ADSORÇÃO SELETIVA DE ÁCIDO ISOVALÉRICO COM POLÍMEROS IMPRESSOS MOLECULARMENTE (MIP)

Documentos relacionados
Utilização de lama vermelha tratada com peróxido de BLUE 19

INFLUÊNCIA DA PRESENÇA DE SAIS NA ADSORÇÃO DO CORANTE VERMELHO PROCION UTILIZANDO ALUMINA ATIVADA

ESTUDO DA ADSORÇÃO DE CHUMBO UTILIZANDO COMO ADSORVENTE BAGAÇO DE CANA-DE-AÇÚCAR ATIVADO

4. RESULTADOS E DISCUSSÕES 4.1Comprimento de onda do corante Telon Violet

INTERFACE SÓLIDO - LÍQUIDO

Física Aplicada 2016/17 MICF FFUP ADSORÇÃO DE LÍQUIDOS EM SUPERFÍCIES SÓLIDAS

ADSORÇÃO DE AZUL DE METILENO SOBRE CARVÃO ATIVO

O EFEITO DA ADIÇÃO DE CLORETO DE SÓDIO NO COMPORTAMENTO DAS ISOTERMAS DE ADSORÇÃO DE CORANTE AZUL REATIVO BF-5G EM CARVÃO ATIVADO DE OSSO

USO DE RESÍDUO DE ERVA MATE MODIFICADA NA ADSORÇÃO DE CORANTE TÊXTIL

ESTUDO DO PROCESSO DE PURIFICAÇÃO DE BIODIESEL DE CANOLA POR ADSORÇÃO EM CARVÃO ATIVADO

DETERMINAÇÃO DOS PARÂMETROS CINÉTICOS DE ADSORÇÃO DE ÍONS DOS METAIS DE TRANSIÇÃO UTILIZANDO O MODELO DE AVRAMI

ESTUDO DA ADSORÇÃO DO CORANTE AZUL DE METILENO POR PALHA DE AZEVÉM (Lolium multiflorum Lam.) TRATADA COM NaOH

DESSULFURIZAÇÃO ADSORTIVA DO CONDENSADO ORIUNDO DA PIRÓLISE DE PNEUS INSERVÍVEIS

ESTUDO TERMODINÂMICO DA REMOÇÃO DO CORANTE AZUL 5G POR ARGILA BENTONITA SÓDICA NATURAL

4. Resultados e Discussão

AULA 5 Adsorção, isotermas e filmes monomoleculares. Prof a Elenice Schons

APLICAÇÃO DE CARVÃO ATIVADO DE OSSO BOVINO PARA REMOÇÃO DE POLUENTE EMERGENTE (DICLOFENACO DE SÓDIO) POR ADSORÇÃO.

ADSORÇÃO DE CORANTE ALIMENTÍCIO ARTIFICIAL AMARANTO POR FARELO DE SOJA.

UTILIZAÇÃO DE RESÍDUO DE INDÚSTRIA DE CUIA COMO UM ADSORVENTE PARA A REMOÇÃO DE CORANTE ORGÂNICO EM SOLUÇÃO AQUOSA

Estudo cinético para adsorção das parafinas C 11, C 12 e C 13 em zeólita 5A.

AVALIAÇÃO DE CARVÃO ATIVADO DE BABAÇU PARA A ADSORÇÃO SELETIVA DE CORANTE REATIVO BF-5G

ESTUDO DA REMOÇÃO DE FENOL EM ÁGUAS RESIDUÁRIAS SINTÉTICAS ATRAVÉS DE ADSORÇÃO EM CARVÃO VEGETAL

Adsorção em interfaces sólido/solução

Resumo. Luciana de Jesus Barros; Layne Sousa dos Santos. Orientadores: Elba Gomes dos Santos, Luiz Antônio Magalhães Pontes

EFEITO DA TEMPERATURA DE GASEIFICAÇÃO DE BIOMASSA NA ADSORÇÃO DE CORANTE REATIVO

II CAPACIDADE DE ADSORÇÃO DO CORANTE REATIVO AZUL 5G EM CASCA DE ARROZ E CASCA DE SOJA COMO BIOSSORVENTES

ESTUDO DA TERMODINÂMICA DA ADSORÇÃO DOS ENANTIÔMEROS DO FÁRMACO SECNIDAZOL

ESTUDO DA ADSORÇÃO E DESSORÇÃO DO CORANTE AZUL REATIVO BF-5G EM CARVÃO ATIVADO DE OSSO

UTILIZAÇÃO DE ADSORVENTE ALTERNATIVO DE BAIXO CUSTO PARA REMOÇÃO DO CORANTE TARTRAZINA

VIABILIDADE DO USO DA CASCA DE BANANA COMO ADSORVENTE DE ÍONS DE URÂNIO

Cinética e Equilíbrio da Sorção de Corante Direto Preto Krom KJR em Carvão Ativado de Ossos

REMOÇÃO DE DICLOFENACO DE POTÁSSIO USANDO CARVÃO ATIVADO COMERCIAL COM ALTA ÁREA DE SUPERFÍCIE

SÍNTESE DE CARBONIZADO MAGNÉTICO DE AÇÚCAR MASCAVO EM UMA ETAPA PARA ADSORÇÃO DO CORANTE AZUL DE METILENO.

Determinação cromatográfica de riboflavina em leite

Eixo Temático ET Tratamento de Efluentes Sanitários e Industriais

UTILIZAÇÃO DA LAMA VERMELHA PARA TRATAMENTO DE EFLUENTES TÊXTEIS COM ELEVADA CARGA DE CORANTE REATIVO

APLICAÇÃO DA CINETICA DE SEGUNDA E TERCEIRA ORDEM DO CLORETO FÉRRICO PARA OBTENÇÃO DE ÁGUA POTAVÉL

DURAÇÃO DA PROVA: 03 HORAS

CORANTE REATIVO VERMELHO REMAZOL RGB EM CARVÃO ATIVADO COMERCIAL E LODO GASEIFICADO PROVENIENTE DE ESTAÇÃO DE TRATAMENTO DE EFLUENTE TÊXTIL

Uso de vermiculita revestida com quitosana como agente adsorvente dos íons sintéticos de chumbo (Pb ++ )

Degradação do Fármaco Cloridrato de Tetraciclina utilizando o processo Fenton.

ADSORÇÃO DE AZUL DE METILENO EM CARVÃO ATIVADO PRODUZIDO A PARTIR DO ENDOCARPO DO AÇAÍ: ESTUDO TERMODINÂMICO E DE EQUÍLÍBRIO

ESTUDO DA SOLUBILIDADE DO PARACETAMOL EM ALGUNS SOLVENTES UTILIZANDO O MODELO NRTL

EQUILÍBRIO DE ADSORÇÃO DO CORANTE RODAMINA B EM CARVÃO ATIVADO OBTIDO DOS RESÍDUOS DO COCO VERDE

ESTUDO DA ADSORÇÃO DE FENOL EM CARVÃO ATIVADO E ZEÓLITA USY

Processos Superficiais Adsorção

PRODUÇÃO DE ETANOL ENRIQUECIDO UTILIZANDO ADSORÇÃO EM FASE LÍQUIDA COM MULTIESTÁGIOS OPERANDO EM BATELADA E ALTA EFICIÊNCIA DE ENERGIA

ADSORÇÃO DOS CORANTES AZUL REATIVO CI 222 E AZUL ÁCIDO CI 260 COM RESÍDUOS SÓLIDOS AGRÍCOLAS E LODO DE TRATAMENTO DE EFLUENTES.

Avaliação Cinética da Gaseificação com CO 2 do Bagaço de Maçã

ESTUDO DA REMOÇÃO DOS CORANTES VERMELHO PROCION HER, AZUL TURQUESA SIDERCRON HN E BORDO AC3B DE SOLUÇÕES AQUOSAS UTILIZANDO SÉPALAS DA

Remoção de Cr(VI) de soluções aquosas pelo filme de óxido de ferro/nanotubo de carbono/quitosana reticulada

DURAÇÃO DA PROVA: 03 HORAS

Estudo Termodinâmico da Adsorção de Zinco em Argila Bentonita Bofe Calcinada

USO DA CINETICA DE ORDEM ZERO E PRIMEIRA ORDEM DO CLORETO FERRICO PARA PURIFICAÇÃO DE ÁGUA

21º CBECIMAT - Congresso Brasileiro de Engenharia e Ciência dos Materiais 09 a 13 de Novembro de 2014, Cuiabá, MT, Brasil

PROVA ESCRITA DE CONHECIMENTOS EM QUÍMICA

DESSORÇÃO DO CORANTE COMERCIAL AZUL 5G A PARTIR DO ADSORVENTE CASCA DE SOJA

ESTUDO DO TRATAMENTO DE EFLUENTES UTILIZANDO RESÍDUOS AGROINDUSTRIAIS

ESTUDO DA DESSORÇÃO DO CORANTE TÊXTIL REATIVO AZUL 5G ADSORVIDO EM BAGAÇO DE MALTE

Adsorção de íons Zn 2+ pelo bagaço da uva Isabel em meio aquoso

INVESTIGAÇÃO DA ADSORÇÃO DO CORANTE VERMELHO PONCEAU SOBRE CARVÃO COMERCIAL DE ORIGEM ANIMAL

Adsorção de Azul de Metileno em Fibras de Algodão

CINÉTICA DE EXTRAÇÃO DE LIPÍDIOS DE MICROALGA SPIRULINA

VALIDAÇÃO DE MÉTODOS ANALÍTICOS

AVALIAÇÃO DAS ISOTERMAS DE ADSORÇÃO DE AZUL DE METILENO EM CASCA DE ARROZ IN NATURA E MODIFICADA VIA ULTRASSOM

4. Materiais e métodos

TRATAMENTO TÉRMICO DE RESÍDUO SÓLIDO PARA UTILIZAÇÃO COMO ADSORVENTE DE CORANTE REATIVO

ADSORÇÃO DE ÍNDIGO DE CARMIM EM BIOMASSA SECA DE Pistia stratiotes

PURIFICAÇÃO DE GLICEROL UTILIZANDO DIFERENTES ADSORVENTES

Adsorção do corante Rodamina B de soluções aquosas por zeólita sintética de cinzas pesadas de carvão

ADSORÇÃO DO CORANTE AZUL DE METILENO UTILIZANDO FIBRA DE PIAÇAVA

ESTUDO CINÉTICO PARA ADSORÇÃO DO SISTEMA UNDECANO/ISODODECANO EM ZEÓLITA 5 A

Estudo da cinética e do equilíbrio de adsorção da cefamicina C presente na fase de topo (PEG) do SDFA em resina de troca iônica

I REMOÇÃO DE COMPOSTOS ORGÂNICOS CAUSADORES DE GOSTO E ODOR EM ÁGUAS DE ABASTECIMENTO: APLICAÇÃO DE CARVÃO ATIVADO EM PÓ

Termodinâmica em Bioquímica

REMOÇÃO DO CORANTE TÊXTIL VIOLETA REATIVO 5 DE SOLUÇÕES AQUOSAS UTILIZANDO FIBRA DE COCO NAS FORMAS BRUTA E ATIVADA

2º Congresso Internacional de Tecnologias para o Meio Ambiente. Bento Gonçalves RS, Brasil, 28 a 30 de Abril de 2010

COMPARAÇÃO DO PROCESSO DE ADSORÇÃO DO CORANTE REATIVO PRETO 5 UTILIZANDO CARVÃO COMERCIAL DE CASCA DE COCO E LODO ATIVADO GASEIFICADO

REMOÇÃO DE PARACETAMOL USANDO CARVÃO ATIVADO COMERCIAL DE CASCA DE COCO BABAÇU

EXPERIMENTO 3 ADSORÇÃO Determinação da Isoterma de adsorção do azul de metileno em fibra de algodão

Adsorção de Solução. ( é um fenômeno de superfície e é relacionada a tensão superficial de soluções )

PQI-2321 Tópicos de Química para Engenharia Ambiental I

ESTUDO DA VIABILIDADE DE USO DO LODO DE ESTAÇÃO DE TRATAMENTO DE ÁGUA COMO ADSORVENTE ALTERNATIVO

APLICAÇÃO DE QUITOSANA MODIFICADA COMO CATALISADOR HETEROGÊNEO NA PRODUÇÃO DE BIODIESEL POR ESTERIFICAÇÃO

Tabela Periódica dos Elementos

APLICAÇÃO DE BIOADSORVENTE DE CASCA DE COCO VERDE PARA O TRATAMENTO DE EFLUENTES OLEOSOS

PLANEJAMENTO EXPERIMENTAL NO ESTUDO DA REMOÇÃO DO VIOLETA CRISTAL UTILIZANDO CAULIM COMO ADSORVENTE.

APLICAÇÃO DE FIBRA DE CARBONO NO TRATAMENTO DE EMULSÃO ÓLEO DIESEL-ÁGUA

REMOÇÃO DE CÁTIONS METÁLICOS UTILIZANDO ZEÓLITA HBEA

Profª. Drª. Ana Cláudia Kasseboehmer Monitor: Israel Rosalino

ADSORÇÃO DE FENOL E NITROFENÓIS EM SOLUÇÃO AQUOSA USANDO BAGAÇO DE COCO (cocos nucifera L.) COMO ADSORVENTE

2 o CONGRESSO BRASILEIRO DE P&D EM PETRÓLEO & GÁS

ADSORÇÃO DE CORANTES REATIVOS REMAZOL PRETO 5 E REMAZOL VERMELHO RGB UTILIZANDO CARVÃO COMERCIAL DE CASCA DE COCO COMERCIAL E ATIVADO COM CH 3 COOH

ADSORÇÃO DE NÍQUEL E COBALTO EM RESINA DE TROCA IÔNICA COMO ALTERNATIVA PARA O TRATAMENTO DE LICOR DE LIXIVIAÇÃO

CRAQUEAMENTO TÉRMICO DE ÓLEO DE FRITURA: UMA PROPOSTA DE MECANISMO CINÉTICO COM BASE EM AGRUPAMENTOS DE COMPOSTOS

ADSORÇÃO DE CORANTE CRISTAL VIOLETA USANDO ENDOCARPOS DE BUTIÁ CAPITATA COMO ADSORVENTE.

Avaliação e Comparação da Hidrodinâmica e de Transferência de Oxigênio em Biorreator Convencional Agitado e Aerado e Biorreatores Pneumáticos.

ESTUDO DA CRISTALIZAÇÃO DA LACTOSE A PARTIR DA ADIÇÃO DE ETANOL RESUMO

ESTUDO COMPARATIVO ENTRE A DIATOMITA E VERMICULITA NO PROCESSO DE ADSORÇÃO VISANDO APLICAÇÃO NO TRATAMENTO DE ÁGUAS PRODUZIDAS

USO DE QUITOSANA NO TRATAMENTO DE ÁGUAS CONTAMINADAS COM CORANTE ALIMENTÍCIO 1. INTRODUÇÃO

Transcrição:

ADSORÇÃO SELETIVA DE ÁCIDO ISOVALÉRICO COM POLÍMEROS IMPRESSOS MOLECULARMENTE (MIP) A. L. S. Fidélis 1 ; M. C. Tonucci 1 ; B. E. L. Baêta 2 ; S. F. Aquino 2 1- Universidade Federal de Ouro Preto Morro do Cruzeiro, S/N CEP: 35400-000 Ouro Preto MG Brasil Telefone: (31) 3559-1189 E-mail: analuiza.fidelis2@gmail.com - Tonucci2@hotmail.com 2- Departamento de Química Universidade Federal de Ouro Preto Rua Quatro, 786 CEP:35400-000 Ouro Preto MG Brasil Telefone: (31) 3559-1933 E-mail: bruno.baeta@globo.com - sergio@iceb.ufop.br RESUMO: No presente trabalho foi avaliado o estudo de adsorção do ácido isovalérico, um intermediário da digestão anaeróbia de resíduos e efluentes, utilizando Polímeros Impressos Molercularmente (MIPs). As variáveis estudadas foram os parâmetros de isotermas de adsorção, cinéticos e termodinâmicos. Os resultados cinéticos apontam para uma reação com tempo de equilíbrio de 100 minutos e o modelo de pseudo ordem n foi o que melhor descreveu a cinética de adsorção. Além disso o valor de n foi próximo a 3, o que sugere uma fissiosorção. O modelo de Sips foi o modelo que melhor descreveu os dados de isoterma. Além disso os resultados mostraram que o processo de adsorção é espontâneo, e ainda que o processo é endotérmico e entropicamente dirigido. PALAVRAS-CHAVE: ácido isovalérico, Polímeros Impressos Molerculamente (MIPs), adsorção, cinética. ABSTRACT: In the present work, the adsorption studies of isovaleric acid, a metabolite of anaerobic digestion of residues and effluents, was evaluated using Molercularly Imprinted Polymers (MIPs). The variables studied were the isotherms, kinetic and thermodynamic adsorption parameters. The kinetic results point to a reaction with equilibrium time of 100 minutes and the pseudo-order model n best described the adsorption phenomena. Furthermore the value of n was close to 3, which suggests a physisorption. The Sips model was the model that best described the experimental data. The results showed that the adsorption process from MIPs is spontaneous, endothermic and entropically driven. KEYWORDS: isovaleric acid, Molercularly Imprinted Polymers (MIPs), adsorption, kinetics. 1. INTRODUÇÃO O ácido isovalérico está entre os ácidos graxos voláteis (AGV), os quais são ácidos carboxílicos de cadeia curta com até cinco carbonos. Estes ácidos são produzidos durante a fermentação de matéria orgânica biodegradável presente em resíduos e efluentes, sendo essa a principal via de degradação de efluentes em reatores anaeróbios. O acúmulo dos produtos intermediários (AGV) no meio é um fator limitante no reator anaeróbio, uma vez que tais compostos são responsáveis pela redução de ph do meio e à inadequações de ordem termodinâmica. Consequentemente ocorre falha no processo e diminui a eficiência do tratamento e a produção de biogás (Aquino & Chernicharo, 2005). Além disso, os AGVs possuem ampla aplicação no campo alimentício, farmacêutico e ainda na fabricação de polímeros biodegradáveis, substituindo derivados da petroquímica (Zacharof

& Lovitt, 2012). Logo, estes compostos possuem elevado valor agregado, (800 a 2500 USD.ton -1 ) (Zacharof & Lovitt, 2013a). Tal fato corrobora com a necessidade da retirada de AGVs do sistema anaeróbio, tanto para otimizar o processo quanto para obter produtos com elevado valor de mercado. Alguns autores, como Leite (2005), apontam para o uso de adsorção para recuperação de tais produtos. Uma alternativa seria a adsorção seletiva desses compostos, uma vez que a elevada complexidade do meio impossibilita o uso de adsorventes não seletivos, pois implica no uso de elevadas dosagens de adsorvente, resultando no aumento do custo. Dentre esses adsorventes específicos cabe lugar de destaque para os Polímeros Molecularmente Impressos (MIPs), os quais são materiais sintetizados para possuírem elevada capacidade de reconhecimento, e consequentemente serem mais seletivos. 2. MATERIAIS E MÉTODOS Os materiais adsorventes analisados foram previamente sintetizados pelo grupo de pesquisa, sendo testado os Lote 1 (MIP 1 e NIP 1) e Lote 2 (MIP 2 e NIP 2). Os lotes se diferenciam quanto ao monômero e solvente utilizados na síntese. 2.1. Cinética de adsorção Os estudos cinéticos foram realizados para determinar o tempo de equilíbrio termodinâmico do processo de adsorção. Os testes cinéticos foram realizados em frascos âmbar de 30 ml contendo 20 ml de solução de ácido isovalérico a uma concentração de 50 mg.l -1 e 10 mg de adsorvente. Os frascos foram agitados a 180 rpm em incubadora Shaker. Alíquotas de solução foram coletadas para monitoramento nos tempos de 10, 15, 30, 60, 120, 180, 240 e 300 min. Foi feito também um branco para cada tempo de coleta, ou seja, solução de adsorvato sem acréscimo de adsorvente nas mesmas condições. Todo o experimento foi realizado em triplicata. No tempo estipulado uma alíquota de 150 µl de cada amostra coletada foi centrifugada e 100 µl do sobrenadante foi analisado em cromatógrafo líquido de alta eficiência (CLAE) Shimadzu, com detector DAD ajustado em um comprimento de onda λ = 208 nm. O volume de injeção foi de 30 µl e a separação cromatográfica foi realizada em coluna de troca iônica Aminex HPX-87H (Bio- Rad ), mantida a 60ºC utilizando como fase móvel uma solução de ácido sulfúrico (49-51% - Fluka) 0,01 M com fluxo isocrático de 0,6 ml.min -1. O método utilizado para análise do ácido isovalérico foi devidamente validado por Mesquita et al. (2013) e faixa linear contemplou as seguintes concentrações: 12,5; 100; 200; 500 e 1000 mg.l -1. Para análise dos dados foram testados os modelos de pseudo segunda ordem e pseudo ordem n. 2.2. Isotermas de adsorção Após estabelecido o tempo de equilíbrio termodinâmico da adsorção foram realizados os testes de determinação das isotermas de adsorção dos diferentes polímeros sintetizados. Tais testes foram realizados em frascos âmbar de 30 ml contendo 10 mg de adsorvente e 20 ml de solução de adsorvato em diferentes concentrações (30, 40, 50, 70, 80, 100, 120, 160, 180 e 200 mg.l -1 ). Os frascos foram agitados a 180 rpm em incubadora Shaker e alíquotas de solução foram coletadas para monitoramento após o tempo de equilíbrio preestabelecido. Foi feito também um branco para cada concentração estudada e cada uma das condições descritas acima foram realizadas em triplicata. Após o tempo de equilíbrio, alíquotas de 1 ml foram coletadas e foram analisadas como descrito no item 2.1. Os modelos de isotermas analisados foram: Modelo de Langmuir, Freundlich e Sips. 2.3. Termodinâmica de adsorção Para entender com mais detalhes a natureza da interação do ácido isovalérico com os MIPs, os parâmetros termodinâmicos entalpia (ΔH), entropia (ΔS) e a energia livre de Gibbs (ΔG) do processo de adsorção foram calculados. Para calcular ΔH e ΔS foi utilizada a equação de Van't Hoff como demonstrado por Tonucci et al. (2015). 3. RESULTADOS 3.1. Cinética de adsorção Os resultados dos ensaios de cinética, gráficos de q e versus tempo, bem como os modelos cinéticos de pseudo ordem n e pseudo segunda ordem estão representados na Figura 1. É possível

notar que há um rápido aumento da capacidade de adsorção durante os primeiros 50 minutos. Após esse período, há uma limitação da capacidade máxima de adsorção, fazendo com que o aumento seja lento até atingir o equilíbrio. Essa desaceleração ocorre devido ao aumento da cobertura superficial dos materiais adsorventes. Figura 1: Variação da capacidade de adsorção do ácido isovalérico em MIP1 e NIP1 (A) e MIP2 e NIP2 (B) em função do tempo a 25 o C O tempo de equilíbrio dos polímeros utilizados foi atingido em 100 min. No equilíbrio foi possível observar valores de capacidade de adsorção experimental (q e) de 69,97; 29,32; 73,67 e 52,86 mg g -1, para os adsorventes MIP1, NIP1, MIP2 e NIP2 respectivamente. É possível observar a superioridade dos MIPs frente aos seus respectivos NIPs, o que reflete a provável presença de sítios seletivos. A partir dos dados apresentados na Tabela 1 é possível observar os parâmetros obtidos para cada modelo não linear bem como as funções de erro para todos os materiais estudados. Pelos valores das funções de erro nota-se que o modelo de pseudo ordem n foi o que melhor se ajustou aos dados. O parâmetro n, do modelo de pseudo ordem n mede a ordem da reação. Para os materiais utilizados neste trabalho, os valores obtidos foram próximos a 3. Tal valor sugere que a velocidade de remoção de adsorvato em relação ao tempo seja diretamente proporcional ao cubo da diferença na concentração de saturação, ocorrendo uma adsorção rápida, pelo menos até que a concentração de saturação seja alcançada. Essa alta taxa de adsorção sugere um mecanismo de fisiossorção pelos polímeros, uma vez que as ligações menos energéticas e superficiais ocorrem mais rapidamente. Comparando-se os valores de capacidade de adsorção experimental (q e) com os valores teóricos de q e, apresentados na tabela, nota-se que são próximos, o que evidencia que o modelo de pseudo ordem n se ajusta de fato aos dados. 3.2. Isotermas de adsorção A Figura 2 apresenta as curvas de isotermas dos materiais nas temperaturas estudadas (15, 25, 35 e 45 o C). Também são apresentados os dados não linearizados para os modelos de Langmuir, Freundlich e Sips. Diante dos gráficos de isoterma obtidos (Figura 2), pode-se observar pelo formato das curvas que a adsorção de ácido isovalérico pelos polímeros é um processo favorável para todos os materiais. Também é possível notar que o aumento da temperatura aumenta a capacidade de adsorção, ou seja, trata-se de um processo endotérmico, no qual é favorecido pelo aquecimento. Em estudos de adsorção é comumente encontrado processos exotérmicos, porém para MIPs é habitual defrontar-se com estudos que relatam processos endotérmicos (KYZAS; BIKIARIS; LAZARIDIS, 2009; KYZAS; LAZARIDIS; BIKIARIS, 2013; SAAVEDRA, 2017).

Tabela 1: Parâmetros cinéticos da adsorção dos polímeros MIPs e NIPs a 25 o C Modelo MIP1 NIP1 MIP2 NIP2 Pseudo ordem n Q e (mg.g -1 ) 72,01 33,20 76,56 58,20 kn (g.mg -1.min -1 ) 0,0006 0,00007 0,0001 0,00006 N 2,7 3 3 3 Função de erro R 2 0,967 0,841 0,947 0,967 NMRS 0,614 5,918 2,514 1,477 Pseudo segunda ordem Q e (mg.g -1 ) 69,31 27,33 71,98 52,80 k2(g.mg -1.min -1 ) 0,007 0,003 0,005 0,003 Função de erro R 2 0,953 0,761 0,871 0,955 NMRS 0,809 5,589 2,997 18,403 Ao analisar os gráficos da Figura 2 é possível observar que de fato, os MIPs possuem maior capacidade de adsorção em comparação aos respectivos NIPs. A superioridade dos MIPs comparados aos NIPs ocorre devido a presença dos sítios de reconhecimento formados, logo comprova que houve de fato a impressão molecular. Por meio dos valores de R 2 e NMRS (%), o modelo de Sips foi selecionado como o que melhor se adequou aos dados e por isso só esse será aqui apresentado e discutido. Na Tabela 2 estão apresentados os parâmetros dos modelos de Sips para os diferentes adsorventes em diferentes temperaturas. A constante n representa o grau heterogeneidade e Q max a capacidade máxima de adsorção (mg.g -1 ). Os resultados expostos na Tabela 2 evidenciam que os materiais utilizados apresentam sítios heterogêneos, pois os valores de n foram diferentes de 1, o que indica que as energias de ligação entre o ácido isovalérico e os adsorventes são heterogêneas, ou seja, há diferentes tipos de interações ocorrendo no processo. Já os valores de Q max obtidos, mostram que os MIPs apresentam maior capacidade de adsorção comparativamente aos NIPs. Em temperaturas mais elevadas, como 45 o C a capacidade de adsorção dos MIPs chegam próximo a 350 mg.g -1, enquanto os NIPs apresentam valores próximos a 200 mg.g -1. Tais valores evidenciam a superioridade dos MIPs, que ocorrem provavelmente devido à impressão molecular, possibilitando maior difusão do ácido isovalérico nos sítios de adsorção.

Figura 2: Isotermas de adsorção de ácido isovalérico após 2 h de contato em diferentes adsorventes nas temperaturas de 15 o C (A), 25 o C (B), 35 o C (C) e 45 o C (D) 3.3 Termodinâmica de adsorção Os valores dos parâmetros termodinâmicos estão apresentados na Tabela 3. Os valores de energia livre de Gibbs ( adsg ) evidenciam que todos os processos de adsorção analisados são espontâneos. Tal resultado condiz com os formatos das isotermas apresentados na Figura 2 em que as concavidades das curvas caracterizam processos espontâneos. Os valores de entalpia ( adsh ), apresentados na Tabela 3, confirmam um processo de adsorção endotérmico para todos os materiais estudados. Além disso, esse valor fornece informação acerca da energia envolvida na interação entre adsorvente e adsorvato, o qual indica se a interação é química ou física.

Tabela 2: Parâmetros do modelo de isoterma de adsorção de Sips Temperatura ( o C) 15 25 35 45 MIP1 Q max (mg.g -1 ) 104.63 156.09 235.86 349.96 b (L.mg -1 ) 0.031 0.051 0.041 0.024 n 0.58 0.90 0.43 0.73 R 2 0.903 0.991 0.987 0.987 NMRS 3.611 0.992 3.376 2.419 NIP1 Q max (mg.g -1 ) 63.63 90.41 179.65 190.45 b (L.mg -1 ) 0.010 0.031 0.033 0.028 n 0.91 0.41 0.72 0.58 R 2 0.948 0.991 0.973 0.984 NMRS 3.377 1.147 2.053 2.428 MIP2 Q max (mg.g -1 ) 96.49 209.72 327.71 358.62 b (L.mg -1 ) 0.012 0.051 0.022 0.022 n 0.84 0.34 0.73 0.92 R 2 0.981 0.971 0.977 0.988 NMRS 1.366 3.602 2.204 1.967 NIP2 Q max (mg.g -1 ) 71.44 198.61 214.12 228.52 b (L.mg -1 ) 0.028 0.040 0.023 0.023 n 0.82 0.90 0.92 0.47 R 2 0.981 0.971 0.940 0.980 NMRS 1.240 2.410 2.641 3.075 Os valores de adsh encontrados para os MIPs 1 e 2 foram próximos (81,39 e 83,90 kj,mol - 1 ) e superiores aos encontrados para os NIPs 1 e 2 (56,92 e 53,41 kj.mol -1 ). Esse resultado confirma que as interações no processo de adsorção em materiais com impressão molecular são mais energéticas dos que as do processo com materiais sem impressão e sugere interações energeticamente mais fortes, mais específicas e seletivas, como esperado. A entropia do processo ( adss ) apresentou valores positivos para todos os materiais. Esses resultados indicam que há um aumento do grau de liberdade no sistema, o qual é gerado pela dessolvatação do ácido isovalérico pelas moléculas de água após a adsorção do ácido pelos polímeros. Para que um processo seja espontâneo é necessário apresentar a relação exposta pela equação 1. G ads = H ads-t S ads < 0 (1)

Mas no presente trabalho os sistemas apresentaram-se espontâneos na condição em que T S ads> H ads. Dessa forma, pode-se afirmar que o aumento do grau de liberdade na interface do adsorvente foi o que guiou o processo de adsorção, ou seja, a adsorção de ácido isovalérico nos MIPs sintetizados é um processo entropicamente dirigido. Tabela 3: Parâmetros termodinâmicos da adsorção de ácido isovalérico nos polímeros Temperatura ( o C) 15 25 35 45 Temperatura ( o C) 15 25 35 45 MIP1 MIP2 adsg (kj.mol 1 ) -21,5-25,0-28,6-32,2 adsg (J.mol 1 ) -21,9-25,6-29,3-33,0 adsh (kj.mol 1 ) 81,39 adsh (kj.mol 1 ) 83,90 T adss (kj.mol 1 ) 102,9 106,4 110,0 113,6 T adss (kj.mol 1 ) 105,8 109,5 113,2 116,9 R 2 0,961 R 2 0,980 NIP1 NIP2 adsg (kj.mol 1 ) -21,3-24,0-26,7-29,4 adsg (kj.mol 1 ) -22,9-25,5-28,2-30,8 adsh (kj.mol 1 ) 56,92 adsh (kj.mol 1 ) 53,40 T adss (kj.mol 1 ) 78,2 80,9 83,6 86.3 T adss (kj.mol 1 ) 76,3 78,9 81,6 84,2 R 2 0,985 R 2 0,944

4. CONCLUSÕES Os resultados apresentados neste trabalho possibilitaram determinar que o modelo cinético que melhor descreveu os dados obtidos foi o modelo de pseudo ordem n, onde o valores de n foram próximos a 3, que indica alta taxa de adsorção e consequentemente fisiossorção. De acordo com o estudo de isotermas de adsorção, o modelo de Sips foi o que melhor se adequou aos dados experimentais em todas as temperaturas de estudo. Obteve-se capacidades de adsorção máximas de 349,96; 190,45; 358,62 e 228,52 mg.g -1 para MIP1, NIP1, MIP2 e NIP2 respectivamente, a 45 o C. Tais valores comprovam que de fato, os MIPs apresentam maior interação pelo adsorvato devido à impressão molecular. Também é possível observar a presença de sítios de adsorção heterogêneos devido aos valores de n 1. A partir dos valores negativos de G o pode-se concluir que os estudos de adsorção a partir dos polímeros são espontâneos. Os valores positivos de entalpia evidenciam um processo endotérmico para todos os materiais estudados e os valores de entropia indicam processos entropicamente dirigidos. 5. REFERÊNCIAS BIBLIOGRÁFICAS anaeróbio de leito fixo e extração em resina de troca iônica e com solvente. [s.l: s.n.]. MESQUITA, P. DA L. et al. Validation of a liquid chromatography methodology for the analysis of seven volatile fatty acids intermediates of anaerobic digestion Validação de método de cromatografia líquida para a determinação de sete ácidos graxos voláteis intermediários da digestão. Engenharia Sanitária e Ambiental, v. 18, n. 4, p. 295 302, 2013. SAAVEDRA, L. N. M. Sínteses de polímeros molecularmente impressos para adsorção seletiva de quinolina em matriz orgânica. [s.l.] Universidade Federal de Ouro Preto, 2017. TONUCCI, M. C.; GURGEL, L. V. A.; AQUINO, S. F. DE. Activated carbons from agricultural byproducts (pine tree and coconut shell), coal, and carbon nanotubes as adsorbents for removal of sulfamethoxazole from spiked aqueous solutions: Kinetic and thermodynamic studies. Industrial Crops and Products, v. 74, p. 111 121, 2015. ZACHAROF, M. P.; LOVITT, R. W. Complex effluent streams as a potential source of volatile fatty acids. Waste and Biomass Valorization, v. 4, p. 557 581, 2013. ZACHAROF, M. P.; LOVITT, R. W. Recovery of volatile fatty acids (VFA) from complex waste effluents using membranes. Water Science and Technology, v. 69, p. 495 503, 2012. AQUINO, S.; CHERNICHARO, C. Em Reatores Under Stress Conditions : Causes and Control Strategies. Engenharia Sanitária e Ambiental, v. 10, p. 152 161, 2005. KYZAS, G. Z.; BIKIARIS, D. N.; LAZARIDIS, N. K. Selective separation of basic and reactive dyes by molecularly imprinted polymers (MIPs). Chemical Engineering Journal, v. 149, n. 1 3, p. 263 272, 2009. KYZAS, G. Z.; LAZARIDIS, N. K.; BIKIARIS, D. N. Optimization of chitosan and??-cyclodextrin molecularly imprinted polymer synthesis for dye adsorption. Carbohydrate Polymers, v. 91, n. 1, p. 198 208, 2013. LEITE, J. A. C. Produção de ácidos graxos voláteis por fermentação acidogênica em reator