Olimpíadas Portuguesas de Matemática
|
|
|
- Alessandra Caiado das Neves
- 7 Há anos
- Visualizações:
Transcrição
1 XXVI OPM Final 1 o dia Categoria B Justifica convenientemente as tuas respostas e indica os principais cálculos Não é permitido o uso de calculadoras 1 Qual o número máximo de triˆangulos com vértices nos pontos da figura que é possível construir? Na figura seguinte, o triˆangulo [ABC] está inscrito na circunferḙncia, E pertence à circunferḙncia, D pertence à semi recta ȦE e CÂB = BÂE Prova que AB = BD se e somente se DE = AC D B C E A Seja d um número natural Dados dois números naturais M e N com d algarismos, M é amigo de N se os d números obtidos substituindo cada um dos algarismos de M pelo algarismo de N que se encontra na mesma posição são todos múltiplos de 7 Determina os valores de d para os quais é válida a seguinte condição: Para quaisquer dois números M e N com d algarismos, se M é amigo de N, então N é amigo de M
2 XXVI OPM Final o dia Categoria B Justifica convenientemente as tuas respostas e indica os principais cálculos Não é permitido o uso de calculadoras 4 O Nelson desafia a Telma para o seguinte jogo: Primeiro a Telma retira 9 números do conjunto {0,1,,,,104}, em seguida o Nelson retira 8 números dos restantes Depois a Telma retira 7 números e assim sucessivamente, até restarem apenas números O Nelson terá de dar à Telma a diferença entre estes dois números em euros Qual é a maior quantia que a Telma pode ganhar independentemente da estratégia do Nelson? 5 Seja [ABC] um triˆangulo rectˆangulo em A, tal que AB < AC Seja M o ponto médio de [BC] e D o ponto de intersecção de [AC] com a recta perpendicular a [BC] que passa por M Seja E o ponto de intersecção da recta paralela a [AC] que passa por M com a recta perpendicular a [BD] que passa por B Prova que os triˆangulos [AEM] e [MCA] são semelhantes se e somente se A ˆBC = 60 o 6 Seja n um número natural superior a A Vanessa tem n montes de pedras de jade, todos os montes com números diferentes de pedras A Vanessa consegue distribuir as pedras de qualquer um dos montes pelos outros montes e ficar com n 1 montes com igual número de pedras Também consegue distribuir as pedras de quaisquer dois montes pelos outros montes e ficar com n montes com igual número de pedras Determina o menor número possível de pedras de jade que pode ter o monte com o maior número de pedras?
3 XXVI OPM Final 1 o dia Categoria B Sugestões para a resolução dos problemas 1 Dado um conjunto com n elementos, o números de subconjuntos com trḙs elementos é n n(n 1)(n ), que 6 é representado por De facto, se escolhermos o primeiro elemento entre n, o segundo entre n 1 e o terceiro entre n, constroem se n(n 1)(n ) subconjuntos, sendo que cada subconjunto se repete = 6 vezes O número total de triˆangulos e triˆangulos degenerados (aqueles em que o comprimento de um dos lados é igual à soma dos comprimentos dos restantes dois) que se pode construir com vértices nos pontos da figura é 10 = 10 O número de triˆangulos degenerados que se pode construir com vértices nos pontos da figura é igual a = 17 Portanto, o número de triˆangulos (não degenerados) que se pode construir com vértices nos pontos da figura é igual a = 10 Pelo Teorema do arco capaz, tem se AĈB = 180o AÊB = DÊB logo, DÊB = AĈB Também EB = CB, pois são cordas da circunferḙncia definidas por ˆangulos de igual amplitude D B C E A Se DE = AC então os triˆangulos [EDB] e [CAB] são congruentes, pois tḙm um ˆangulo igual e os dois lados que o definem iguais Portanto, BD = AB Se AB = BD, então o triˆangulo [ABD] é isósceles com BÂD = A ˆDB e, consequentemente, CÂB = B ˆDE Portanto, os triˆangulos [EDB] e [CAB] são congruentes e, consequentemente, DE = AC
4 Sejam M = a 1 a a d e N = b 1 b b d dois números com d algarismos, escritos pelos seus algarismos Observe se que, se M é amigo de N, então os números M 1 = b 1 a a d,m = a 1 b a a d,,m d = a 1 a a d 1 b d são todos múltiplos de 7 Assim, a soma S = M M d = (d 1)M + N é também múltipla de 7 Além disso, se N i = b 1 b i 1 a i b i+1 b d, para i = 1,,d, tem se M i +N i = M +N Como M i é múltiplo de 7, vem que N i é múltiplo de 7 exactamente quando M + N é múltiplo de 7 Suponha se que d = 7k +, para k inteiro Então, se M é amigo de N, tem se que M + N = (7k + 1)M + N 7kM = (d 1)M + N 7kM = S 7kM é múltiplo de 7, logo, todos os N i são múltiplos de 7,i = 1,,d, ou seja, N é amigo de M Observe se que dado um número M com d algarismos existe um número N com d algarismos tal que M é amigo de N De facto, se se substituir um determinado algarismo de M por cada um dos algarismos de 0 a 9 e se dividir os números resultantes por sete, obtḙm se todos os restos de 0 a 6, pelo que, para um determinado algarismo, o número será múltiplo de 7 Repetindo este processo para cada algarismo de M, obtém se um número N tal que M é amigo de N Suponha se que é válida a condição indicada para um número natural d Escolha se M de d algarismos tal que M não é múltiplo de 7 Seja N um número com d algarismos tal que M é amigo de N Então, M + N é múltiplo de 7 logo, a diferença S (M + N) = (d 1)M + N (M + N) = (d )M também é múltipla de 7 Como 7 é primo e M não é múltiplo de 7, então d é múltiplo de 7, ou seja, d = 7k + Portanto, os valores de d para os quais é válida a condição indicada são os números naturais da forma 7k +, para k inteiro
5 XXVI OPM Final o dia Categoria B Sugestões para a resolução dos problemas 4 A Telma consegue garantir pelo menos euros Para isso, apenas necessita de, em cada jogada, retirar os números que estão numa posição par quando estes estão por ordem crescente De facto, com esta estratégia, a distˆancia mínima entre dois números do conjunto é pelo menos duplicada em cada jogada, pelo que ao fim das cinco jogadas da Telma, esta distˆancia é no mínimo 5 = O Nelson consegue evitar pagar mais de euros Para isso, apenas necessita de, em cada jogada, retirar todos os números do início, ou todos os números do final, ficando com aqueles cuja distˆancia máxima é menor De facto, com esta estratégia, a distˆancia máxima entre dois números do conjunto é pelo menos dividida por dois em cada jogada, pelo que ao fim das cinco jogadas do Nelson, esta distˆancia é no máximo 104/( 5 ) = 5 Comece se por notar que[aeb] é isósceles, poisem é perpendicular aab em é ponto médio de[cb], logo EÂB = E ˆBA = 90 o A ˆBD = A ˆDB B E M A D C Por outro lado, D ˆMB + BÂD = 180o, logo o quadrilátero [DMBA] é cíclico e, consequentemente, A ˆDB = A ˆMB, ou seja, EÂB = A ˆMB O ponto M é o centro da circunferḙncia circunscrita a [ABC], logo, AM = BM e MÂB = A ˆBM = A ˆBC Assim, A ˆBC + EÂB = 180o Mas os triˆangulos [AEM] e [MCA] são semelhantes se e somente se AE e CM são paralelas, ou seja, EÂB = A ˆBC Substituindo na equação acima vem A ˆBC = 60 o 6 Sejam a 1 > a > a > > a n os números de pedras dos diversos montes e S = a 1 + a + a + + a n Por um lado, S a 1 + (a 1 1) + (a 1 ) + + (a 1 (n 1)) = (a 1 (n 1))n Por outro lado, se se distribui qualquer um dos montes pelos restantes n 1 montes, desde que não se escolha o monte com a 1 pedras, conclui se que S (n 1)a 1 Logo, (a 1 (n 1))n (n 1)a 1 a 1 (n 1)n e, consequentemente, S (n 1) n, ou seja, S = (n 1) n + k, k 0 Além disso, como as S pedras podem ser distribuídas por n 1 montes com igual número de pedras e ainda por n montes com igual número de pedras, S é divisível por n 1 e por n, ou seja, é divisível por (n 1)(n ) (visto que n 1 e n são primos entre si) Considerem se os dois casos seguintes: Seja n um número ímpar Tem se S = (n 1) n + k = (n 1) (n ) + (n 1)(n ) + n 1 + k, k 0
6 Como as duas primeiras parcelas da expressão acima indicada são divisíveis por (n 1)(n ), também n 1+k é divisível por(n 1)(n ) Em particular, k é divisível porn 1, ou seja,k = m(n 1) para algum m 0 Entãon 1+k = (n 1)(m+1) e concluiu se quem+1 é divisível porn Assim, m+1 n, m n, k (n )(n 1) e S (n 1) n + (n )(n 1) = (n 1) n + (n 4)n + Portanto, (a 1 (n 1))n > (n 1) n a 1 (n 1)n + (n 4)n, logo, a 1 > + n = (n 1)n (n )(n + ) Além disso, existe uma distribuição de pedras por n montes tal que + n 4, ou seja, a 1 = (n )(n + ) e S = (n 1) n + (n 4)n + = (n 1)(n )(n + ) que satisfaz as condições do enunciado Basta observar que, para os valores de a 1 e S indicados, se å verificam as igualdades S = (n 1)a 1 = (n ) a 1 + n + è (n + 1)n = na 1 a 1 e a 1 = = ( n) e escolher a distribuição a = a 1 1,a = a 1,a 4 = a 1 4,a 5 = a 1 5, a n 1 = a 1 (n 1),,a n = a 1 n Portanto, o menor valor possível para a 1 é Seja n = l um número par Tem se S = (n 1) n + k = (n )(n + ) n(n 1)(n ) + n(n 1) + k, k 0 Como as duas primeiras parcelas da expressão acima indicada são divisíveis por (n 1), k é divisível por n 1, ou seja, k = m(n 1) para algum m 0 Então S = n(n 1)(n ) + (n + m)(n 1) Como a primeira parcela da expressão acima indicada é divisível por (n 1)(n ), também a segunda parcela é divisível por (n 1)(n ) Então n+m é divisível por n n + m Em particular, n, m n (n 1)(n 4), k e S (n 1) n (n 1)(n 4) + = (n 1)(n 4) (a 1 (n 1))n Portanto, (n 1)(n 4), logo, a 1 n 4 n 4 n, o que implica que a 1 n 4 Além disso, existe uma distribuição de pedras por n montes tal que a 1 = n 4 e S = (n 1)(n 4) que satisfaz as condições do enunciado se verificam as igualdades S = (n 1)a 1 = (n ) n 4 = ( n) n 4 Basta observar que, para os valores de a 1 e S indicados, å a 1 + n + è (n + 1)n = na 1 a 1 e a 1 = e escolher a distribuição a = a 1 1,a = a 1,,a l = a 1 (l ),a l 1 = a 1 (l 1),,a n 1 = a 1 (n 1),a n = a 1 n Portanto, o menor valor possível para a 1 é n ṡpm
Olimpíadas Portuguesas de Matemática
XXVI OPM Final 1 o dia 1403008 ategoria Justifica convenientemente as tuas respostas e indica os principais cálculos Não é permitido o uso de calculadoras http://wwwpt/~opm uração: 3 horas Questão 1: 16
Olimpíada Mineira de Matemática 2008
Questão 1) Alternativa C) Olimpíada Mineira de Matemática 008 Resolução Nível III Refletindo a imagem Após 1 hora e 0 minutos Refletindo novamente Observação: A posição original do relógio não é uma configuração
MATEMÁTICA - 3o ciclo Circunferência - ângulos e arcos (9 o ano) Propostas de resolução
MATEMÁTICA - 3o ciclo Circunferência - ângulos e arcos (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como o trapézio é isósceles, então BC = AD, pelo que também
Duração: 90 minutos (3 valores) Sabe-se que a b. Atendendo à gura, calcule a medida do ângulo D indicado.
aculdade de Ciências Departamento de Matemática e Informática Licenciatura em Informática, Diurno 1 0 Teste de undamentos de Geometria. Correcção. ariante Duração: 90 minutos 18.0.01 1. ( valores) Sabe-se
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - 3o ciclo 013 - a Chamada Proposta de resolução 1. 1.1. Como se escolhe um aluno do primeiro turno, ou seja, um aluno com um número ímpar, existem 1 escolhas possíveis (1, 3,
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - 4 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 06 GABARITO COMENTADO 1) De acordo com o texto, 10 alunos gostam de geometria mas não gostam de álgebra, logo
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - 3o ciclo 2009-1 a Chamada Proposta de resolução 1. 1.1. Observando os dados da tabela, podemos verificar que o número total de viagens vendidas para Paris, nos meses de janeiro,
MATEMÁTICA - 3o ciclo Trigonometria (9 o ano) Propostas de resolução
MATEMÁTICA - 3o ciclo Trigonometria (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como M é o ponto médio da corda [], temos que AM = MB, e assim Logo, substituindo
Os pentágonos regulares ABCDE e EF GHI da figura abaixo estão em posição tal que as retas CD e GH são perpendiculares.
GABARITO MA1 Geometria I - Avaliação - 01/ Questão 1. (pontuação: ) Os pentágonos regulares ABCDE e EF GHI da figura abaixo estão em posição tal que as retas CD e GH são perpendiculares. Calcule a medida
MATEMÁTICA - 3o ciclo Trigonometria (9 o ano) Propostas de resolução
MATEMÁTICA - 3o ciclo Trigonometria (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como o ponto N é o pé da perpendicular traçada do ponto M para a reta OP, então
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - 3o ciclo 013-1 a Chamada Proposta de resolução 1. Como o João escolhe 1 de entre 9 bolas, o número de casos possíveis para as escolhas do João são 9. Como os números, 3, 5 e
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - 24 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 13 EXERCÍCIOS 1) A representação cartesiana da função y = ax 2 + bx + c é a parábola abaixo. Tendo em vista
Soma das amplitudes dos ângulos internos de um quadrilátero
Escola Básica de Santa Marinha Matemática 2009/2010 7.º Ano Síntese de conteúdos Quadriláteros Soma das amplitudes dos ângulos internos de um quadrilátero Na figura seguinte encontra-se representado o
Polígonos PROFESSOR RANILDO LOPES 11.1
Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos Polígono é uma figura geométrica plana e fechada formada apenas por segmentos de reta que não se cruzam no mesmo plano. Exemplos 11.1 Elementos de um polígono
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. a(x x 0) = b(y 0 y).
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 016.1 Gabarito Questão 01 [ 1,00 ::: (a)=0,50; (b)=0,50 ] (a) Seja x 0, y 0 uma solução da equação diofantina ax + by = c, onde a, b são inteiros
OBMEP ª fase Soluções - Nível 3
OBMEP 009 ª fase Soluções - Nível Nível questão 1 a) O número de cartões na caixa é a soma dos números inteiros de 1 a 10, isto é, 1 + + + + 9 + 10 = 55 b) Basta escolher o cartão de número 1 e depois
MA13 Geometria AV1 2014
MA13 Geometria AV1 2014 Questão 1 [ 2,0 pt ] Considere um paralelogramo ABCD e sejam M o centro da circunferência definida pelos vértices A, B e C N o centro da circunferência definida pelos vértices B,
1. Área do triângulo
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Plana II Prof.:
x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6.
CURSO DE PRÉ CÁLCULO ONLINE - PET MATEMÁTICA / UFMG LISTA DE EXERCÍCIOS RESOLVIDOS: Exercício 1 Calcule o valor de x e y indicados na figura abaixo. Solução: No triângulo retângulo ABD, temos que AD mede
PROVA DE MATEMÁTICA. Marque no cartão-resposta anexo, a única opção correta correspondente a cada questão.
PÁG0 PROVA DE MATEMÁTICA Marque no cartão-resposta anexo, a única opção correta correspondente a cada questão 1 Daniel tem ração suficiente para alimentar quatro galinhas durante 18 dias No fim do 6 o
META Introduzir e explorar o conceito de congruência de segmentos e de triângulos.
META Introduzir e explorar o conceito de congruência de segmentos e de triângulos. AULA 3 OBJETIVOS Identificar segmentos e ângulos congruentes. Identificar os casos de congruência de triângulos. Usar
MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III
MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III 0 Dois círculos de centros A e B são tangentes exteriormente e tangenciam interiormente um círculo de centro C. Se AB = cm, AC = 7 cm e BC = 3 cm, então o raio
Grupo de exercícios I.2 - Geometria plana- Professor Xanchão
Grupo de exercícios I - Geometria plana- Professor Xanchão 1 (G1 - utfpr 013) Um triângulo isósceles tem dois lados congruentes (de medidas iguais) e o outro lado é chamado de base Se em um triângulo isósceles
MA14 - Aritmética Lista 1. Unidades 1 e 2
MA14 - Aritmética Lista 1 Unidades 1 e 2 Abramo Hefez PROFMAT - SBM 05 a 11 de agosto 2013 Unidade 1 1. Mostre, por indução matemática, que, para todo n N {0}, a) 8 3 2n + 7 b) 9 10 n + 3.4 n+2 + 5 2.
Lista 5. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante.
MA13 Exercícios das Unidades 8, 9 e 10 2014 Lista 5 Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante. 1) As retas r, s e t são paralelas com s entre r e t. As transversais
XXVIII Olimpíada Brasileira de Matemática GABARITO Segunda Fase
XXVIII Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível Segunda Fase Parte A PARTE A Na parte A serão atribuídos 4 pontos para cada resposta correta e a pontuação máxima para essa
Módulo de Elementos básicos de geometria plana. Conceitos Geométricos Básicos. Oitavo Ano
Módulo de Elementos básicos de geometria plana Conceitos Geométricos Básicos Oitavo Ano Conceitos Geométricos Básicos 1 Exercícios Introdutórios Exercício 1. Dados quatro pontos distintos A, B, C e D,
Matemática D Extensivo V. 3
Extensivo V. Resolva Aula 9 9.0) C 9.01) B Em AC, temos: 8 x + 7 x = 9 6 = x x = PQRO é um losango. Assim, os ângulos opostos são iguais. + 00 = 60 = 80 o Aula 10 9.0) B 10.01) Comprimento:. = Comprimento:.
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - 4 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES 1) ( + b)³ = 0 + 5b + 7b² + b³ 8 + 1b + 6b² + b³ = 5b + 7b² + b³ b² 7b 8 = 0 (b 7). (b 1) = 0. Como b é base, b = 7.
Lista 3. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante.
MA13 Exercícios das Unidades 4 e 5 2014 Lista 3 Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante. 1) Seja ABCD um quadrilátero qualquer. Prove que os pontos médios
CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 99 / 00 PROVA DE CIÊNCIAS EXATAS DA. 1 a é equivalente a a
13 1 a PARTE - MATEMÁTICA MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES À ESQUERDA Item 01. Se a R e a 0, a expressão: 1 a é equivalente a a a.( ) 1 b.( ) c.( ) a
A respeito da soma dos ângulos internos e da soma dos ângulos externos de um quadrilátero, temos os seguintes resultados:
Quadriláteros Nesta aula vamos estudar os quadriláteros e os seus elementos: lados, ângulos internos, ângulos externos, diagonais, etc. Além disso, vamos definir e observar algumas propriedades importantes
INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material.
OPRM 07 Nível 3 (Ensino Médio) Primeira Fase 09/06/7 ou 0/06/7 Duração: 3 horas Nome: Escola: Aplicador(a): INSTRUÇÕES Escreva seu nome, o nome da sua escola e nome do APLICADOR nos campos acima. Esta
Módulo de Elementos básicos de geometria plana. Conceitos Geométricos Básicos. Oitavo ano
Módulo de Elementos básicos de geometria plana Conceitos Geométricos Básicos Oitavo ano Problemas dos Círculos Matemáticos - Capítulo 4 1 Exercícios Introdutórios Exercício 1. Dados quatro pontos distintos
XXVI Olimpíada Brasileira de Matemática GABARITO Segunda Fase
XXVI Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível Solução do Problema : Os possíveis produtos x k x k são ( )( ) =, ( + )( + ) = + e ( )( + ) =. Suponha que a produtos são iguais
Módulo de Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Lei dos Cossenos e Lei dos Senos. 9 o ano E.F.
Módulo de Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Lei dos Cossenos e Lei dos Senos. 9 o ano E.F. Triângulo Retângulo, Lei dos Senos e Cossenos, Polígonos Regulares. Leis dos
Teste Intermédio de MATEMÁTICA - 9o ano 11 de maio de 2009
Teste Intermédio de MATEMÁTICA - 9o ano 11 de maio de 009 Proposta de resolução 1. 1.1. Como na gaveta 1 existem três maillots (1 preto, 1 cor-de-rosa e 1 lilás), são 3 os casos possíveis, dos quais são
MATEMÁTICA 3 GEOMETRIA PLANA
MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira MÓDULO 13 Circunferência e Círculo Circunferência é o lugar geométrico dos pontos do plano cujas distâncias a um ponto fixo (centro) são iguais a uma
Teorema de Tales. MA13 - Unidade 8. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria.
Teorema de Tales MA13 - Unidade 8 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Proporcionalidade 1. Dizemos que o segmento x é a quarta proporcional
Geometria Plana 1 (UEM-2013) Em um dia, em uma determinada região plana, o Sol nasce às 7 horas e se põe às 19 horas. Um observador, nessa região, deseja comparar a altura de determinados objetos com o
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - 3o ciclo 2007-2 a Chamada Proposta de resolução 1. Organizando todas as somas que o Paulo pode obter, com recurso a uma tabela, temos: + 1 2 3 4 5 6-6 -5-4 -3-2 -1 0-5 -4-3
CM127 - Lista Mostre que os pontos médios de um triângulo isósceles formam um triângulo também isósceles.
CM127 - Lista 2 Congruência de Triângulos e Desigualdade Triangular 1. Faça todos os exercícios dados em aula. 2. Em um triângulo ABC a altura do vértice A é perpendicular ao lado BC e divide BC em dois
CM127 - Lista 3. Axioma da Paralelas e Quadriláteros Notáveis. 1. Faça todos os exercícios dados em aula.
CM127 - Lista 3 Axioma da Paralelas e Quadriláteros Notáveis 1. Faça todos os exercícios dados em aula. 2. Determine as medidas x e y dos ângulos dos triângulos nos itens abaixo 3. Dizemos que um triângulo
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - 3o ciclo 015-1 a Fase Proposta de resolução Caderno 1 1. 1.1. Os alunos que têm uma altura inferior a 155 cm são os que medem 150 cm ou 15 cm. Assim, o número de alunos com
Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II. TPC nº 5 (entregar no dia 6 ou )
Escola Secundária com º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II TPC nº (entregar no dia 6 ou 7 1 010) 1. Considere, num cubo de 8 cm de aresta, a secção que resulta
XXXI Olimpíada Brasileira de Matemática GABARITO Segunda Fase
XXXI Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 3 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 4 pontos para cada resposta correta e a pontuação
XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA TERCEIRA FASE NÍVEL 1 (5 ª ou 6 ª Séries)
TERCEIRA FASE NÍVEL 1 (5 ª ou 6 ª Séries) Quantos inteiros positivos menores que 1000 têm a soma de seus algarismos igual a 7? PROBLEMA : Considere as seqüências de inteiros positivos tais que cada termo
Aula 11 Polígonos Regulares
MODULO 1 - AULA 11 Aula 11 Polígonos Regulares Na Aula 3, em que apresentamos os polígonos convexos, vimos que um polígono regular é um polígono convexo tal que: a) todos os lados são congruentes entre
LISTA DE REVISÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE
LISTA DE REVISÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE 1) (Eear) Duas cordas se cruzam num ponto distinto do centro da circunferência, conforme esboço. A partir do conceito de ângulo excêntrico interior, a
Aula 2 Congruência de Triângulos
Aula 2 Congruência de Triângulos A idéia de congruência entre segmentos, ângulos e triângulos formouse intuitivamente, levando-se em conta que dois segmentos congruentes, dois ângulos congruentes e dois
05. Um retângulo ABCD está dividido em quatro retângulos menores. As áreas de três deles estão na figura abaixo. Qual é a área do retângulo ABCD?
XXI OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 1 a. Fase Olimpíada Regional BA - ES - GO - RJ - RN - RS - SC - SP - A duração da prova é de 3 horas. - Não é permitido o uso de calculadoras
João esqueceu-se do seu código, mas lembra-se que é divisível por 9. Quantos códigos existem nessas condições?
2/09/16 Duração: 4 horas e 0 minutos 1 Para desbloquear o seu celular, João desliza o dedo horizontalmente ou verticalmente por um quadro numérico, semelhante ao representado na figura, descrevendo um
02 Do ponto P exterior a uma circunferência tiramos uma secante que corta a
01 Em um triângulo AB AC 5 cm e BC cm. Tomando-se sobre AB e AC os pontos D e E, respectivamente, de maneira que DE seja paralela a BC e que o quadrilátero BCED seja circunscritível a um círculo, a distância
Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP
Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Áreas - capítulo 2 da apostila
Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática 23/01/2012 Circunferência e polígonos; Rotações. 9.º Ano
Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática 23/01/2012 Circunferência e polígonos; Rotações. 9.º Ano Nome: N.º: Turma: 1. Coloca, na figura, pela letra conveniente, os elementos
MAT-230 Diurno 1ª Folha de Exercícios
MAT-230 Diurno 1ª Folha de Exercícios Prof. Paulo F. Leite agosto de 2009 1 Problemas de Geometria 1. Num triângulo isósceles a mediana, a bissetriz e a altura relativas à base coincidem. 2. Sejam A e
XXXIV Olimpíada Cearense de Matemática Nível 2 - Oitavo e Nono Anos
XXXIV Olimpíada Cearense de Matemática Nível 2 - Oitavo e Nono Anos Reservado para a correção Prova Probl. 1 Probl. 2 Probl. 3 Probl. 4 Probl. 5 Total # 0 Nota Instruções e Regulamento: 1. Identifique
38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO
38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO GABARITO NÍVEL 2 1) C 6) B 11) B 16) D 21) A 2) C 7) C 12) C 17) D 22) A 3) D 8) E 13) D 18) C
AVF - MA Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL AVF - MA13-016.1 - Gabarito Questão 01 [,00 pts ] Em um triângulo ABC de perímetro 9, o lado BC mede 3 e a distância entre os pés das bissetrizes interna
LISTA DE EXERCÍCIOS 3º ANO
Questão 0 a) Soma dos ângulos internos de um pentágono: 180 ( 5 ) = 540 Sendo o ângulo FPG = α, temos: α + 90 + 10 + 90 = 360 => α = 60. Como os lados adjacentes ao ângulo α são os lados de quadrados congruentes,
Exame Nacional de a chamada
1. A Beatriz e o Carlos abasteceram os seus carros de gasolina. A determinada altura, o Carlos interrompeu o abastecimento para verificar quanto dinheiro trazia na carteira. Em seguida, retomou o abastecimento.
ENQ Gabarito e Pauta de Correção
ENQ014.1 - Gabarito e Pauta de Correção Questão 1 [ 1,0 pt ] O máximo divisor comum de dois inteiros positivos é 0. Para se chegar a esse resultado pelo processo das divisões sucessivas, os quocientes
MATEMÁTICA CADERNO 3 CURSO E. FRENTE 1 Álgebra. n Módulo 11 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0
MATEMÁTICA CADERNO CURSO E ) I) + 0 II) 7 + + 0 FRENTE Álgebra n Módulo Módulo de um Número Real ) 6 + < não tem solução, pois a 0, a ) A igualdade +, com + 0, é verificada para: ọ ) + 0 ou ọ ) + + + +
Questões. 2ª Lista de Exercícios (Geometria Analítica e Álgebra Linear) Prof. Helder G. G. de Lima 1
ª Lista de Exercícios (Geometria Analítica e Álgebra Linear) Prof. Helder G. G. de Lima 1 Questões 1. Sejam A, B, C e D vértices de um quadrado. Quantos vetores diferentes entre si podem ser definidos
Soluções Comentadas Matemática Curso Mentor Colégio Naval. Barbosa, L.S.
Soluções Comentadas Matemática Curso Mentor Colégio Naval Barbosa, L.S. [email protected] 30 de dezembro de 2013 2 Sumário I Provas 5 1 Matemática 2013/2014 7 II Soluções 11 2 Matemática 2013/2014
Lista 1 com respostas
Lista 1 com respostas Professora Nataliia Goloshchapova MAT0105/MAT0112-1 semestre de 2015 Exercício 1. Verifique se é verdadeira ou falsa cada afirmação e justifique sua resposta: (a) (A, B) (C, D) AB
PROMILITARES 08/08/2018 MATEMÁTICA. Professor Rodrigo Menezes
MATEMÁTICA Professor Rodrigo Menezes Colégio Naval 2012/2013 QUESTÃO 1 Sejam P = 1 + 1 3 1 + 1 5 1 + 1 7 1 + 1 9 1 + 1 11 e Q = 1 1 5 1 1 7 1 1 9 1 1 11 Qual é o valor de P Q? a) 2 b) 2 c) 5 d) 3 e) 5
Aula 1. Exercício 1: Exercício 2:
Aula 1 Exercício 1: Com centro em A e raio de medida m achamos dois pontos B e C na reta, esses dois pontos são os centros das circunferências pedidas (2 soluções ). Exercício 2: Com centro em B e raio
36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO
6ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Ensino Médio) GABARITO GABARITO NÍVEL ) C 6) A ) D 6) A ) D ) A 7) A ) E 7) B ) E ) A 8) E ) B 8) E ) A ) C 9) C ) D 9) E ) B ) A 0) B ) A 0)
MATEMÁTICA 2 Ângulos PROFESSOR: TÚLIO 1. b) 52º10 25 d) 127º12 15
Ângulos 01 O ângulo de 2º 8 25 equivale a: a) 9180 b) 2825 c) 625 d) 7705 02 25347 corresponde a: a) 8º 9 54 b) 9º 25 42 c) 2º 53 47 d) 5º 12 35 e) 7º 2 27 03 (ESA/2000) A transformação de 9º em segundos
Congruência de triângulos
Congruência de triângulos 1 o Caso: Se dois triângulos têm ordenadamente congruentes dois lados e o ângulo compreendido, então eles são congruentes. (LAL) 2 o Caso: Se dois triângulos têm ordenadamente
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - 3o ciclo 2016-2 a Fase Proposta de resolução Caderno 1 1. Calculando a diferença entre 3 1 e cada uma das opções apresentadas, arredondada às centésimas, temos que: 3 1 2,2
XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA TERCEIRA FASE NÍVEL 1 (5 a. e 6 a. Séries)
TERCEIRA FASE NÍVEL 1 (5 a. e 6 a. Séries) PROBLEMA 1 Parte das casas de um quadriculado com o mesmo número de linhas (fileiras horizontais) e colunas (fileiras verticais) é pintada de preto, obedecendo
MATEMÁTICA SARGENTO DA FAB
MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr
Nome: N.º: endereço: data: Telefone: PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM Disciplina: MaTeMÁTiCa
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A ạ SÉRIE DO ENSINO MÉDIO EM 03 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 (OBMEP) Se dividirmos um cubo de m de aresta em
XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO
XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Ensino Médio) GABARITO GABARITO NÍVEL ) D 6) C ) D 6) C ) B ) A 7) B ) B 7) B ) C ) D 8) C ) E 8) B ) B 4) D 9) E 4) D 9) C 4) D ) D 0) A ou
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 4
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste 0.º Ano de escolaridade Versão 4 Nome: N.º Turma: Professor: José Tinoco 0/0/07 É permitido o uso de calculadora científica Apresente o seu raciocínio de forma
XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Resolução da prova 1 a fase Nível de agosto de 2017
UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA PET MATEMÁTICA XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Resolução da prova 1 a fase
XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (7ª. e 8ª. séries) GABARITO
XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (ª e ª séries) GABARITO GABARITO NÍVEL ) E ) E ) B ) D ) E ) E ) C ) D ) B ) D ) E ) C ) C ) A ) B ) D ) A ) C ) B ) Anulada ) B 0) E ) A 0)
RETAS E CIRCUNFERÊNCIAS
RETAS E CIRCUNFERÊNCIAS Diâmetro Corda que passa pelo centro da circunferência [EF] e [GH] Raio Segmento de reta que une o centro a um ponto da circunferência [OD] [AB], [IJ], [GH], são cordas - segmentos
Lista 1 com respostas
Lista 1 com respostas Professora Nataliia Goloshchapova MAT0105-1 semestre de 2019 Exercício 1. Verique se é verdadeira ou falsa cada armação e justique sua resposta: (a) (A, B) (C, D) AB = CD (b) AB =
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 3
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste 0.º Ano de escolaridade Versão Nome: N.º Turma: Professor: José Tinoco 0/0/07 É permitido o uso de calculadora científica Apresente o seu raciocínio de forma
1. A imagem da função real f definida por f(x) = é a) R {1} b) R {2} c) R {-1} d) R {-2}
1. A imagem da função real f definida por f(x) = é R {1} R {2} R {-1} R {-2} 2. Dadas f e g, duas funções reais definidas por f(x) = x 3 x e g(x) = sen x, pode-se afirmar que a expressão de (f o g)(x)
2.2. Suponha que x=5. Determine: o perímetro do trapézio a medida da amplitude dos ângulos internos do trapézio.
PAT MAT 007/008 MÓDULO - CÁLCULO ALGÉBRICO EXERCÍCIOS. Na figura está representada uma caia com a forma de um prisma recto e uma fita a envolvê-la. As dimensões da caia são: 5 5 4 (em decímetros). Calcule:..
Suficiente (50% 69%) Bom (70% 89%) O Encarregado de Educação:
Escola E.B. 2,3 Eng. Nuno Mergulhão Portimão Ano Letivo 2012/2013 Teste de Avaliação Escrita de Matemática 9.º ano de escolaridade Duração do Teste: 90 minutos 19 de fevereiro de 2013 Nome: N.º Turma:
ÂNGULOS. Ângulos no círculo
ÂNGULOS Ângulos no círculo A circunferência:. Diâmetro Semicircunferên cia Diâmetro - é o segmento de recta que une 2 pontos da circunferência passando pelo centro. Raio - é o segmento de recta que une
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - 3o ciclo 005 - a Chamada Proposta de resolução 1. Analisando cada uma das afirmações, confrontando com a observação do gráfico, temos que: Observando o eixo vertical, podemos
Desenho Geométrico. Desenho Geométrico. Desenho Geométrico. Desenho Geometrico
UNIVERSIDADE ESTADUAL VALE DO ACARAÚ- UVA DEPARTAMENTO DE MATEMÁTICA Desenho Geométrico Desenho Geométrico Desenho Geométrico Desenho Geometrico Daniel Caetano de Figueiredo Daniel Caetano de Figueiredo
Módulo Quadriláteros. Quadriláteros Inscritos e Circunscritos. 9 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Quadriláteros Quadriláteros Inscritos e Circunscritos 9 ano E.F. Professores Cleber Assis e Tiago Miranda Quadriláteros Quadriláteros Incritos e Circunscritos Exercício 5. Determine o valor de x
Colégio Naval 2003 (prova verde)
Colégio Naval 00 (prova verde) 01) Analise as seguintes afirmativas sobre um sistema S se duas equações do primeiro grau com duas incógnitas X e Y. I - S sempre terá ao menos uma solução, se os seus termos
QUESTÃO 18 QUESTÃO 19
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO DO ENSINO FUNDAMENTAL EM 016 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 A soma de três números naturais múltiplos
Suficiente (50% 69%) Bom (70% 89%) O Encarregado de Educação:
Escola E.B. 2,3 Eng. Nuno Mergulhão Portimão Ano Letivo 2012/2013 Teste de Avaliação Escrita de Matemática 9.º ano de escolaridade Duração do Teste: 90 minutos 25 de fevereiro de 2013 Nome: N.º Turma:
1. Com base nos dados da Figua 1, qual é o maior dos segmentos AB, AE, EC, BC e ED? Figura 1: Exercício 1. Figura 2: Exercício 2
UFF - Universidade Federal Fluminense Instituto de Matemática GGM - Departamento de Geometria Professora: Andréa 2 o semestre de 2018 Atividades IV de Geometria I 1. Com base nos dados da Figua 1, qual
Teorema do ângulo externo e sua consequencias
Teorema do ângulo externo e sua consequencias Definição. Os ângulos internos de um triângulo são os ângulos formados pelos lados do triângulo. Um ângulo suplementar a um ângulo interno do triângulo é denominado
