil, EESC/USP, Caixa Postal 359, CEP: 13560-970 São Carlos/SP, ew@sc.usp.br Resumo - Este artigo apresenta análises geoestatísticas em dados agro-ambientais utilizando a linguagem R como ambiente para estatística computacional e visualização gráfica. O objetivo foi descrever de maneira simples e direta como utilizar um software livre e de domínio publico e alguns pacotes disponibilizados por seus desenvolvedores e usuários para armazenar as informações espaciais, o modo de importá-las para o ambiente R e os recursos mínimos para a execução de análises geoestatísticas. Entre as operações desenvolvidas estão a variografia, predição espacial utilizando krigagem ordinária e validação cruzada dos resultados. Espera-se com isso encorajar a utilização do R para análises espaciais, uma vez que essa linguagem é um recurso completo, estável, confiável e desenvolvida e aprimorada por renomados pesquisadores na área. As rotinas descritas podem ser reproduzidas para fins de mapeamento, agricultura de precisão, levantamentos e inventários, entre diversas outras aplicações agro-ambientais. Palavras-chave: variografia; krigagem; validação cruzada. Routines to Geostatistics Analysis Using R Language: an example with agri-environmental data Abstract - This paper presents geostatistical analysis on agro-ecological data using the R language as environment for statistical computing and visualization. The aim was to describe in a simple and direct way how to use and free and with public domain software and some packages available from developers and users to storage spatial information, import it to R environment and the minimal resources for implementation of geostatistical analysis. Among the operations carried out are variography, ordinary kriging and cross validation of the results. We expect with this work encourage the use of the R language for spatial analysis, since it is a complete, stable and reliable feature, developed and perfected by renowned researchers in this field. The routines described here could be reproduced for different targets, like mapping, precision farming, survey and inventory, among several other agro-ecological applications. Key words: variography; kriging; cross-validation. Introdução R é uma linguagem aberta e gratuita com a finalidade de resolver problemas gráficos e de computação estatística, sendo uma implementação da linguagem S desenvolvida inicialmente por John Chambers, Rick Becker e Allan Wilks dos Laboratórios Bell (R Development Core Team, 2008). A linguagem R fornece padrões e métodos inovadores de analise estatística, e devido a sua característica de desenvolvimento aberto (open source) garante um contínuo aprimoramento de bibliotecas e rotinas por inúmeros profissionais de diversos pontos do mundo. Ser uma ferramenta estável e confiável fez com que milhares de usuários aderissem ao R como software estatístico para análises. A análise de dados espaciais também é muito difundida em R, e tem ganhado um grande número de recursos nos últimos anos. Especificamente em geoestatística, rotinas até então disponíveis em softwares comerciais e de alto valor no mercado são disponibilizadas em diversas bibliotecas. Além disso, o R dispões de funções especiais para exibir, armazenar e organizar dados desse tipo. Contudo, a linguagem R por si só não possui artifícios para distinguir coordenadas de qualquer outro tipo de dado numérico. Uma equipe de pesquisadores escreveram um pacote denominado sp PEBESMA e BIVAND (PEBESMA; BIVAND, 2005) com classes e métodos específicos para dados espaciais, sendo esta biblioteca a matéria-prima de ferramentas em R para II Simpósio de Geoestatística em Ciências Agrárias ISSN: 2236-2118 1

processamento e análise de dados dessa grandeza. BIVAND et al. (2008) apresentam uma relação de pacotes disponíveis que dependem ou importam o pacote sp direta ou indiretamente e outros que utilizam ou sugerem utilizar o pacote sp sem declará-lo na descrição do pacote. Podemos citar os pacotes (ou bibliotecas) maptools, rgdal, splancs, geor, gstat, spsurvey, trip, entre muitos outros. Desse modo, o objetivo deste trabalho foi descrever rotinas geoestatísticas em R que fossem aplicáveis a dados agro-ambientais, perfazendo variografia, krigagem ordinária e validação cruzada dos resultados a partir de dados pontuais. Material e Métodos Para a execução das operações de geoestatística foi utilizado o programa R versão 2.10.0 (R Development Core Team, 2008) e os pacotes sp (PEBESMA; BIVAND, 2005), gstat (PEBESMA, 2004) e lattice (SARKAR, 2010). Os dados utilizados nos processos são pontos georreferenciados referentes a posição de poços de monitoramento de níveis freáticos em uma bacia hidrográfica em área de recarga do Sistema Aquifero Guarani (SAG) em Brotas (SP), a bacia do Ribeirão da Onça. São ao todo 20 poços georreferenciados, coordenadas planas UTM fuso 23 s. Também estão disponíveis dados vetoriais representando o limite da bacia e um modelo digital de terreno (MDT) em formato raster (WENDLAND et al., 2007). Os dados relativos aos poços foram dispostos da seguinte forma: a primeira linha representa o nome dos atributos, cada coluna é separada por uma tabulação (\t) e cada linha posterior a primeira representa o conjunto de dados de um determinado poço (Tabela 1). Tabela 1. Dados pontuais de alturas do nível d água e respectivas cotas altimétricas X Y Z E 194592,92 7537198,83-17,45 753 194632,80 7537211,47-5,42 754 197699,38 7543585,49-26,38 748 198326,23 7544977,48-18,97 736 197210,52 7544401,75-25,30 731 196917,51 7545107,64-9,80 715 197003,34 7545176,91-6,62 714 197588,00 7545341,91-7,63 706 195367,02 7544827,80-5,49 707 195377,76 7544717,14-12,43 712 195362,31 7544627,54-15,95 717 195354,38 7544445,75-16,20 720 196798,22 7545255,82-2,89 694 196776,36 7545347,75-0,45 687 197154,03 7545539,79-1,93 691 197154,15 7545533,64-0,99 690 194592,92 7537198,83-17,45 753 194632,80 7537211,47-5,42 754 197699,38 7543585,49-26,38 748 198326,23 7544977,48-18,97 736 Z=altura do nível d água (metros); E = elevação (metros) Essa tabela pode ser copiada e colada diretamente em algum aplicativo do tipo bloco de notas, gravada como formato texto (.txt) e lida e importada pela função read.table do R. É necessário nomear a tabela, no caso ALF (alturas de lençol freático). Em seguida a função coordinates transforma os dados carregados em dados do tipo SpatialPointsDataFrame, definindo as coordenados x e y dos pontos. Os dados da bacia hidrográfica (limite e MDT) foram organizados seguindo o conjunto de regras do formato ASCII. Os processos executados para importação dessas informações foram através da função read.asciigrid que carrega os dados referentes a bacia e os transforma em um objeto do tipo SpatialGridDataFrame. Atribuir a II Simpósio de Geoestatística em Ciências Agrárias ISSN: 2236-2118 2

todos os dados a classe Spatial, que é um pré-requisito para a execução de análises espaciais no R. Após essa tarefa foram aplicadas funções do pacote gstat para análises geoestatísticas. As funções variogram, vgm e fit.variogram, foram utilizadas com a finalidade de gerar e ajustar um modelo teórico ao variograma. A função krige foi utilizada para gerar uma superfície estimada e a variância dessas predições. A validação dos dados se deu através da função krige.cv. A visualização dos resultados é atribuída às funções spplot e print. Resultados e Discussão Os resultados são expostos em vários fragmentos com a finalidade de melhor explorar cada ponto do script desenvolvido, e após cada ponto explorado é exibido o seu resultado. O elemento > no início de cada linha do código R deve ser descartado, uma vez que representa início de linha. Portanto, o código abaixo tem a finalidade de carregar os dados espaciais em objetos R e torná-los tipos derivados da classe Spatial: > ALF = read.table( "pocos.txt", header=t ); > coordinates(wtd) = ~ X + Y; > MDT = read.asciigrid("mdt.txt", plot.image = TRUE, colname = "E"); > spplot(mdt["e"], scales=list( draw=t ), sp.layout=list("sp.points", ALF, pch="+") ); O código acima além de carregar os dados exibe um mapa com a representação do limite e altitudes da bacia hidrográfica junto aos pontos dos poços, como ilustra a Figura 1. Figura 1. Visualização dos dados de poços (cruzes) sobre o modelo digital do terreno (metros) da Bacia do Ribeirão da Onça. O trecho a seguir ser refere à variografia e executa respectivamente o cálculo do variograma a partir de uma amostra de dados, ajusta um modelo teórico ao variograma amostral a partir de valores informados ou mesmo realiza um ajuste automático. II Simpósio de Geoestatística em Ciências Agrárias ISSN: 2236-2118 3

> variograma = variogram( Z ~ 1, ALF, cutoff=4000, width=500 ); > modelo = vgm( 95, "Sph", 1800, nug = 0.5); > modelo_ajustado = fit.variogram(variograma, model = variograma); > print( plot( variograma, model = modelo ), split=c(1,1,2,1), more=t); > print( plot( variograma, model = modelo_ajustado ), split=c(2,1,2,1), more=f); Primeiro deve-se definir as dimensões do variograma. Na função variogram, cutoff refere-se ao campo amostral do variograma e width a largura do passo definido. A seguir executa-se o ajuste a sentimento. Na função vgm são definidos primeiro o patamar do variograma (95), seguido pelo tipo de modelo teórico (esférico/sph), alcance (1800) e efeito pepita (nug). Ainda é possível optar por um ajuste automático, por mínimos quadrados. Os resultados com os distintos modelos gerados são exibidos na Figura 2. Figura 2. Variogramas utilizando o resultado da função vgm como modelo (a) e utilizando o resultado da função fit.variogram para ajuste automático do modelo (b). Por fim, essa última porção do código executa a interpolação dos dados por krigagem ordinária e realiza a validação dos resultados através da técnica de validação cruzada. Na função krige o primeiro parâmetro define a variável a ser interpolada no arquivo indicado (segundo parâmetro) e os parâmetros seguintes definem respectivamente o grid (células da malha) da bacia para executar a interpolação (no caso MDT) e o modelo do variograma usado nessa interpolação (model). Esse grid é necessário para que em cada célula o interpolador resolva o sistema de krigagem. Por fim, nmax define o número máximo de pares considerados na vizinhança para interpolação. A Tabela 2 exibe os resultados da validação cruzada, reorganizados como distribuição de freqüência e a Figura 3 ilustra os resultados da interpolação dos dados por krigagem ordinária. > OK = krige(z ~ 1, ALF, MDT, model = modelo_ajustado, nmax=40); > CV.OK = krige.cv(z ~ 1, ALF, modelo_ajustado, verbose=f) > print( spplot(ok["var1.pred"], xlab="(a)"), split=c( 1, 1, 2, 1 ), more=t ); > print( spplot(ok["var1.var"], xlab="(b)"), split=c( 2, 1, 2, 1 ), more=f ); II Simpósio de Geoestatística em Ciências Agrárias ISSN: 2236-2118 4

Tabela 2. Validação cruzada para a krigagem ordinária realizadas para os dados de alturas do lençol freático Pred Var Obs Res Zscore Mínimo -17,89 1,93-26,38-11,72-4,28 1º Quartil -14,50 8,44-16,51-3,32-0,73 2 º Quartil -10,54 13,92-8,72-0,36-0,19 3 º Quartil -5,16 32,94-4,79 1,29 0,37 Máximo -1,04 98,54-0,45 11,94 4,36 Média -9,94 27,77-12,10-0,93-0,07 DesvPad 5,86 31,54 8,58 5,84 1,72 DesvPad=desvio padrão; Pred=valor predito; Var=variância da predição; Obs=valor observado; Res=resíduos; Zscore=(pred-obs)/var Figura 3. Resultados da função krige: predição de alturas de lençol freático (metros) a partir da interpolação por krigagem ordinária (a) e a variância da krigagem ordinária (b). Nossa proposta foi expor os recursos mínimos necessários para análises geoestatísticas em R. Para os resultados obtidos foram necessário conhecimentos básicos de geoestatística na interpretação das funções disponíveis para realização dos procedimentos listados. Todas as funções possuem documentação disponível na ajuda dos pacotes carregados (help), onde um conhecimento básico de inglês se faz necessário para compreender os textos. Aqui foram utilizadas apenas algumas partes de cada função, que podem ser mais complexas, com mais parâmetros, conforme o grau de conhecimento em R e em geoestatística que o analista tenha para utilizá-las. Espera-se assim encorajar novos usuários na utilização da linguagem R para análises espaciais, uma vez que é um recurso completo, estável, confiável e também gratuito, desenvolvido e aprimorado por renomados pesquisadores. As rotinas descritas aqui podem ser entendidas para análises mais complexas e avançadas como técnicas de krigagem indicativa, universal ou mesmo simulação seqüencial gaussiana, que não estão implementadas em todos os softwares geoestatísticos disponíveis no mercado. Além disso, é possível desenvolver suas próprias rotinas e bibliotecas em casos específicos definidos pelos usuários. II Simpósio de Geoestatística em Ciências Agrárias ISSN: 2236-2118 5

Conclusões O programa R se mostra uma alternativa viável, em relação a softwares comerciais, para análises espaciais e geoestatísticas, uma vez que importa, armazena, analisa e permite a visualização dos resultados. Para execução de tarefas através de seus pacotes e bibliotecas é necessário um conhecimento intermediário de geoestatística, uma vez que não se trata de um software intuitivo onde o usuário é guiado através de janelas a cada passo da análise. As rotinas descritas podem ser reproduzidas para fins de mapeamento, agricultura de precisão, levantamentos e inventários, entre diversas outras aplicações agroambientais. Referências BIVAND, R. S.; PEBESMA, E. J.; GÓMEZ-RUBIO, V. Applied Spatial Data Analysis with R. Nova York: Springer, 2008. 374 p. PEBESMA, E. J. Multivariable geostatistics in S: the gstat package. Computers & Geosciences, v. 30, p. 683-691, 2004. PEBESMA, E. J.; BIVAND, R. S. Classes and methods for spatial data in R. R News, v. 5, n. 2, p. 9 13, 2005. R DEVELOPMENT CORE TEAM. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2008. Disponivel em: <http://www.r-project.org>. Acesso em: 29 Novembro 2010. SARKAR, D. lattice: Lattice Graphics. R package version 0.18-3, 2010. Disponivel em: <http://cran.rproject.org/package=lattice>. Acesso em: 10 Dezembro 2010. WENDLAND, E, BARRETO, C. E. A. G., GOMES, L. H. Water balance in the Guarani Aquifer outcrop zone based on hydrogeologic monitoring. Journal of Hydrology, v. 342, p. 261-269, 2007. II Simpósio de Geoestatística em Ciências Agrárias ISSN: 2236-2118 6