Correlação e Regressão

Tamanho: px
Começar a partir da página:

Download "Correlação e Regressão"

Transcrição

1 Correlação e Regressão Análise de dados. Tópico Prof. Dr. Ricardo Primi & Prof. Dr. Fabian Javier Marin Rueda Adaptado de Gregory J. Meyer, University of Toledo, USA; Apresentação na Universidade e São Francisco, São Paulo, Brasil Julho,

2 Correlação e Regressão Mensura a relação entre variáveis Correlação = co- relação = co- variância = r Geralmente examina variáveis bidimensionais Mas diferenças de média entre grupos também podem ser expressas por meio da co- relação e.g., VI = DiagnósWco: Transtorno PsicóWco (codificado como ) vs. outros transtornos (codificados como ) VD = X- % como um índice de Acurácia Perceptual t- test comparando M PsychoWc vs. M Other de X- % pode ser expressa como a r do DiagnósWco com X- % i.e., r DiagnosWco - X- % r e t terão o mesmo valor de p ou de significância esta`swca

3 Correlação e Regressão Em geral as medidas estão associadas por relações lineares Mas existem técnicas para correlações e regressões não lineares Correlação Causalidade r s assumem valores entre -. e +. O sinal mostra a direção das relações Os valores absolutos mostram a magnitude da relação. = ausência de relação -. or +. = relação perfeita Visualizando as magnitudes das correlações "ForcedDegreeofCorrelaWon.sps"

4

5 var var... var.. var. var

6 Correlation plot T_O T_O T_O T_O T_O T_O T_O T_O T_O T_O T_N T_N T_9N T_9N T_9N T_9N T_N T_N T_E T_E T_E T_E T_E T_E T_E T_E T_C T_C T_C T_C T_C T_C T_C T_C T_C T_A T_A T_A T_A T_A T_A T_A T_A T_A T_A T_A T_A T_A T_A T_A T_A T_A T_A T_C T_C T_C T_C T_C T_C T_C T_C T_C T_E T_E T_E T_E T_E T_E T_E T_E T_N T_9N T_N T_9N T_N T_9N T_N T_9N T_O T_O T_O T_O T_O T_O T_O T_O T_O T_O

7 var.. var. var

8 Correlation plot T_Em T_Em T_Em T_Em T_Em T_9Em T_Em T_Em T_Sc T_Sc T_Sc T_Sc T_Sc T_Sc T_Sc T_9Sc T_Ac T_Ac T_Ac T_Ac T_Ac T_Ac T_Ac T_Ac T_Ac T_Ac T_Ac T_Ac T_Ac T_Ac T_Ac T_Ac T_9Sc T_Sc T_Sc T_Sc T_Sc T_Sc T_Sc T_Sc T_Em T_Em T_9Em T_Em T_Em T_Em T_Em T_Em

9 Correlation plot SE Grit SlfSoc SlfEmo SlfAcd Locus ProSoc PeerProb HypAc EmoSym CndProb Open Neuro Extra Consc Agree Open Neuro Extra Consc Agree Agree Consc Extra Neuro Open Agree Consc Extra Neuro Open CndProb EmoSym HypAc PeerProb ProSoc Locus SlfAcd SlfEmo SlfSoc Grit SE

10 9 RMG RG GF_GC EPN_EG

11 Correlação e Regressão DisWnção esta`swca Correlação variáveis randômicas, X e Y Nenhuma delas está sob controle do experimentador Regressão: variável fixa (X), variável randômica (Y) se presume X que está sobre controle do experimentador e somente os valores que interessam são estudados Essa diswnção é precisa tecnicamente mas não necessária no uwlização práwca das correlações e regressões

12 Fórmula r = N i = ( x i x ) ( y i y ) s x s y N ( ) r = N i = z xi z yi N

13 Produto- momento! A média do produto de dois momentos indicando co- relação Produto : mulwplicação de duas variáveis (X, Y) Momento: função aplicada a média de desvios z = ( X X) σ Momentos centrais: : o = Média, º = Variancia, º = Assimetria, o = Kurtose Os escores z são momentos Desvios da média em unidades de desvio padrão Co- relação: ocorrência simultânea together z para X pareado copm z para Y Então a correlação Produto- Momento de Pearson (r) é a magnitude média em que pares de escores (X, Y) se correlacionam por desviarem simultaneamente de suas respecwvas médias zxz r = N Y

14 Coeficiente de Correlação de Pearson - Produto Momento n Nota A Nota B : : :

15 Correlação e Regressão DisWnção PráWca Correlação: Magnitude de associação entre X e Y Ambas podem ser desenhadas no eixo horizontal (abscissa) porque ambas poderiam ser designadas como X Regressão: Usa a associação para desenvolver uma equação que prevê Y a parwr de X a parwr da melhor forma possível. "Regride Y em X" Desenha X no eixo horizontal; Y no eixo verwcal (ordenada)

16 r Produto Momento: Exemplo ID X Y M.. σ.. Sum Y Insira X andy no SPSS e calcule o r r XY =. X

17 Reta de regressão Equação preditora: Ŷ= b + b X X = valor do preditor Y = valor do critério Ŷ= valor predito Y b = inclinação da linha b = constante X

18 Equação da reta

19 Reta de regressão Melhor previsão de Y em relação aos valores de X Equação de previsão: Ŷ= b + b X Na qual: X = valor do preditor (variável preditora ou VI) Ŷ= valor previsto de Y (variável resposta ou VD ou critério) i.e., valor de Y na linha, dado X b = inclinação (slope) da linha, Mudança em Ŷ para uma mudança de - unidade de mudança em X b = r XY (S Y /S X ) b = constante (intercept) Ŷ quando X =. b = M Y b M X

20 Reta de regressão Gere a equação de regressão do exemplo no SPSS A equação de previsão minimiza os erros, definidos como Em que : SS Residual = (Y Ŷ) Y = valores observados (i.e., os valores do gráfico de dispersão) Ŷ= valores preditos na reta de regressão Portanto, SS Residual indica a extensão em que a linha não consegue prever os dados observados SS Resid na regressão é análogo ao SS WG na ANOVA i.e., variabilidade nas células que não pode ser explicada pelo modelo.

21 Reta de regressão: Exemplo SS Resid = (Y Ŷ) Sum of squared distances of each person's Y score from the line of predicwon Y X

22 Reta de regressão : Exemplo Equação de previsão: Ŷ= b + b X b = r XY (S Y /S X ) =.(./.) =. (Porque S Y = S X, r = b ; isso é raro acontecer) b = M Y b M X =.() =. =. Ŷ=. + (.)(X) ID X Y Ŷ M.. S.. Calcule Ŷ para cada X e.g., for X = Ŷ =. + (.)() =.

23 Reta de regressão : Exemplo Equação de previsão: Ŷ= b + b X b = r XY (S Y /S X ) =.(./.) =. (Porque S Y = S X, r = b ; isso é raro acontecer) b = M Y b M X =.() =. =. Ŷ=. + (.)(X) ID X Y Ŷ..... M.. S.. Calcule Ŷ para cada X e.g., for X = Ŷ =. + (.)() =.

24 Reta de regressão exemplo Y Ŷ= b + b X =. + (.)(X) X b =.; mudança no escore bruto de Ŷ para a unidade de mudança em X b =.; constante; valor de Ŷquando X =

25 Como na ANOVA, a análise de regressão parwciona a variância da variável dependente em componentes mutuamente exclusivos e exauswvos:. Aquilo que é explicado pelo modelo i.e., pela VI ou VIs. Aquilo que não pode ser explicado pelo modelo i.e., variância residual SS Total = SS Modelo + SS Residual Como definido, SS Residual = (Y Ŷ) Soma das distâncias ao quadrado de cada escore Y das pessoas em relação a reta de regressão (linha de predição)

26 Soma de Quadrados da Regressão SS Residual = (Y Ŷ) Soma das distâncias ao quadrado de cada escore Y das pessoas em relação a reta de previsão Y X

27 Soma de Quadrados da Regressão SS Total = (Y M Y ) Soma das distâncias ao quadrado de cada escore Y das pessoas em relação à média geral de Y i.e., numerador da variância de Y; total de variância na VD Y X

28 Soma de Quadrados da Regressão SS Modelo = (Ŷ M Y ) Soma das distâncias ao quadrado de cada escore predito Y (i.e., a linha) da média de Y Indica a variação na VD que pode ser explicada pelo modelo Os pontos observados de dados não são considerados; somente a comparação do modelo de Y tem relação à média de Y Y X

29 Soma de Quadrados da Regressão X Y X Y X Y SS Total = (Y MY) SS Model = (Ŷ MY) SS Residual = (Y Ŷ)

30 Saídas do SPSS (Output) Dados do Modelo: as Tabelas Tabelas da ANOVA SS Modelo é chamado SS Regression Variação (i.e., SS) é dividida pelo gl (df) correspondente para calcular- se a a variância (i.e., MS) MS = SS / df F é calculado por MS Modelo /MS Residual i.e., A variância explicada pelo modelo é maior do que a variância não explicada? Avaliar a significância usando df Numerador e df Denominador

31 Saídas do SPSS (Output) Dados do Modelo: as Tabelas ModeloTabelaSumária(Summary table) R =proporçãodavariânciatotal explicadapelomodelode regressão R = SS Model / SS Total No exemplo: R =. /. =. R = R = r YŶ No exemplo:r =. =. R = r YŶ =.

32 Saídas do SPSS (Output) Dados do Modelo: Tabela sumária (cont.) as Tabelas R ajustado = EsWmaWva do parâmetro populacional, ρ (rho) Em que p = # de preditores No exemplo a: Adj. R = - [(-.)(- )/(- - )] = - [(.*)/] =. Erro padrão da EsWmaWva (SEE) Indica o grau de incerteza na previsão SEE = MS Residual No exemplo: SEE =. =.9

33 Coeficientes de regressão: b, B, &β Indicam a mudança em Ŷ para cada a- unidade de mudança em X b = coeficiente de regressão não padronizado Mudança expressa em unidades do escore bruto Mudança no escore bruto Ŷpara uma unidade de mudança no escore bruto de X B = SPSS notação para b β (Beta) = coeficiente de regressão padronizado. Mudança expressa em unidades de desvio padrão (SD) Número de mudanças em SD em Ŷ para uma mudança de SD em X

34 Coeficientes de regressão: b, B, &β b pode ser muito maior que β (& vice versa) Isso dependerá da unidade de medida b = β quando: S X = S Y e.g., quando X e Y são escores z Interpretação b é empregado quando as unidades tenham um senwdo inerente e.g., renda, altura, peso β é empregado quando as métricas são arbitrárias e.g., maioria das escalas psicológicas Note: b para (constante) é o termo constante (intercept, b )

35 Pressupostos Correlação: como uma esta`swca descriwva não há assunções prévias Regressão: requer assunções Ambas relacionadas às distribuições condicionais

36 Distribuições Marginais e Condicionais Distribuições marginais: Distribuição de Y desconsiderando X i.e., Variância de Y transpassando todos os níveis de X: S Y Distribuição condicional: DistribuWção de Y condicionada em X i.e, Variância de Y em um dado valor de X: S Y X Considere as diferenças usando a sintaxe do SPSS "Marginal andcondiwonaldistribuwons.sps"

37 Distribuição marginal de Y_ Std. Dev =.99 Mean =. N = Marginal Distribution of Y_

38 Distribuiçãocondicional de Y_

39 Duas assunções na regressão Normalidade: Y é normalmente distribuído para cada valor de X Procure por assimetria <. e curtose <. HomocedasWcidade: S de Y é constante quando calculado separadamente para cada valor específico de X; i.e., cada distribuição condicional Análogo à assunção de variâncias iguais dentro dos grupos no t- test ou ANOVA JusWfica o uso de um único MS Residual para: Calcular a significância esta`swca Determinar o erro padrão da eswmawva (SEE) SEE é simplesmente o SD das distribuições condicionais SEE = S Y X ( Y Yˆ ) SYX = = SY ( R ) N use N because estimated a and b from data

Estatística e Probabilidade

Estatística e Probabilidade Correlação Estatística e Probabilidade Uma correlação é uma relação entre duas variáveis. Os dados podem ser representados por pares ordenados (x,y), onde x é a variável independente ou variável explanatória

Leia mais

AULAS 13, 14 E 15 Correlação e Regressão

AULAS 13, 14 E 15 Correlação e Regressão 1 AULAS 13, 14 E 15 Correlação e Regressão Ernesto F. L. Amaral 23, 28 e 30 de setembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de

Leia mais

Esta aula foi compilada por alunos. Caso encontre erros, favor procurar no email: [email protected] ou. [email protected]

Esta aula foi compilada por alunos. Caso encontre erros, favor procurar no email: luisfca@gmail.com ou. landeira@puc-rio.br Prof. Landeira-Fernandez Bioestatística Esta aula foi compilada por alunos. Caso encontre erros, favor procurar no email: [email protected] ou Rio de Janeiro, 23 de junho de 2015. [email protected] AULA

Leia mais

IMES Catanduva. Probabilidades e Estatística. no Excel. Matemática. Bertolo, L.A.

IMES Catanduva. Probabilidades e Estatística. no Excel. Matemática. Bertolo, L.A. IMES Catanduva Probabilidades e Estatística Estatística no Excel Matemática Bertolo, L.A. Aplicada Versão BETA Maio 2010 Bertolo Estatística Aplicada no Excel Capítulo 3 Dados Bivariados São pares de valores

Leia mais

Análise de componentes principais (PCA)

Análise de componentes principais (PCA) Análise de componentes principais (PCA) Redução de dados Sumarizar os dados que contém muitas variáveis (p) por um conjunto menor de (k) variáveis compostas derivadas a partir do conjunto original. p k

Leia mais

Regressão Linear em SPSS

Regressão Linear em SPSS Regressão Linear em SPSS 1. No ficheiro Calor.sav encontram-se os valores do consumo mensal de energia, medido em milhões de unidades termais britânicas, acompanhados de valores de output, em milhões de

Leia mais

Objetivos: Construção de tabelas e gráficos, escalas especiais para construção de gráficos e ajuste de curvas à dados experimentais.

Objetivos: Construção de tabelas e gráficos, escalas especiais para construção de gráficos e ajuste de curvas à dados experimentais. 7aula Janeiro de 2012 CONSTRUÇÃO DE GRÁFICOS I: Papel Milimetrado Objetivos: Construção de tabelas e gráficos, escalas especiais para construção de gráficos e ajuste de curvas à dados experimentais. 7.1

Leia mais

Distribuição de Freqüência

Distribuição de Freqüência Distribuição de Freqüência Representação do conjunto de dados Distribuições de freqüência Freqüência relativa Freqüência acumulada Representação Gráfica Histogramas Organização dos dados Os métodos utilizados

Leia mais

Correlação e Regressão Linear

Correlação e Regressão Linear Correlação e Regressão Linear A medida de correlação é o tipo de medida que se usa quando se quer saber se duas variáveis possuem algum tipo de relação, de maneira que quando uma varia a outra varia também.

Leia mais

Análise de Regressão. Tópicos Avançados em Avaliação de Desempenho. Cleber Moura Edson Samuel Jr

Análise de Regressão. Tópicos Avançados em Avaliação de Desempenho. Cleber Moura Edson Samuel Jr Análise de Regressão Tópicos Avançados em Avaliação de Desempenho Cleber Moura Edson Samuel Jr Agenda Introdução Passos para Realização da Análise Modelos para Análise de Regressão Regressão Linear Simples

Leia mais

AULAS 02 E 03 Modelo de Regressão Simples

AULAS 02 E 03 Modelo de Regressão Simples 1 AULAS 02 E 03 Modelo de Regressão Simples Ernesto F. L. Amaral 04 e 09 de março de 2010 Métodos Quantitativos de Avaliação de Políticas Públicas (DCP 030D) Fonte: Wooldridge, Jeffrey M. Introdução à

Leia mais

Método dos mínimos quadrados - ajuste linear

Método dos mínimos quadrados - ajuste linear Apêndice A Método dos mínimos quadrados - ajuste linear Ao final de uma experiência muitas vezes temos um conjunto de N medidas na forma de pares (x i, y i ). Por exemplo, imagine uma experiência em que

Leia mais

INE 7001 - Procedimentos de Análise Bidimensional de variáveis QUANTITATIVAS utilizando o Microsoft Excel. Professor Marcelo Menezes Reis

INE 7001 - Procedimentos de Análise Bidimensional de variáveis QUANTITATIVAS utilizando o Microsoft Excel. Professor Marcelo Menezes Reis INE 7001 - Procedimentos de Análise Bidimensional de variáveis QUANTITATIVAS utilizando o Microsoft Excel. Professor Marcelo Menezes Reis O objetivo deste texto é apresentar os principais procedimentos

Leia mais

Introdução. Existem situações nas quais há interesse em estudar o comportamento conjunto de uma ou mais variáveis;

Introdução. Existem situações nas quais há interesse em estudar o comportamento conjunto de uma ou mais variáveis; UNIVERSIDADE FEDERAL DA PARAÍBA Correlação e Regressão Luiz Medeiros de Araujo Lima Filho Departamento de Estatística Introdução Eistem situações nas quais há interesse em estudar o comportamento conjunto

Leia mais

Faculdade Sagrada Família

Faculdade Sagrada Família AULA 12 - AJUSTAMENTO DE CURVAS E O MÉTODO DOS MÍNIMOS QUADRADOS Ajustamento de Curvas Sempre que desejamos estudar determinada variável em função de outra, fazemos uma análise de regressão. Podemos dizer

Leia mais

Contabilometria. Aula 10 Grau de Ajustamento e Verificação das Premissas MQO

Contabilometria. Aula 10 Grau de Ajustamento e Verificação das Premissas MQO Contabilometria Aula 10 Grau de Ajustamento e Verificação das Premissas MQO Ferramentas -------- Análise de Dados -------- Regressão Regressão Linear - Exemplo Usando o Excel Regressão Linear Output do

Leia mais

A função do primeiro grau

A função do primeiro grau Módulo 1 Unidade 9 A função do primeiro grau Para início de conversa... Já abordamos anteriormente o conceito de função. Mas, a fim de facilitar e aprofundar o seu entendimento, vamos estudar algumas funções

Leia mais

Correlação e Regressão

Correlação e Regressão Notas sobre Regressão, Correlação e Regressão Notas preparadas por L.A. Bertolo Índice Termos básicos e conceitos...1 Regressão simples...5 Regressão Múltipla...13 Terminologia de Regressão...20 Fórmulas

Leia mais

Análise de Regressão Linear Simples e Múltipla

Análise de Regressão Linear Simples e Múltipla Análise de Regressão Linear Simples e Múltipla Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Carla Henriques (DepMAT ESTV) Análise de Regres. Linear Simples e Múltipla

Leia mais

Análise de regressão linear simples. Departamento de Matemática Escola Superior de Tecnologia de Viseu

Análise de regressão linear simples. Departamento de Matemática Escola Superior de Tecnologia de Viseu Análise de regressão linear simples Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução A análise de regressão estuda o relacionamento entre uma variável chamada a variável dependente

Leia mais

AULAS 04 E 05 Estatísticas Descritivas

AULAS 04 E 05 Estatísticas Descritivas 1 AULAS 04 E 05 Estatísticas Descritivas Ernesto F. L. Amaral 19 e 28 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

CRM e Prospecção de Dados

CRM e Prospecção de Dados CRM e Prospecção de Dados Marília Antunes aula de 11 de Maio 09 6 Modelos de regressão 6.1 Introdução No capítulo anterior foram apresentados alguns modelos preditivos em que a variável resposta (a variável

Leia mais

Métodos Matemáticos para Gestão da Informação

Métodos Matemáticos para Gestão da Informação Métodos Matemáticos para Gestão da Informação Aula 05 Taxas de variação e função lineares III Dalton Martins [email protected] Bacharelado em Gestão da Informação Faculdade de Informação e Comunicação

Leia mais

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010. Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Leia mais

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 4 a LISTA DE EXERCÍCIOS GBQ12 Professor: Ednaldo Carvalho Guimarães AMOSTRAGEM

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 4 a LISTA DE EXERCÍCIOS GBQ12 Professor: Ednaldo Carvalho Guimarães AMOSTRAGEM 1 UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 4 a LISTA DE EXERCÍCIOS GBQ12 Professor: Ednaldo Carvalho Guimarães AMOSTRAGEM 1) Um pesquisador está interessado em saber o tempo médio que

Leia mais

LISTA DE EXERCÍCIOS 2 INE 7001 PROF. MARCELO MENEZES REIS ANÁLISE BIDIMENSIONAL

LISTA DE EXERCÍCIOS 2 INE 7001 PROF. MARCELO MENEZES REIS ANÁLISE BIDIMENSIONAL LISTA DE EXERCÍCIOS INE 7 PROF. MARCELO MENEZES REIS ANÁLISE BIDIMENSIONAL ) Uma pesquisa foi realizada com os integrantes das três categorias (professores, servidores, estudantes) da UFSC. Perguntou-se

Leia mais

http://www.de.ufpb.br/~luiz/

http://www.de.ufpb.br/~luiz/ UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Luiz Medeiros http://www.de.ufpb.br/~luiz/ Vimos que é possível sintetizar os dados sob a forma de distribuições de frequências

Leia mais

canal 1 canal 2 t t 2 T

canal 1 canal 2 t t 2 T ircuito L (Prova ) --7 f [khz] L T [s] s canal canal t t T Fig. ircuito usado Tarefas: ) Monte o circuito da figura usando o gerador de funções com sinais harmônicos como força eletromotriz. Use um resistor

Leia mais

TUTORIAL SOBRE ANÁLISE DE REGRESSÃO

TUTORIAL SOBRE ANÁLISE DE REGRESSÃO TUTORIAL SOBRE ANÁLISE DE REGRESSÃO I. No R: ### Exemplo dados dos alunos: altura x peso ### x = altura e y = peso ############################################ # Entrada de Dados x

Leia mais

CAPÍTULO 5 APRESENTAÇÃO E ANÁLISE DOS RESULTADOS

CAPÍTULO 5 APRESENTAÇÃO E ANÁLISE DOS RESULTADOS CAPÍTULO 5 APRESENTAÇÃO E ANÁLISE DOS RESULTADOS Após a aplicação do instrumento de recolha de dados, torna-se necessário proceder à respectiva apresentação e análise dos mesmos, a fim de se poderem extrair

Leia mais

Mestrado Profissional em Administração. Disciplina: Análise Multivariada Professor: Hedibert Freitas Lopes 1º trimestre de 2015

Mestrado Profissional em Administração. Disciplina: Análise Multivariada Professor: Hedibert Freitas Lopes 1º trimestre de 2015 Mestrado Profissional em Administração Disciplina: Análise Multivariada Professor: Hedibert Freitas Lopes 1º trimestre de 2015 Análise de Correlação Canônica MANLY, Cap. 10 HAIR et al., Cap. 8 2 Objetivos

Leia mais

Correlação e Regressão

Correlação e Regressão Correlação e Regressão Vamos começar com um exemplo: Temos abaixo uma amostra do tempo de serviço de 10 funcionários de uma companhia de seguros e o número de clientes que cada um possui. Será que existe

Leia mais

AULAS 14, 15 E 16 Análise de Regressão Múltipla: Problemas Adicionais

AULAS 14, 15 E 16 Análise de Regressão Múltipla: Problemas Adicionais 1 AULAS 14, 15 E 16 Análise de Regressão Múltipla: Problemas Adicionais Ernesto F. L. Amaral 20 e 22 de abril e 04 de maio de 2010 Métodos Quantitativos de Avaliação de Políticas Públicas (DCP 030D) Fonte:

Leia mais

Ajuste de Curvas. Ajuste de Curvas

Ajuste de Curvas. Ajuste de Curvas Ajuste de Curvas 2 AJUSTE DE CURVAS Em matemática e estatística aplicada existem muitas situações em que conhecemos uma tabela de pontos (x; y). Nessa tabela os valores de y são obtidos experimentalmente

Leia mais

Elementos de Estatística (EST001-B)

Elementos de Estatística (EST001-B) Exercícios de Revisão nº 1 Análise de Dados Exercício 1: A pressão mínima de injeção (psi) em amostras de moldagem por injeção de milho de alta amilose foi determinada para oito amostras diferentes (pressões

Leia mais

Tratamento de Dados Utilizando o SciDAVis Tutorial Parte 1 Como construir um gráfico e fazer um ajuste linear

Tratamento de Dados Utilizando o SciDAVis Tutorial Parte 1 Como construir um gráfico e fazer um ajuste linear LABORATÓRIO DE FÍSICA EXPERIMENTAL 1 DEPARTAMENTO DE FÍSICA - DAFIS UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ - UTFPR Tratamento de Dados Utilizando o SciDAVis Tutorial Parte 1 Como construir um gráfico

Leia mais

Estatística descritiva. Também designada Análise exploratória de dados ou Análise preliminar de dados

Estatística descritiva. Também designada Análise exploratória de dados ou Análise preliminar de dados Estatística descritiva Também designada Análise exploratória de dados ou Análise preliminar de dados 1 Estatística descritiva vs inferencial Estatística Descritiva: conjunto de métodos estatísticos que

Leia mais

REGRESSÃO LINEAR SIMPLES

REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES O que é uma regressão linear simples. Fazendo a regressão "na mão". Francisco Cavalcante([email protected]) Administrador de Empresas graduado pela EAESP/FGV. É Sócio-Diretor da

Leia mais

UTILIZAÇÃO DE RECURSOS ESTATÍSTICOS AVANÇADOS DO EXCEL PREVISÃO

UTILIZAÇÃO DE RECURSOS ESTATÍSTICOS AVANÇADOS DO EXCEL PREVISÃO UTILIZAÇÃO DE RECURSOS ESTATÍSTICOS AVANÇADOS DO EXCEL PREVISÃO! Fazendo regressão linear! Relacionando variáveis e criando uma equação para explicá-las! Como checar se as variáveis estão relacionadas!

Leia mais

Análise Exploratória de Dados

Análise Exploratória de Dados Análise Exploratória de Dados Profª Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Programa de Pós-graduação em Saúde Coletiva email: [email protected] Introdução O primeiro passo

Leia mais

Ferramentas da Qualidade. Professor: Leandro Zvirtes UDESC/CCT

Ferramentas da Qualidade. Professor: Leandro Zvirtes UDESC/CCT Ferramentas da Qualidade Professor: Leandro Zvirtes UDESC/CCT Histogramas Histograma O histograma é um gráfico de barras no qual o eixo horizontal, subdividido em vários pequenos intervalos, apresenta

Leia mais

Contabilometria. Aula 11 Regressão Linear Múltipla e Variáveis Dummy

Contabilometria. Aula 11 Regressão Linear Múltipla e Variáveis Dummy Contailometria Aula Regressão Linear Múltipla e Variáveis Dummy O Modelo de Regressão Múltipla Ideia: Examinar a relação linear entre variável dependente (Y) & ou mais variáveis independentes (X i ). Modelo

Leia mais

QUEDA LIVRE. Permitindo, então, a expressão (1), relacionar o tempo de queda (t), com o espaço percorrido (s) e a aceleração gravítica (g).

QUEDA LIVRE. Permitindo, então, a expressão (1), relacionar o tempo de queda (t), com o espaço percorrido (s) e a aceleração gravítica (g). Protocolos das Aulas Práticas 3 / 4 QUEDA LIVRE. Resumo Uma esfera metálica é largada de uma altura fixa, medindo-se o tempo de queda. Este procedimento é repetido para diferentes alturas. Os dados assim

Leia mais

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação).

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação). 5. FUNÇÕES DE UMA VARIÁVEL 5.1. INTRODUÇÃO Devemos compreender função como uma lei que associa um valor x pertencente a um conjunto A a um único valor y pertencente a um conjunto B, ao que denotamos por

Leia mais

Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar)

Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar) Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar) 1. OBJETIVOS DA EXPERIÊNCIA 1) Esta aula experimental tem como objetivo o estudo do movimento retilíneo uniforme

Leia mais

Análise de Variância com dois ou mais factores - planeamento factorial

Análise de Variância com dois ou mais factores - planeamento factorial Análise de Variância com dois ou mais factores - planeamento factorial Em muitas experiências interessa estudar o efeito de mais do que um factor sobre uma variável de interesse. Quando uma experiência

Leia mais

COMENTÁRIO AFRM/RS 2012 ESTATÍSTICA Prof. Sérgio Altenfelder

COMENTÁRIO AFRM/RS 2012 ESTATÍSTICA Prof. Sérgio Altenfelder Comentário Geral: Prova muito difícil, muito fora dos padrões das provas do TCE administração e Economia, praticamente só caiu teoria. Existem três questões (4, 45 e 47) que devem ser anuladas, por tratarem

Leia mais

Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções

Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções 1. INTRODUÇÃO Ao se obter uma sucessão de pontos experimentais que representados em um gráfico apresentam comportamento

Leia mais

Estatística Aplicada Lista de Exercícios 7

Estatística Aplicada Lista de Exercícios 7 AULA 7 CORRELAÇÃO E REGRESSÃO Prof. Lupércio F. Bessegato 1. Ache os valores de a e b para a equação de regressão Y = a + bx, usando o conjunto de dados apresentados a seguir, sem fazer cálculos (sugestão:

Leia mais

AULAS 24 E 25 Análise de Regressão Múltipla: Inferência

AULAS 24 E 25 Análise de Regressão Múltipla: Inferência 1 AULAS 24 E 25 Análise de Regressão Múltipla: Inferência Ernesto F. L. Amaral 23 e 25 de novembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Wooldridge, Jeffrey M. Introdução à econometria: uma

Leia mais

Matemática para as Artes

Matemática para as Artes Informação Prova de Equivalência à Frequência Prova 95 014 Disciplina 11º e 1º Anos de Escolaridade Matemática para as Artes 1. Introdução O presente documento visa divulgar as características da prova

Leia mais

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 9 Correlação e Regressão 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 1 9-1 Aspectos Gerais Dados Emparelhados há uma relação? se há, qual

Leia mais

Probabilidade. Distribuição Normal

Probabilidade. Distribuição Normal Probabilidade Distribuição Normal Distribuição Normal Uma variável aleatória contínua tem uma distribuição normal se sua distribuição é: simétrica apresenta (num gráfico) forma de um sino Função Densidade

Leia mais

MOQ-23 ESTATÍSTICA. Professor: Rodrigo A. Scarpel [email protected] www.mec.ita.br/~rodrigo

MOQ-23 ESTATÍSTICA. Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo MOQ-3 ESTATÍSTICA Proessor: Rodrigo A. Scarpel [email protected] www.mec.ita.br/~rodrigo Probabilidade e Estatística: The Science o collecting and analyzing data or the purpose o drawing conclusions and making

Leia mais

CI202 - Métodos Numéricos

CI202 - Métodos Numéricos CI202 - Métodos Numéricos Lista de Exercícios 2 Zeros de Funções Obs.: as funções sen(x) e cos(x) devem ser calculadas em radianos. 1. Em geral, os métodos numéricos para encontrar zeros de funções possuem

Leia mais

7.4 As nuvens de perfis

7.4 As nuvens de perfis 7.4 As nuvens de perfis Cada perfil de linha, ou seja, cada linha da matriz de perfis de linha, P L, define um ponto no espaço a b dimensões, R b. A nuvem de a pontos em R b assim resultante pode ser designada

Leia mais

4 Análise de Dados. 4.1 Perfil dos Respondentes

4 Análise de Dados. 4.1 Perfil dos Respondentes 4 Análise de Dados 4.1 Perfil dos Respondentes A taxa de resposta foi de aproximadamente 8% de respostas na amostra de clientes que compram fora da loja (telefone e/ou Internet) e 3% na amostra de clientes

Leia mais

Regressão. PRE-01 Probabilidade e Estatística Prof. Marcelo P. Corrêa IRN/Unifei

Regressão. PRE-01 Probabilidade e Estatística Prof. Marcelo P. Corrêa IRN/Unifei Regressão PRE-01 Probabilidade e Estatística Prof. Marcelo P. Corrêa IRN/Unifei Regressão Introdução Analisar a relação entre duas variáveis (x,y) através da equação (equação de regressão) e do gráfico

Leia mais

PRIMAVERA RISK ANALYSIS

PRIMAVERA RISK ANALYSIS PRIMAVERA RISK ANALYSIS PRINCIPAIS RECURSOS Guia de análise de risco Verificação de programação Risco rápido em modelo Assistente de registro de riscos Registro de riscos Análise de riscos PRINCIPAIS BENEFÍCIOS

Leia mais

Escolha de Portfólio. Professor do IE-UNICAMP http://fernandonogueiracosta.wordpress.com/

Escolha de Portfólio. Professor do IE-UNICAMP http://fernandonogueiracosta.wordpress.com/ Escolha de Portfólio considerando Risco e Retorno Aula de Fernando Nogueira da Costa Fernando Nogueira da Costa Professor do IE-UNICAMP http://fernandonogueiracosta.wordpress.com/ Relação entre risco e

Leia mais

Correlação Canônica. Outubro / 1998. Versão preliminar. Fabio Vessoni. [email protected] (011) 30642254. MV2 Sistemas de Informação

Correlação Canônica. Outubro / 1998. Versão preliminar. Fabio Vessoni. fabio@mv2.com.br (011) 30642254. MV2 Sistemas de Informação Correlação Canônica Outubro / 998 Versão preliminar Fabio Vessoni [email protected] (0) 306454 MV Sistemas de Informação Introdução Existem várias formas de analisar dois conjuntos de dados. Um dos modelos

Leia mais

AVALIAÇÃO DO MODELO DE ONDAS

AVALIAÇÃO DO MODELO DE ONDAS AVALIAÇÃO DO MODELO DE ONDAS O modelo de onda WAVEWATCH implementado operacionalmente no CP- TEC/INPE global é validado diariamente com os dados do satélite JASON-2. Este novo produto tem como finalidade

Leia mais

DIRETORIA DE PESQUISAS - DPE COORDENAÇÃO DE CONTAS NACIONAIS CONAC. Sistema de Contas Nacionais - Brasil Referência 2000. Nota Metodológica nº 18

DIRETORIA DE PESQUISAS - DPE COORDENAÇÃO DE CONTAS NACIONAIS CONAC. Sistema de Contas Nacionais - Brasil Referência 2000. Nota Metodológica nº 18 DIRETORIA DE PESQUISAS - DPE COORDENAÇÃO DE CONTAS NACIONAIS CONAC Sistema de Contas Nacionais - Brasil Referência 2000 Nota Metodológica nº 18 Aluguel de Imóveis (versão para informação e comentários)

Leia mais

Módulo 4 PREVISÃO DE DEMANDA

Módulo 4 PREVISÃO DE DEMANDA Módulo 4 PREVISÃO DE DEMANDA Conceitos Iniciais Prever é a arte e a ciência de predizer eventos futuros, utilizando-se de dados históricos e sua projeção para o futuro, de fatores subjetivos ou intuitivos,

Leia mais

O modelo ANOVA a dois factores, hierarquizados

O modelo ANOVA a dois factores, hierarquizados O modelo ANOVA a dois factores, hierarquizados Juntando os pressupostos necessários à inferência, Modelo ANOVA a dois factores, hierarquizados Seja A o Factor dominante e B o Factor subordinado. Existem

Leia mais

Factor Analysis (FACAN) Abrir o arquivo ven_car.sav. Clique Extraction. Utilizar as 10 variáveis a partir de Vehicle Type.

Factor Analysis (FACAN) Abrir o arquivo ven_car.sav. Clique Extraction. Utilizar as 10 variáveis a partir de Vehicle Type. Prof. Lorí Viali, Dr. [email protected]; [email protected]; http://www.pucrs.br/famat/viali; http://www.mat.ufrgs.br/~viali/ Factor Analysis (FACAN) Abrir o arquivo ven_car.sav Utilizar as 10 variáveis a

Leia mais

Universidade Federal Rural de Pernambuco

Universidade Federal Rural de Pernambuco Universidade Federal Rural de Pernambuco Departamento de Morfologia e Fisiologia Animal Área de Biofísica Traçando Gráficos Prof. Romildo Nogueira 1. Introduzindo o tema No trabalho experimental lida-se

Leia mais

TÉCNICAS EXPERIMENTAIS APLICADAS EM CIÊNCIA DO SOLO

TÉCNICAS EXPERIMENTAIS APLICADAS EM CIÊNCIA DO SOLO 1 TÉCNICAS EXPERIMENTAIS APLICADAS EM CIÊNCIA DO SOLO Mario de Andrade Lira Junior www.lira.pro.br direitos autorais. INTRODUÇÃO À ANÁLISE MULTIVARIADA Apenas uma breve apresentação Para não dizerem que

Leia mais

Medidas e Incertezas

Medidas e Incertezas Medidas e Incertezas O que é medição? É o processo empírico e objetivo de designação de números a propriedades de objetos ou eventos do mundo real de forma a descreve-los. Outra forma de explicar este

Leia mais

INF1403 - Introdução a Interação Humano-Computador (IHC)

INF1403 - Introdução a Interação Humano-Computador (IHC) INF1403 - Introdução a Interação Humano-Computador (IHC) Turma 3WB Professor: Alberto Barbosa Raposo 09/04/2012 Departamento de Informática, PUC-Rio Testes com usuários Como avaliar? inspeção (por especialistas)

Leia mais

CURSO ON-LINE PROFESSOR GUILHERME NEVES

CURSO ON-LINE PROFESSOR GUILHERME NEVES Olá pessoal! Neste ponto resolverei a prova de Matemática Financeira e Estatística para APOFP/SEFAZ-SP/FCC/2010 realizada no último final de semana. A prova foi enviada por um aluno e o tipo é 005. Os

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Trabalho Prático de Avaliação Probabilidades e Estatística Grupo Nº 3 Célia Teixeira ei3636 Mário Serafim ei2300 José Afonso ei2467 João Pereira ei3502 Escola Superior de Tecnologia e Gestão de Beja Temas

Leia mais

Estudar a relação entre duas variáveis quantitativas.

Estudar a relação entre duas variáveis quantitativas. Estudar a relação entre duas variáveis quantitativas. Exemplos: Idade e altura das crianças Tempo de prática de esportes e ritmo cardíaco Tempo de estudo e nota na prova Taxa de desemprego e taxa de criminalidade

Leia mais

Pindyck & Rubinfeld, Capítulo 11, Determinação de Preços :: REVISÃO 1. Suponha que uma empresa possa praticar uma perfeita discriminação de preços de

Pindyck & Rubinfeld, Capítulo 11, Determinação de Preços :: REVISÃO 1. Suponha que uma empresa possa praticar uma perfeita discriminação de preços de Pindyck & Rubinfeld, Capítulo 11, Determinação de Preços :: REVISÃO 1. Suponha que uma empresa possa praticar uma perfeita discriminação de preços de primeiro grau. Qual será o menor preço que ela cobrará,

Leia mais

Prof. Júlio Cesar Nievola Data Mining PPGIa PUCPR

Prof. Júlio Cesar Nievola Data Mining PPGIa PUCPR Uma exploração preliminar dos dados para compreender melhor suas características. Motivações-chave da exploração de dados incluem Ajudar na seleção da técnica correta para pré-processamento ou análise

Leia mais

COM A TÉCNICA DE REGRESSÃO LINEAR SIMPLES

COM A TÉCNICA DE REGRESSÃO LINEAR SIMPLES DESENVOLVIMENTO DE UM SISTEMA PARA SIMULAÇÃO DE PREVISÃO DE PREÇO DE AÇÕES NA BOVESPA UTILIZANDO DATA MINING COM A TÉCNICA DE REGRESSÃO LINEAR SIMPLES Davi da Silva Nogueira Orientador: Prof. Oscar Dalfovo,

Leia mais

EXCEL 2013. Público Alvo: Arquitetos Engenheiros Civis Técnicos em Edificações Projetistas Estudantes das áreas de Arquitetura, Decoração e Engenharia

EXCEL 2013. Público Alvo: Arquitetos Engenheiros Civis Técnicos em Edificações Projetistas Estudantes das áreas de Arquitetura, Decoração e Engenharia EXCEL 2013 Este curso traz a vocês o que há de melhor na versão 2013 do Excel, apresentando seu ambiente de trabalho, formas de formatação de planilhas, utilização de fórmulas e funções e a criação e formatação

Leia mais

Faturamento de Restaurantes

Faturamento de Restaurantes Faturamento de Restaurantes Gilberto A. Paula Departamento de Estatística IME-USP, Brasil [email protected] 2 o Semestre 2015 G. A. Paula (IME-USP) Faturamento de Restaurantes 2 o Semestre 2015 1 / 28

Leia mais

MINERAÇÃO DE DADOS APLICADA. Pedro Henrique Bragioni Las Casas [email protected]

MINERAÇÃO DE DADOS APLICADA. Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br MINERAÇÃO DE DADOS APLICADA Pedro Henrique Bragioni Las Casas [email protected] Processo Weka uma Ferramenta Livre para Data Mining O que é Weka? Weka é um Software livre do tipo open source para

Leia mais

FUNÇÕES. 1. Equação. 2. Gráfico. 3. Tabela.

FUNÇÕES. 1. Equação. 2. Gráfico. 3. Tabela. FUNÇÕES Em matemática, uma função é dada pela relação entre duas ou mais quantidades. A função de uma variável f(x) relaciona duas quantidades, sendo o valor de f dependente do valor de x. Existem várias

Leia mais

Parte 1 Risco e Retorno

Parte 1 Risco e Retorno TÓPICOSESPECIAIS EM FINANÇAS: AVALIAÇÃO DE PROJETOS E OPÇÕES REAIS. AGENDA 1. RISCO E RETORNO 2. CUSTO DE CAPITAL PROF. LUIZ E. BRANDÃO 3. CUSTO MÉDIO PONDERADO DE CAPITAL (WACC) RAFAEL IGREJAS Parte 1

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP. I ERROS EM CÁLCULO NUMÉRICO 0. Introdução Por método numérico entende-se um método para calcular a solução de um problema realizando apenas uma sequência finita de operações aritméticas. A obtenção

Leia mais

Estatística Aplicada. Gestão de TI. Evanivaldo Castro Silva Júnior

Estatística Aplicada. Gestão de TI. Evanivaldo Castro Silva Júnior Gestão de TI Evanivaldo Castro Silva Júnior Porque estudar Estatística em um curso de Gestão de TI? TI trabalha com dados Geralmente grandes bases de dados Com grande variabilidade Difícil manipulação,

Leia mais

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão. ESTATÍSTICA INDUTIVA 1. CORRELAÇÃO LINEAR 1.1 Diagrama de dispersão O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

Leia mais

Pesquisa experimental

Pesquisa experimental 1 Aula 7 Interação Humano-Computador (com foco em métodos de pesquisa) Prof. Dr. Osvaldo Luiz de Oliveira 2 Pesquisa experimental Wilhelm Wundt (1832-1920), Pai da Psicologia Experimental. Leituras obrigatórias:

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES PROF. CARLINHOS NOME: N O : 1 FUNÇÃO IDÉIA INTUITIVA DE FUNÇÃO O conceito de função é um dos mais importantes da matemática.

Leia mais

Exemplo Regressão Linear Múltipla

Exemplo Regressão Linear Múltipla Exemplo Regressão Linear Múltipla Gilberto A. Paula Departamento de Estatística IME-USP, Brasil [email protected] 1 o Semestre 2013 G. A. Paula (IME-USP) Salário de Executivos 1 o Semestre 2013 1 / 27

Leia mais

Tomada de Decisão e Distribuições de Probabilidade. Lupércio França Bessegato

Tomada de Decisão e Distribuições de Probabilidade. Lupércio França Bessegato Tomada de Decisão e Distribuições de Probabilidade Lupércio França Bessegato Introdução Roteiro Tabela de Retorno e Árvore de Decisão Critérios para Tomada de Decisão Exemplos de Aplicação Referências

Leia mais

Valeska Andreozzi 2010

Valeska Andreozzi 2010 Introdução Valeska Andreozzi 2010 Referências 3 Modelagem estatística 8 Modelagem................................................................... 9 Objetivos....................................................................

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais

Estatística. Correlação e Regressão

Estatística. Correlação e Regressão Estatística Correlação e Regressão Noções sobre correlação Existem relações entre variáveis. Responder às questões: Existe relação entre as variáveis X e Y? Que tipo de relação existe entre elas? Qual

Leia mais

Universidade da Beira Interior - Departamento de Matemática ESTATÍSTICA APLICADA À PSICOLOGIA I

Universidade da Beira Interior - Departamento de Matemática ESTATÍSTICA APLICADA À PSICOLOGIA I Ano lectivo: 2008/2009 Universidade da Beira Interior - Departamento de Matemática ESTATÍSTICA APLICADA À PSICOLOGIA I Ficha de exercícios 1 Validação de Pré-Requisitos: Estatística Descritiva Curso: Psicologia

Leia mais

Experimento 1. Estudo Prático da Lei de Ohm

Experimento 1. Estudo Prático da Lei de Ohm UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE FÍSICA GLEB WATAGHIN Experimento 1 Estudo Prático da Lei de Ohm Cecília Morais Quinzani - R.A.:015689 André William Paviani Manhas - R.A.:070179 Michel Silva

Leia mais

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões Revisão de Probabilidade e Estatística Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Conceitos Básicos Estamos

Leia mais

Métodos Quantitativos. PROF. DR. Renato Vicente

Métodos Quantitativos. PROF. DR. Renato Vicente Métodos Quantitativos PROF. DR. Renato Vicente Método Estatístico Amostra População Estatística Descritiva Inferência Estatística Teoria de Probabilidades Aula 4A Inferência Estatística: Um pouco de História

Leia mais

Olá pessoal! Sem mais delongas, vamos às questões.

Olá pessoal! Sem mais delongas, vamos às questões. Olá pessoal! Resolverei neste ponto a prova para AFRE/SC 2010 realizada pela FEPESE no último final de semana. Nosso curso teve um resultado muito positivo visto que das 15 questões, vimos 14 praticamente

Leia mais

25 a 30 de novembro de 2013

25 a 30 de novembro de 2013 Programa de Pós-Graduação em Estatística e Experimentação Agronômica ESALQ/USP 25 a 30 de novembro de 2013 Parte 6 - Conteúdo 1 2 3 Dados multivariados Estrutura: n observações tomadas de p variáveis resposta.

Leia mais

GERAÇÃO DE VIAGENS. 1.Introdução

GERAÇÃO DE VIAGENS. 1.Introdução GERAÇÃO DE VIAGENS 1.Introdução Etapa de geração de viagens do processo de planejamento dos transportes está relacionada com a previsão dos tipos de viagens de pessoas ou veículos. Geralmente em zonas

Leia mais