Estrelas: espetros, luminosidades e massas



Documentos relacionados
Estrelas: espectros, luminosidades e massas

Estrelas: espetros, luminosidades, raios e massas

Observatórios Virtuais Fundamentos de Astronomia Cap. 13 (C. Oliveira & V. Jatenco-Pereira) Capítulo 13 ESTRELAS VARIÁVEIS

FSC1057: Introdução à Astrofísica. A Via Láctea. Rogemar A. Riffel

C5. Formação e evolução estelar

Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Astronomia. Estrelas. Prof. Tibério B. Vale

7 as Olimpíadas Nacionais de Astronomia

Universidade da Madeira Estudo do Meio Físico-Natural I Astronomia Problemas propostos

SOCIEDADE ASTRONÔMICA BRASILEIRA SAB VII Olimpíada Brasileira de Astronomia VII OBA Gabarito do nível 2 (para alunos da 3ª à 4ª série)

Astor João Schönell Júnior

E por mais que o homem se torne importante, ele não é nada comparado às estrelas [Caroline Herschel] Paulo Roberto -

Oficina: As Cores das Estrelas Parte A

Além do Modelo de Bohr

Determinação de Massas e Raios Estelares

Espectros de radiação descontínuos e a composição do Universo. Espectros de emissão e de absorção

Leia com atenção todas as questões antes de responder.

Estrelas EIXO PRINCIPAL O SOL

3.4 O Princípio da Equipartição de Energia e a Capacidade Calorífica Molar

Estrelas Variáveis Cefeidas Como Indicadores de Distâncias

Determinação da distância à Pequena Nuvem de Magalhães pela observação de uma estrela cefeida

Numa turma de 26 alunos, o número de raparigas excede em 4 o número de rapazes. Quantos rapazes há nesta turma?

A VIA LÁCTEA, NOSSA GALÁXIA

Cotagem de dimensões básicas

Antenas e Propagação. Artur Andrade Moura. amoura@fe.up.pt

Alex C. Carciofi. Aula 7. Estrelas: massa, raio, temperatura O Diagrama HR

Iluminação artificial

Aula 4 Estatística Conceitos básicos

Parte 2. Escola Secundária José Saramago FQA 10º ano 2007/2008 Marília Peres

As Cores das Estrelas

Fenômeno Físico Como a cor acontece

Capítulo 8. ESTRELAS : Distâncias e Magnitudes

SOCIEDADE ASTRONÔMICA BRASILEIRA SAB IV Olimpíada Brasileira de Astronomia IV OBA Gabarito da Prova de nível I (para alunos de 1ª à 4ª série)

4. Tarefa 16 Introdução ao Ruído. Objetivo: Método: Capacitações: Módulo Necessário: Análise de PCM e de links

Aula 08 Sistema Solar

Exercícios sobre Jess

Astrofísica Geral. Tema 09: O Sol

Respostas - Exercícios de rotação e translação

O Princípio da Complementaridade e o papel do observador na Mecânica Quântica

Faculdade Sagrada Família

F031 - Tópicos em Astronomia e Astrofísica. Parte 1: Propriedades das Estrelas. Prof. Ernesto Kemp UNICAMP IFGW DRCC kemp@ifi.unicamp.

INSTITUTO TECNOLÓGICO

Eventos independentes

1 Propagação de Onda Livre ao Longo de um Guia de Ondas Estreito.

Propriedades Planetas Sol Mercúrio Vênus Terra. O Sistema Solar. Introdução à Astronomia Fundamental. O Sistema Solar

29/Abril/2015 Aula 17

Curvas em coordenadas polares

2. Fundamentos Físicos: Laser e Luz Intensa Pulsada

Capítulo 5: Aplicações da Derivada

Evolução Estelar: Nascimento, vida e morte das estrelas

Refração da Luz Prismas

Marília Peres Adaptado de (Corrêa 2007)

A Equação de Bernoulli

PROVA ESCRITA NACIONAL SELEÇÃO PARA A TURMA 2014

Objectivos. Classificação dos Sons. Agradáveis Úteis Incómodos / Ruído

Seleção de comprimento de onda com espectrômetro de rede

CALIBRAÇÃO DE UM ESPECTROSCÓPIO DE PRISMA

CALORIMETRIA. H T = c m T.

Manual para Stellarium

Abril Educação Astronomia Aluno(a): Número: Ano: Professor(a): Data: Nota:

DETECÇÃO DO EXOPLANETA HD B PELO MÉTODO DE TRÂNSITO

ORIENTAÇÃO. Para a orientação recorremos a certas referências. A mais utilizada é a dos pontos cardeais: Norte Sul Este Oeste

...uma vez que no espectro de emissão se observam duas riscas brilhantes, na zona do amarelo.

PROPRIEDADES ELÉTRICAS DOS MATERIAIS

Equações Diferenciais Ordinárias

Um jogo de preencher casas

Capítulo II O QUE REALMENTE QUEREMOS

Capítulo 3 Modelos Estatísticos

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5

Sol Online. Português descobre galáxia mais brilhante do Universo. E chama-lhe CR7. Visitas diárias: País: PT Âmbito: Informação Geral

Prova final teórica. 5 as Olimpíadas Nacionais de Astronomia. 05 de Junho de :00. Duração máxima 120 minutos

Reconhecimento e explicação da importância da evolução tecnológica no nosso conhecimento atual sobre o Universo.

CINÉTICA QUÍMICA DE UMA REAÇÃO EM ESPECTROFOTOMETRÍA

Ciências E Programa de Saúde

ILUMINAÇÃO A LED. c o n h e ç a a U n il e d. já foi o tempo que lâmpada apagada era sinal de economia.

Ensaio de impacto. Os veículos brasileiros têm, em geral, suspensão

Métodos de treino da resistência

Notas de Cálculo Numérico


24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18

Trabalho prático: O contador de Geiger-Muller. Descrição geral

Nosso objetivo será mostrar como obter informações qualitativas sobre a refração da luz em um sistema óptico cilíndrico.

SOCIEDADE ASTRONÔMICA BRASILEIRA SAB VII Olimpíada Brasileira de Astronomia VII OBA Gabarito do nível 3 (para alunos da 5ª à 8ª série)

"SISTEMAS DE COTAGEM"

Corte total. Qualquer pessoa que já tenha visto um regis- A U L A

4 π. Analisemos com atenção o sistema solar: Dado que todos os planetas já ocuparam posições diferentes em relação ao Sol, valerá a pena fazer uma

Material Teórico - Módulo de Métodos sofisticados de contagem. Princípio das Casas dos Pombos. Segundo Ano do Ensino Médio

Nível 3 IV FAPMAT 28/10/2007

UFMG º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

AÇOS ESTRUTURAIS. Fabio Domingos Pannoni, M.Sc., Ph.D. 1

A origem do Universo Evidências a favor da Teoria do Big Bang Limitações da Teoria do Big Bang Reacções químicas e reacções nucleares

EXOPLANETAS EIXO PRINCIPAL

Os mecanismos da circulação oceânica: acção do vento força de Coriolis e camada de Ekman. Correntes de inércia.

2 Pesquisa de valores em uma lista de dados

MÓDULO 4 DISTRIBUIÇÃO DE FREQÜÊNCIAS

6ª série / 7º ano U. E 05

4. Tangentes e normais; orientabilidade

5 as Olimpíadas Nacionais de Astronomia

EMPREGO DE LINHAS DE POSIÇÃO DE SEGURANÇA

Exercícios Teóricos Resolvidos

Cálculo em Computadores trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios Coordenadas polares 5

Transcrição:

Estrelas: espetros, luminosidades e massas J. L. G. Sobrinho 1,2 1 Centro de Ciências Exactas e da Engenharia, Universidade da Madeira 2 Grupo de Astronomia da Universidade da Madeira Resumo Praticamente toda a informação que temos sobre as estrelas é obtida a partir da sua própria luz. Analisando a cor, o brilho aparente e o espetro das estrelas podemos obter informação, por exemplo, sobre a sua temperatura superficial, raio, massa, composição química e luminosidade. Podemos ainda identificar diferentes tipos de estrelas. Aqui fazemos uma introdução breve à forma como se podem obter esses resultados. Conteúdo 1 Introdução 1 2 Cor e temperatura 2 2.1 Fotometria UBV.................................................. 2 3 Luminosidade 2 3.1 Magnitude aparente m............................................. 3 3.2 Magnitude absoluta M............................................. 4 3.3 Magnitude bolométrica.............................................. 4 4 Classes espetrais 4 5 O tamanho das estrelas 5 6 Diagrama de Hertzsprung Russell 5 7 Classes de luminosidade 8 8 Massa das estrelas 9 1 Introdução Ao olharmos para o céu nocturno notamos que umas estrelas parecem mais brilhantes do que outras. Isto pode dever se ao facto de serem realmente mais brilhantes ou então ao facto de estarem a diferentes distâncias. Quase toda a informação que obtemos das estrelas resulta da sua luz. A cor de uma estrela, por exemplo, diz nos qual a sua temperatura superficial e a decomposição da luz recebida permite identificar a sua composição. As estrelas são classificadas em tipos espetrais e em classes de luminosidade. Jogando com toda a informação disponível podemos obter dados relativos à temperatura, luminosidade, raio, composição e massa das estrelas. Como bibliografia principal foram utilizadas as obras Universe [1] e Astronomy: A Physical Perspective [2]. referências utilizadas são indicadas ao longo do texto. Outras sobrinho@uma.pt Caminho da Penteada, 9000-390 Funchal, Portugal, http://ccee.uma.pt/ http://www3.uma.pt/investigacao/astro/grupo/index.htm 1

Figura 1: Relação entre cor e temperatura superficial para três estrelas distintas: (a) T = 3000 K pico de emissão no infravermelho; (b) T = 6000 K pico de emissão perto do amarelo (semelhante ao nosso Sol); (c) T = 12000 K pico de emissão no ultravioleta [3]. Figura 2: Determinação da temperatura de uma estrela a partir da relação b V /b B [3]. 2 Cor e temperatura A cor de uma estrela está diretamente relacionada com a sua temperatura superficial. Uma estrela mais fria tem o seu pico de emissão mais perto do vermelho e uma estrela mais quente tem o seu pico mais próximo do azul. O Sol pode considerar-se uma estrela de temperatura intermédia com o seu pico de emissão no amarelo (Figura 1). 2.1 Fotometria UBV Para determinar a temperatura (cor) de uma estrela utiliza se um sistema de filtros padrão. Um dos sistemas mais utilizado é o sistema UBV composto por três filtros: U ultravioleta, B azul, V amarelo / verde. Numa primeira fase é feita a medição do brilho da estrela utilizando cada um dos filtros separadamente. São, assim, obtidos, os brilhos aparentes: b U, b B e b V. Depois podem calcular-se as relações b V /b B e b B/b U e, a partir dos valores obtidos, inferir qual é a temperatura da estrela (ver Figura 2). 3 Luminosidade A Luminosidade de uma estrela é uma medida da quantidade de energia emitida por esta em cada unidade de tempo. Esta energia é emitida para o espaço em todas as direções. Assim, a uma determinada distância d da estrela, a energia que atravessa a unidade de área em cada unidade de tempo é dada por b = L 4πd 2 (1) 2

Figura 3: Escala de magnitudes aparentes. Note se que quanto maior a magnitude menos brilhante é o objeto [3]. A esta quantidade designamos por brilho aparente da estrela. O brilho aparente do Sol, por exemplo, para um observador localizado na Terra é dado por: b = L 4πd = 3.86 1026 J/s 2 4π 1.50 10 11 m = 1370 J/s/m2 = 1370 W/m 2 (2) A medição de brilhos aparentes é designada por fotometria. A partir de estudos fotométricos podemos determinar a luminosidade de uma estrela desde que saibamos a que distância se encontra L = 4πd 2 b (3) No caso do Sol temos L = 4πd 2. Se utilizarmos o Sol como referência podemos escrever ( ) 2 L d b = L d b (4) Os resultados mostram que as luminosidades das estrelas variam, em geral, desde 10 4 L a 10 6 L. A expressão (4) pode ser utilizada também para relacionar as luminosidades de duas estrelas quaisquer L 1 L 2 = ( d1 d 2 ) 2 b 1 b 2 (5) 3.1 Magnitude aparente m A magnitude aparente (m) de uma estrela é uma medida do seu brilho aparente. A primeira escala para a medição de magnitude aparente foi introduzida por Hiparcos no século II a.c.. Nesta escala as estrelas mais brilhantes tinham m = 1 e as menos brilhantes m = 6. Em termos de brilho aparente resulta que uma estrela de magnitude 1 é cerca de 100 vezes mais brilhante que uma estrela de magnitude 6. Assim podemos escrever b 1 = 100 m2 m1 5 b 2 (6) onde b 1 e b 2 são os brilhos aparentes de duas estrelas e m 1 e m 2 as respetivas magnitudes aparentes. Podemos assim dar uma caracter contínuo à escala de Hiparcos e alargar esta, em ambos os sentidos, por forma a poder incluir objetos mais e menos luminosos (ver Figura 3). A relação entre magnitudes aparentes e brilhos aparentes de duas estrelas (ou outros dois objectos celestes) é dada por m 2 m 1 = 2.5 log b1 b 2 (7) 3

3.2 Magnitude absoluta M Para podermos comparar estrelas diferentes quanto à luminosidade introduzimos o conceito de magnitude absoluta (M). A magnitude absoluta de uma estrela é definida como sendo a magnitude aparente que esta teria se estivesse a uma distância de 10 pc. A relação entre magnitude aparente e magnitude absoluta é dada por ( ) d m M = 5 log 10 (8) 10 pc onde d é a distância expressa em pc. No caso do Sol temos m = 26.7 e M = 4.8. A diferença m M designa se usualmente por módulo de distância. Note se que temos M = m se d = 10 pc, M > m se d < 10 pc e M < m se d > 10 pc. Podemos adaptar a equação (8) para funcionar apenas com os valores relativos a um determinado filtro. escrever, por exemplo ( ) d m V M V = 5 log 10 10 pc ( ) d m B M B = 5 log 10 10 pc Daqui obtemos a relação Podemos (9) (10) m B m V = M B M V (11) 3.3 Magnitude bolométrica Quando determinamos a magnitude de uma estrela normalmente estamos apenas a considerar um determinado intervalo dentro da gama de todos os comprimentos de onda possíveis. A magnitude bolométrica (M Bol ) de uma estrela corresponde à sua magnitude absoluta determinada considerando a sua emissão em todos os comprimentos de onda. É usual escrever M Bol = M V + BC (12) onde M V representa a magnitude absoluta da estrela na banda do visível e BC é a chamada correção bolométrica. 4 Classes espetrais Decompondo a luz que recebemos de uma estrela nos seus diferentes comprimentos de onda obtemos o respetivo espetro. Analisando as riscas de absorção podemos obter diversas informações sobre a estrela (composição elemental, velocidade própria, temperatura,...). A grande diversidade de espetros estelares observados deu origem à classificação das estrelas em sete classes espetrais designadas pelas letras O, B, A, F, G, K e M. Por sua vez, estas classes espetrais foram divididas, cada uma delas, em 10 subclasses designadas por tipos espetrais. Dentro de cada classe os tipos espetrais estão numerados de 0 a 9. Assim temos, por exemplo, a sequência:...f7, F8, F9, G0, G1,... O Sol é uma estrela G2. Embora o desenvolvimento deste sistema de classificação remonte às últimas décadas do século XIX apenas por volta de 1920, com o desenvolvimento da teoria atómica, se conseguiu mostrar que a sequência OBAFGKM é na verdade uma sequência em temperatura sendo as estrelas da classe O as mais quentes e as da classe M as mais frias (ver Figura 4 e a Tabela 1). Por exemplo, as riscas da série de Balmer (H α, H β, H γ e H δ ) ocorrem quando um eletrão no nível n = 2 do átomo de hidrogénio salta para um nível energético mais alto (mediante a absorção de um fotão). Se a temperatura for baixa (< 5000 K) isto não acontece e a risca de absorção correspondente não aparece. Se, por outro lado, a temperatura for alta (> 10000 K) os átomos de hidrogénio estão completamente ionizados e, nesse caso, também não temos riscas. Entre estes dois valores temos riscas de absorção pelo hidrogénio. As riscas H α, por exemplo, são particularmente intensas para temperaturas da ordem dos 9000 K (classes A0 a A5) Figura 4. Fazendo o mesmo tipo de estudo com outros elementos (hélio, cálcio,...) podemos determinar qual a temperatura da estrela em estudo. Atente se na notação utilizada na Figura 4 a qual é comum na Astronomia: Ca I representa o Cálcio no estado neutro (ou seja, com todos os seus eletrões); CaII representa o cálcio ionizado uma vez (sem um dos seus eletrões) e assim por diante. Na Figura 5 estão representadas as intensidades das riscas de absorção de diversos elementos em função da temperatura ou, equivalentemente, em função do tipo espetral. Note se que no caso das estrelas mais frias (< 3000 K) os átomos conseguem juntar se para formar moléculas, em particular, óxido de titânio (TiO). 4

Figura 4: Principais tipos de espetros estelares. Note se, por exemplo, que as linhas de absorção do hidrogénio (H α, H β, H γ e H δ ) são mais salientes no caso das estrelas mais quentes e que as linhas causadas por moléculas de óxido de titânio (TiO), que apenas podem existir a baixas temperaturas, aparecem no espetro das estrelas de classe M. [3]. As anãs castanhas são sub estrelas com temperatura superficial inferior à das estrelas de classe M. O seu pico de emissão fica no infravermelho e apresentam um espetro rico em linhas de absorção moleculares. Criaram se duas novas classes espetrais (L e T) para incluir as anãs castanhas. Em termos de massa todas as estrelas (incluindo o Sol e as anãs castanhas) são compostas por: 75% H, 25% He e 1% de outros metais. Aqui convém relembrar que, tradicionalmente, na Astronomia designamos por metal todos os elementos com a excepção do hidrogénio e do hélio. O oxigénio, por exemplo, é considerado um metal. 5 O tamanho das estrelas As estrelas estão de tal modo distantes que, qualquer que seja a ampliação que utilizemos, aparecem-nos sempre como simples pontos de luz (o Sol é naturalmente uma excepção). Para determinar o raio de uma determinada estrela temos de ir por processos indiretos. Sabemos que a luminosidade (L) de uma estrela relaciona se com o raio (R) e temperatura superficial (T) respetivos através da Lei de Stefan Boltzmann L = 4πR 2 σt 4 onde σ = 5.67 10 8 W/m 2 /K 4 é a designada constante de Stefan Boltzmann. No caso do Sol temos L = 4πR σt 2. 4 Podemos, utilizando o Sol como referência, escrever ( ) 2 R T L = (14) R T L A luminosidade de uma estrela pode obter-se a partir do seu brilho aparente, desde que se conheça a sua distância (equação 3), e a temperatura a partir da análise do seu espetro. (13) 6 Diagrama de Hertzsprung Russell No diagrama de Hertzsprung Russell (HR) cada estrela é representada tendo em conta a sua luminosidade (ou magnitude absoluta) e a sua temperatura superficial (ou tipo espetral). Ao representar as estrelas no diagrama HR verifica se que 5

Figura 5: Intensidade das riscas de absorção de diversos elementos em função da temperatura ou, equivalentemente, em função do tipo espetral [3]. Tabela 1: As diferentes classes espetrais de estrelas ver também Figura 4 [3]. Classe Espetral Cor T (K) Linhas espetrais O azul violeta 30000 50000 átomos ionizados (especialmente hélio) B azul branco 11000 30000 hélio neutro, algum hidrogénio A branco 7500 11000 hidrogénio forte, alguns metais ionizados F amarelo branco 5900 7500 hidrogénio e metais ionizados (ferro, cálcio,...) G amarelo 5200 5900 metais neutros e ionizados (em especial cálcio ionizado) K laranja 3900 5200 metais neutros M vermelho laranja 2500 3900 óxido de titânio forte e algum cálcio neutro L vermelho 1300 2500 potássio, rubídio e césio neutros e híbridos metálicos T vermelho < 1300 potássio neutro forte e água estas agrupam-se em determinadas zonas do diagrama (Figura 6). Existe uma banda diagonal designada por sequência principal da qual fazem parte cerca de 90% de todas as estrelas conhecidas. Esta banda estende se desde as estrelas mais quentes e luminosas (canto superior esquerdo) às mais frias e pouco luminosas (canto inferior direito). Uma estrela situada sobre esta banda designa se por Estrela da Sequência Principal (ver Figuras 6 e 7). É o caso do nosso Sol. No canto superior direito do diagrama vemos dois agrupamentos de estrelas muito mais luminosas mas também muito mais frias que as da sequência principal. Pela Lei de Stefan Boltzmann (equação 13) deduzimos que para que estas estrelas sejam simultaneamente bastante luminosas e tenham temperaturas superficiais relativamente baixas então devem ter um raio bastante grande. Estamos pois perante o grupo das estrelas designadas por gigantes e super gigangtes (estão neste grupo cerca de 1% de todas as estrelas conhecidas) ver Figuras 6 e 7. No canto inferior esquerdo do diagrama HR temos um grupo de estrelas bastante quentes mas pouco luminosas (estão neste caso 9% de todas as estrelas conhecidas). De acordo com a Lei de Stefan Boltzmann estas estrelas devem ter raios muito pequenos e por isso designam se por anãs brancas (ver Figuras 6 e 7). São estrelas, outrora semelhantes ao Sol, que atingiram a fase final da sua vida e, agora, limitam se a arrefecer lentamente. As anãs castanhas situam se, no diagrama HR, no canto inferior direito. O tipo espetral de uma estrela não nos diz nada acerca do tipo de estrela. Uma estrela com T = 5800 K pode ser uma estrela da sequência principal (semelhante ao Sol), uma anã branca, uma gigante ou uma supergigante (ver Figura 7). Uma forma de resolver esta questão consiste em analisar a largura das riscas de absorção. Quanto maiores forem a pressão e a densidade na atmosfera de uma estrela mais frequentes serão as colisões entre átomos e isso resultará num alargamento das riscas de absorção correspondentes. Numa supergigante a pressão e densidade atmosféricas são baixas pelo que as riscas de absorção são bastante estreitas (não existem perturbações). Numa estrela 6

Figura 6: Diagrama de Hertzsprung Russell (HR): a luminosidade (ou magnitude absoluta) é representada em função da temperatura superficial (ou tipo espetral) [3]. Figura 7: Diagrama de Hertzsprung Russell (HR) indicando a banda da sequência principal e os grupos das gigantes, supergigantes e anãs brancas. As linhas a tracejado indicam diferentes raios estelares [3]. 7

Figura 8: Divisão do diagrama de Hertzsprung Russell em classes de luminosidade [3]. da sequência principal a pressão e a densidade atmosféricas são maiores pelo que as riscas resultam mais largas (maior perturbação no processo de formação das riscas). 7 Classes de luminosidade A divisão das estrelas em classes espetrais (ou tipos espetrais) tem em conta a sua cor (temperatura superficial). Para identificar o tipo de estrela é ainda necessário considerar a divisão em classes de luminosidade. Existem seis classes de luminosidade (ver Figura 8): Ia supergigantes luminosas Ib supergigantes menos luminosas II gigantes brilhantes III gigantes IV subgigantes V sequência principal O Sol é uma estrela G2V. Com esta informação ficamos a saber que é da classe espetral G, subtipo espetral G2 e que, em termos de classe de luminosidade, é uma estrela da sequência principal (V). Sabendo a classe espetral e a classe de luminosidade podemos determinar a distância a que se encontra uma determinada estrela. Por exemplo, a estrela Pleione (da constelação do Touro) é classificada como B8V. O seu brilho aparente (medido) é b = 3.19 10 13 b. Pelo diagrama HR da Figura 8 e atendendo a que Pleione é uma estrela da sequência principal, tiramos que a sua luminosidade é de aproximadamente 190L. Assim pela equação (4) resulta que a distância a esta estrela é de 118 pc. Este processo de calcular distâncias designa se por método da paralaxe espetroscópica. O erro associado às distâncias obtidas ronda os 10% dada a incerteza que existe na leitura do gráfico da Figura 8. As classes de luminosidade não aparecem no diagrama HR como linhas estreitas mas sim como bandas largas. 8

Figura 9: Relação entre massa e luminosidade para estrelas da sequência principal [3]. 8 Massa das estrelas Não é fácil determinar a massa de uma estrela isolada. Se a estrela fizer parte de um sistema binário a determinação da sua massa torna se mais fácil. Acontece que mais de metade das estrelas fazem parte de sistemas binários (ou mesmo de multiplicidade superior). O estudo de muitos sistemas binários levou à conclusão de que existe uma relação direta entre massa e luminosidade para estrelas da sequência principal: quanto maior a massa, maior a luminosidade, maior a temperatura e maior o raio da estrela (ver Figura 9). Referências [1] Freedman R. A. & Kaufmann III, W. J., 2005, Universe, seventh edition, W. H. Freeman and Company, New York. [2] Kutner, M. L., 2003, Astronomy: A Physical Perspective, 2nd edition, Cambridge University Press, United Kingdom. [3] http://www.physics.unc.edu/ evans/pub/a31/lecture16-stars/ (material de apoio a [1]). 9