Proposta de teste de avaliação
|
|
|
- Fernanda Tavares Vilaverde
- 7 Há anos
- Visualizações:
Transcrição
1 Proosta de teste de avaliação Matemática. O NO DE ESOLRIDDE Duração: 90 minutos Data:
2 Gruo I Na resosta aos itens deste gruo, selecione a oção correta. Escreva, na folha de resostas, o número do item e a letra que identificam a oção escolhida.. O código de um telemóvel (PIN) é constituído or uma sequência de quatro algarismos. Em quantos destes códigos aarece elo menos uma vez o algarismo 0? () 0 9 (B) 9 () 0 (D) 0. Quantos números é ossível formar trocando a ordem aos algarismos de forma que não fiquem dois algarismos seguidos? () (B) 7 () 7 (D). soma dos seis menores elementos de uma certa linha do Triângulo de Pascal é igual a. Qual é o terceiro elemento da linha seguinte? () (B) 0 () (D). onsidere todos os números ímares com cinco algarismos. Quantos desses números são inferiores a e o roduto dos seus algarismos também é um número ímar? () 5 (B) 5 5 () 5 (D) 5 D 5. Escolhem-se, ao acaso, três vértices distintos do hexágono regular [BDEF]. E Qual é a robabilidade de esses três ontos serem vértices de um triângulo equilátero? F B () 0 (B) 0 () 0 (D) Proosta de teste de avaliação Matemática,. o ano Página
3 Gruo II. Para determinado valor real de a, um dos termos do desenvolvimento de ( x + a ) 0 é igual a Determine o valor de a. 7 5x.. onsidere todos os números naturais formados or seis algarismos. Qual é a ercentagem dos que têm algarismos reetidos?. Na figura está reresentado um tabuleiro com casas, disostas em quatro linhas (,, e ) e em quatro colunas (, B, e D) Disomos de fichas sendo 8 retas, iguais entre si, e brancas, numeradas de a. Pretende-se colocar fichas no tabuleiro de forma que não fique mais do que B D uma or cada casa... De quantas maneiras diferentes é ossível disor as fichas no tabuleiro?.. De quantas maneiras diferentes é ossível disor as oito fichas retas no tabuleiro de forma que só uma coluna fique totalmente reenchida?. Nos serviços administrativos de uma escola trabalham 8 essoas, sendo 0 homens e 8 mulheres. Entre estes trabalhadores, aenas homens e 5 mulheres falam inglês corretamente. De entre os 8 funcionários vão ser selecionados ara frequentarem uma ação de formação. De quantas maneiras é ossível formar esse gruo de forma que:.. seja misto (isto é, tenha elo menos um homem e uma mulher) e tenha mais mulheres do que homens?.. da sua comosição faça arte elo menos uma mulher?.. dois (e só dois) dos elementos escolhidos falem inglês corretamente e tenha igual número de homens e de mulheres. Proosta de teste de avaliação Matemática,. o ano Página
4 5. Um olígono regular de n lados tem 90 diagonais. Determine o valor de n. omece or escrever a equação que traduz o roblema e, de seguida, resolva-a.. Na figura estão reresentados nove ontos:, B,, D, E, F, G, H e I. F G H I Sabe-se que: [EIF] é um quadrado; os ontos B, e D ertencem ao lado [E]; os ontos G e H ertencem ao lado [FI]... Escolhem-se ao acaso três desses nove ontos. Qual é a robabilidade de estes definirem um triângulo? resente o resultado na forma de fração irredutível. B D E.. Escolhe-se ao acaso um dos triângulos definido or três dos nove ontos. Qual é a robabilidade de que a medida da área desse triângulo seja igual a metade da medida da área do quadrado? resente o resultado na forma de ercentagem. FIM Gruo I Gruo II otações Total Total 0 Proosta de teste de avaliação Matemática,. o ano Página
5 Proosta de resolução Gruo I..º.º.º.º Número de códigos que é ossível formar:.º.º.º.º = 0 Número de códigos que é ossível formar sem o algarismo 0: = 9 Número de códigos que é ossível formar com elo menos um algarismo 0: Resosta: () 0 9. Os seis algarismos iguais a determinam sete lugares, entre os quais se escolhem três ara os algarismos iguais a : Esta escolha ode ser feita de 7 maneiras diferentes dado que, como os três algarismos são iguais, não interessa a ordem ela qual vão ser colocados nos três lugares escolhidos. Resosta: (). Os três rimeiros elementos de uma linha do Triângulo de Pascal são iguais aos três últimos e estes seis elementos são os menores da linha. O rimeiro elemento de cada linha é igual a. Designando or a e b o segundo e o terceiro elementos da linha em causa, esta ode ser arcialmente reresentada or: a b b a Os três rimeiros elementos da linha seguinte são:, + a e a + b Sabemos que + a + b + b + a + =. + a + b + b + a + = a + b = a + b = Resosta: (D). Para que o número seja ímar, o algarismo das unidades tem de ser ímar. Logo, há cinco ossibilidades ara este algarismo (,, 5, 7 ou 9). Se o roduto dos algarismos é um número ímar, então os cinco algarismos são ímares. Se o número é inferior a 0 000, o algarismo das dezenas de milhar tem de ser inferior a. Logo, há três ossibilidades ara este algarismo (, ou 5). Portanto, há = 5 números nas condições indicadas. Resosta: () Proosta de teste de avaliação Matemática,. o ano Página 5
6 5 5. Número de casos ossíveis: = = 0 Número de casos favoráveis: (os triângulos [E] e [BDF]) E D P = = 0 0 F B Resosta: (B) Gruo II. ( ) = 0 x a x a + = Se x a = 5x, então 0 = 7, elo que = Se =, então x a = x a = 0a x Se 0a x = 5x, então 0a = a = 5 a = a = a = a = O valor de a é...º.º.º.º 5.º.º Existem números naturais com seis algarismos (o rimeiro algarismo é diferente de 0)..º.º.º.º 5.º.º Existem Logo, existem = 9 5 números naturais com seis algarismos diferentes números naturais com seis algarismos e com algarismos reetidos = = 0,888 = 8,88% ,88% dos números naturais com seis algarismos têm algarismos reetidos... 8 = = 00 8 Número de maneiras de disor as fichas brancas (diferentes) nas restantes 8 casas Número de maneiras de disor as 8 fichas retas (iguais) nas casas Proosta de teste de avaliação Matemática,. o ano Página
7 .. = 95 = 97 Excluem-se os casos em que ficam duas colunas totalmente reenchidas Número de maneiras de disor as restantes fichas elos restantes lugares Número de maneiras de escolher a coluna que fica com fichas.. Homens Mulheres O gruo é formado or dois homens e quatro mulheres ou or um homem e cinco mulheres. O número de ossibilidades é: + 5 = = O número total de gruos que é ossível formar é dado or 8. O número de gruos que é ossível formar com seis homens é dado or 0. Logo, o número de gruos que é ossível formar com elo menos uma mulher é = Há três casos a considerar ara a escolha dos dois elementos que falam corretamente inglês: dois homens duas mulheres um homem e uma mulher Homens que Mulheres que Homens que Mulheres que falam inglês falam inglês não falam inglês não falam inglês 5.º caso 0.º caso 0.º caso Número de ossibilidades:.º caso: 5 0 = =.º caso: 5 0 = 0 0 = 00.º caso: 5 = 5 5 = = 5 É ossível formar o gruo de 5 maneiras diferentes. Proosta de teste de avaliação Matemática,. o ano Página 7
8 5. n n 90 = com n N \ {, } n n = 90 n = 90! n ( ) n n n 90 = 0 n n n 80 = 0 n n 80 = 0 ± n = ± 79 n = ± 7 n = omo n N \ {, }, então n = 5.. Número de casos ossíveis: 9 = 8 Número de casos favoráveis: + 5 = = P = = 8. Número de casos ossíveis: 70 F G H I Número de casos favoráveis: + 5 = 9 (são os triângulos de base [E] e vértice oosto F, G, H ou I e os triângulos de base [FI] e vértice oosto, B,, D ou E) 9 P = % 70 B D E Proosta de teste de avaliação Matemática,. o ano Página 8
Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Probabilidade condicionada; acontecimentos independentes 12.
Escola Secundária/ da Sé-Lamego Ficha de Trabalho de Matemática no Lectivo 00/0 Probabilidade condicionada; acontecimentos indeendentes º no Nome: Nº: Turma: Demonstre que se e são acontecimentos indeendentes,
1 cor disponível (não pode ser igual à anterior) Casos possíveis: 3 x 2 x 1 x 1 x 3 = 18 Resposta: B
Prearar o Exame 01 017 Matemática A Página 7 1. Observa o seguinte esquema: cores ossíveis cores ossíveis 1 cor disonível (não ode ser igual à anterior) 1 cor disonível (não ode ser igual à anterior) cores
1 Lógica e teoria dos conjuntos
Lógica e teoria dos conjuntos.. Introdução à lógica bivalente Pág. 0 Atividade de diagnóstico.. N..,5 Z.. 5.. Q.5. π R π.6. Q + +.7. Z.8. 0 Z 0.......... x = 5 x+ = 5 x = 5 x = S = { } x + = 0 ( x ) 9
Soluções da Prova Dissertativa de Matemática do PISM III- 2017
Soluções da Prova Dissertativa de Matemática do PISM III- 017 Questão 1 Considere os ontos P (, ), Q( 1, 0) e S( 5, ). a) Determine a equação da reta contendo o segmento PQ, da reta contendo o segmento
2, que distam de duas unidades da origem. Nesse caso, a soma das abcissas dos dois pontos é : 8 C. 5
Instituto Suerior Politécnico de Tete / Exame de Admissão de Matemática /. Sejam A e B dois ontos da recta de equação y = x+, que distam de duas unidades da origem. Nesse caso, a soma das acissas dos dois
SIMULADO. 05) Atribuindo-se todos os possíveis valores lógicos V ou F às proposições A e B, a proposição [( A) B] A terá três valores lógicos F.
01) Considere as seguintes roosições: P: Está quente e Q: Está chovendo. Então a roosição R: Se está quente e não está chovendo, então está quente ode ser escrita na forma simbólica P..( Q) P, em que P..(
matematicaconcursos.blogspot.com
Professor: Rômulo Garcia Email: [email protected] Conteúdo Programático: Teoria dos Números Exercícios e alguns conceitos imortantes Números Perfeitos Um inteiro ositivo n diz-se erfeito se e somente
TEMA 1 PROBABILIDADES E COMBINATÓRIA FICHA DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 1 PROBABILIDADES E COMBINATÓRIA
FICHA DE TRABALHO.º ANO COMPILAÇÃO TEMA 1 PROBABILIDADES E COMBINATÓRIA Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEMA 1 PROBABILIDADES E COMBINATÓRIA Matemática A.º
Exercícios de exames e provas oficiais
mata Exercícios de exames e provas oficiais. Um dos termos do desenvolvimento de x x, com x 0, não depende da variável x. 0 Qual é esse termo? 040 804 04 5 matemática A º ano, exame, ª fase, 04. A soma
8 A do total de lançamentos, ou seja, x = 5625 Resposta: C
Página 7 Preparar o Exame 0 07 Matemática A. x7x 7 Observa que sair primeiro o sabor laranja e depois o sabor morango são casos diferentes x Resposta: D. Repara que se os dois primeiros rebuçados foram
Questões de Exame Resolvidas. Matemática A. 12.º ano. Probabilidades e Combinatória
Questões de Exame Resolvidas Matemática A.º ano Probabilidades e Combinatória Índice Resumo Teórico. Cálculo combinatório. Problemas de contagem 6.. Princípios fundamentais da contagem 6.. Arranjos e combinações
M odulo de Potencia c ao e D ızimas Peri odicas Nota c ao Cient ıfica e D ızimas Oitavo Ano
Módulo de Potenciação e Dízimas Periódicas Notação Científica e Dízimas Oitavo Ano Exercícios Introdutórios Exercício. Escreva os seguintes números na notação científica: a) 4673. b) 0, 0034. c). d) 0,
MATEMÁTICA COMENTÁRIO DA PROVA
COMENTÁRIO DA PROVA Os objetivos desta rova discursiva foram lenamente alcançados. Os conteúdos rinciais foram contemlados, inclusive comlementando os tóicos abordados na ª. fase, mostrando uma conveniente
MATEMÁTICA A - 12o Ano Probabilidades - Cálculo combinatório: Cálculo de Probabilidades Propostas de resolução
MATEMÁTICA A - 12o Ano Probabilidades - Cálculo combinatório: Cálculo de Probabilidades Propostas de resolução Exercícios de exames e testes intermédios 1. Como são extraídos 4 cartões simultaneamente
Teste de Avaliação de MATEMÁTICA 12º ano
Teste de Avaliação de MATEMÁTIA 2º ano º Período de 202/3 duração 90 min. Prof. Josué Baptista Turma: 2 e 3 2º teste A 06 de Dezembro lassificação: Nº Nome GRUPO I O Professor: As sete questões deste grupo
12.º Ano de Escolaridade
gabinete de avaliação educacional T E S T E I N T E R M É D I O D E M A T E M Á T I C A 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) (Dec.-Lei n.º 286/89, de 29 de Agosto, para alunos
Tarefa nº_ 1.9 (C) 3 5
Tarefa nº_ 1.9 MATEMÁTICA Probabilidades e Combinatória Cálculo Combinatório Nome: 12º Ano Data / / 1. Os códigos dos cofres fabricados por uma certa empresa, consistem numa sequência de cinco algarismos
Análise Combinatória. Cálculo de Probabilidades. (aplicações na Geometria)
FIHA DE TRABALHO N.º 6 TURMA:.ºA 06/07 novembro de 06 Análise ombinatória. álculo de Probabilidades. (aplicações na Geometria). Escolhem-se aleatoriamente dois vértices distintos de um cubo. Qual é a probabilidade
2. Se A e B são acontecimentos incompatíveis, a sua interseção é o conjunto vazio, pelo que
reparar o Exame 0 06 Matemática ágina 6. nalisemos cada opção: : e não são contrários pois a sua união não é o espaço amostral. Há, ainda, bolas pretas. : e não são contrários pois a sua união não é o
Encontro 11: Resolução de exercícios da OBMEP
Encontro 11: Resolução de exercícios da OBMEP Exercício 1: Cada livro da biblioteca municipal de Quixajuba recebe um código formado por três das 26 letras do alfabeto. Eles são colocados em estantes em
MATEMÁTICA A - 12o Ano Probabilidades - Cálculo combinatório: Problemas de Contagem Propostas de resolução
MATEMÁTICA A - 12o Ano Probabilidades - Cálculo combinatório: Problemas de Contagem Propostas de resolução Exercícios de exames e testes intermédios 1. Considerando uma única fica horizontal, existem 4
IME 2011/2012 GABARITO DISCURSIVAS INSTITUTO MILITAR DE ENGENHARIA. Professores:
IME 011/01 GABARITO DISCURSIVAS INSTITUTO MILITAR DE ENGENHARIA Professores: Carlos Augusto Celso Ramos Daniel Fadel Diego Alecyr Fabio Dias Moreira Felie Rufino Jorge Henrique Craveiro Jordan Piva Matheus
OBMEP 2010 Soluções da prova da 2ª Fase Nível 2. Questão 1
Questão a) Para saber o número que deve dizer ao matemágico, Joãozinho deve fazer quatro contas: ª conta: multiplicar o número no cartão escolhido por 2; 2ª conta: somar 3 ao resultado da primeira conta;
Geometria. Nome: N.ª: Ano: Turma: POLÍGONOS = POLI (muitos) + GONOS (ângulos)
MATEMÁTICA 3º CICLO FICHA 16 Geometria regular inscrito numa circunferência Nome: N.ª: Ano: Turma: Data: / / 20 POLÍGONOS = POLI (muitos) + GONOS (ângulos) é uma figura plana limitada por segmentos de
Distribuição de uma proporção amostral
Distribuição de uma roorção amostral Estatística II Antonio Roque Aula 4 Exemlo Ilustrativo: Suonha que se saiba que em uma certa oulação humana uma roorção de essoas igual a = 0, 08 (8%) seja cega ara
12.º Ano de Escolaridade
gabinete de avaliação educacional T E S T E I N T E R M É D I O D E M A T E M Á T I C A 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) (Dec.-Lei n.º 286/89, de 29 de Agosto, para alunos
ANÁLISE COMBINATÓRIA
ANÁLISE COMBINATÓRIA 1) (PUC) A soma das raízes da equação (x + 1)! = x 2 + x é (a) 0 (b) 1 (c) 2 (d) 3 (e) 4 2) (UFRGS) Um painel é formado por dois conjuntos de sete lâmpadas cada um, dispostos como
Nome: N.º: Turma: Classificação: Professor: Enc. Educação:
Escola EB,3 de Ribeirão (Sede) ANO LECTIVO 010/011 Março 011 Nome: N.º: Turma: Classificação: Professor: Enc. Educação: Ficha de Avaliação de Matemática (Tipo Teste Intermédio) Duração do Teste: 90 minutos
Índice. Cálculo combinatório e probabilidades. Funções exponenciais e funções logarítmicas. Funções reais de variável real.
Índice 1 Cálculo combinatório e probabilidades Funções exponenciais e funções logarítmicas 1. Propriedades das operações sobre conjuntos. Cardinais. Fatorial. Arranjos 8. Arranjos. Combinações 1 5. Triângulo
Proposta de resolução do Exame Nacional de Matemática A 2016 (2 ạ fase) GRUPO I (Versão 1) Logo, P(A B) = = = Opção (A)
Proosta de resolução do Eame Naconal de Matemátca A 0 ( ạ fase) GRUPO I (Versão ). P( A B) 0, P(A B) 0, P(A B) 0, P(A B) 0,4 P(A) + P(B) P(A B) 0,4 Como P(A) 0, e P(B) 0,, vem que: 0, + 0, P(A B) 0,4 P(A
Solução: a) Observamos que temos as seguintes linhas entre as cidades: A B C
Exercício 1 Há 3 linhas de ônibus entre as cidades A e B e 2 linhas de ônibus entre B e C. De quantas maneiras uma pessoa pode viajar: (a) indo de A até C, passando por B? (b) indo e voltando entre A e
MATEMÁTICA 8.º ANO TERCEIRO CICLO BRUNO SILVA CRISTINA SERRA ISABEL OLIVEIRA RAQUEL OLIVEIRA
MTEMÁTI 8.º NO TEREIRO ILO RUNO SILV RISTIN SERR ISEL OLIVEIR RQUEL OLIVEIR ÍNDIE Números e operações. Álgebra Álgebra 1 Números racionais 04 Exercícios resolvidos 11 Exercícios propostos 14 2 Potências
COLÉGIO EQUIPE DE JUIZ DE FORA MATEMÁTICA - 3º ANO EM. 1. O número de anagramas da palavra verão que começam e terminam por consoante é:
1. O número de anagramas da palavra verão que começam e terminam por consoante é: a) 120 b) 60 c) 12 d) 24 e) 6 2. Com as letras da palavra prova, podem ser escritos x anagramas que começam por vogal e
Componente Curricular: Professor(a): PAULO CEZAR Turno: Data: Matemática Matutino / /2015 Aluno(a): Nº do Aluno: Série: Turma: 9º Ano
Componente Curricular: Professor(a): PAULO CEZAR Turno: Data: Matemática Matutino / /015 Aluno(a): Nº do Aluno: Série: Turma: 9º Ano Esta lista de exercícios possui pontuação extra e portanto é facultativa
Função par e função ímpar
Pré-Cálculo Humberto José Bortolossi Deartamento de Matemática Alicada Universidade Federal Fluminense Função ar e função ímar Parte 3 Parte 3 Pré-Cálculo 1 Parte 3 Pré-Cálculo 2 Função ar Definição Função
MATEMÁTICA Professores: Adriano, Andrey, Aurélio e Rodrigo Comentário Geral Prova bem abrangente como todos os anos, mas com dois detalhes que
MTEMÁTIC rofessores: driano, ndrey, urélio e Rodrigo Comentário Geral rova bem abrangente como todos os anos, mas com dois detalhes que chamaram a atenção. rimeiro a ausência de uma questão de trigonometria
Soluções Simulado OBMEP 2017 Nível 1 6º e 7º anos do Ensino Fundamental. = 7 cm. Logo, ela parou na marca de = 13 cm.
Soluções Simulado OBMEP 2017 Nível 1 6º e 7º anos do Ensino Fundamental 1. ALTERNATIVA C Alvimar recebeu de troco 5,00 3,50 = 1,50 reais. Dividindo 1,50 por 0,25, obtemos o número de moedas de 25 centavos
Caderno 2: 55 minutos. Tolerância: 20 minutos. (não é permitido o uso de calculadora)
Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/1.ª Fase Caderno 2: 7 Páginas Entrelinha 1,5, sem figuras Duração da Prova (Caderno 1 + Caderno 2):
Exercícios de exames e provas oficiais
mat Exercícios de exames e provas oficiais. Na figura abaixo, está representado, num referencial o.n. Oxyz, um octaedro [BDEF], cujos vértices pertencem aos eixos coordenados. Escolhem-se, ao acaso, três
CUFSA - FAFIL. Análise Combinatória (Resumo Teórico)
A) CONCEITOS: CUFSA - FAFIL Aálise Combiatória (Resumo Teórico) Regras Simles de Cotagem: é a maeira de determiar o úmero de elemetos de um cojuto. Na maioria das vezes é mais imortate cohecer a quatidade
Matemática 2 Ano do Ensino Médio. Lista 1 Análise Combinatória. 1. Simplifique as expressões algébricas.
Estudante: Nº. Matemática 2 Ano do Ensino Médio Professor: Diego Andrades Lista 1 Análise Combinatória 1. Simplifique as expressões algébricas. ( x 1)! x! a) ( n 1)! b) ( k 2)! k! c) ( n 1)! ( n 2)! d)
Tarefa nº_ 1.8. Probabilidades e Combinatória Análise Combinatória
Tarefa nº_ 1.8 MATEMÁTICA Probabilidades e Combinatória Análise Combinatória Nome: 12º Ano Data / / 1. A Câmara Municipal de uma cidade decidiu alterar o sistema de matrículas das motorizadas. Assim, cada
Combinatória - Nível 2
Combinatória - Nível 2 POTI UFPR Princípio da Casa dos Pombos - 30/09/2017 Material complementar http://www.mat.ufpr.br/poti/ Princípio da Casa dos Pombos: se em n gaiolas são postos n + 1 pombos, então
Matemática A Ficha n.º1 Cálculo combinatório. Problemas de Contagem. Exercícios de exames e testes intermédios (Escolha Múltipla)
Matemática Ficha n.º1 12.º ano álculo combinatório. Problemas de ontagem. Exercícios de exames e testes intermédios (Escolha Múltipla) 1. om os algarismos 0, 1, 2, e 4, quantos números naturais maiores
Invertendo a exponencial
Reforço escolar M ate mática Invertendo a exonencial Dinâmica 3 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 2ª do Ensino Médio Algébrico Simbólico Função Logarítmica Aluno Primeira
Na resposta a cada um dos itens deste grupo, selecione a única opção correta.
Exame Nacional exame nacional do ensino secundário Decreto Lei n. 9/0, de de julho Prova Escrita de Matemática A. Ano de Escolaridade Prova 6/.ª Fase Duração da Prova: 0 minutos. Tolerância: 0 minutos
Polos Olímpicos de Treinamento. Aula 18. Curso de Geometria - Nível 3. Transformações geométricas II - Simetria e rotação. Prof.
olos límpicos de Treinamento urso de Geometria - Nível 3 rof. ícero Thiago ula 18 Transformações geométricas II - Simetria e rotação. 1. Simetria com relação a um ponto. Dizemos que o ponto é o simétrico
2016/2017 outubro de 2016
FICHA DE TRABALHO N.º 5 TURMA:12.ºA 2016/2017 outubro de 2016 Análise Combinatória; Triângulo de Pascal; Binómio de Newton; Aplicações ao Cálculo das Probabilidades 1. A Sara é colecionadora e tem 200
2 Um edifício possui 8 portas. De quantas formas uma pessoa poderá entrar no edifício e sair por uma porta diferente da que usou para entrar?
UNIVERSIDDE FEDERL DE MTO GROSSO ampus Universitário do raguaia Instituto de iências Exatas e da Terra urso: Matemática Disciplina: Probabilidade e Estatística Professor: Renato Ferreira da ruz 1 a Lista
Progressão Geométrica
Progressão Aritmética E Progressão Geométrica David Armando Zavaleta Villanueva Departamento de Matemática-CCET-UFRN 1 1 [email protected] Progressão Aritmética Definição 1 Chamamos de progresão
Exercícios sobre Estudo dos Polígonos
Exercícios sobre Estudo dos Polígonos Material de apoio do Extensivo 1. (Uerj) Ao observar, em seu computador, um desenho como o apresentado a seguir, um estudante pensou tratar-se de uma curva. Porém,
Problemas de Contagem
Problemas de Cotagem Cotar em semre é fácil Pricíio Fudametal de Cotagem Se um certo acotecimeto ode ocorrer de 1 maeiras diferetes e se, aós este acotecimeto, um segudo ode ocorrer de 2 maeiras diferetes
TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa C. alternativa E. alternativa B.
Questão TIPO DE PROVA: A Se um número natural n é múltiplo de 9ede, então, certamente, n é: a) múltiplo de 7 b) múltiplo de 0 c) divisível por d) divisível por 90 e) múltiplo de Se n é múltiplo de 9 e
Exemplos e Contra-Exemplos
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 7 Exemplos e Contra-Exemplos Você que já tentou resolver alguns problemas de provas anteriores de Olimpíada de Matemática
Aula 2 4º Encontro. Aplicações do Princípio Multiplicativo Combinações 08/10/2016
Aula 2 4º Encontro Aplicações do Princípio Multiplicativo Combinações 08/10/2016 1. Sem usar o algarismo 0, Carolina escreveu todos os números de três algarismos diferentes nos quais o algarismo do meio
Matemática 4 Módulo 9
Matemática 4 Módulo 9 ANÁLISE COMBINATÓRIA I COMENTÁRIOS ATIVIDADES PARA SALA (n + )! (n + )(n )!. I. Dada a função ƒ (n). Simplificando, temos: n! + (n )! (n + ).n.(n )! (n + ).(n )! (n )![(n + ).n (n
01) ) ) ) )NRA. Número de casos possíveis: = 6 Números de casos favoráveis à senha apresentar na susa formação o número 13:
PROVA OPCIONAL DE MATEMÁTICA TURMAS DO 3 o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - SETEMBRO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão
1. Em cada caso, obtenha a equação e esboce o grá co da circunferência.
3.1 A Circunferência EXERCÍCIOS & COMPLEMENTOS 3.1 1. Em cada caso, obtenha a equação e esboce o grá co da circunferência. (a) Centro C ( 2; 1) e raio r = 5: (b) Passa elos ontos A (5; 1) ; B (4; 2) e
ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ]
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 017 Gabarito Questão 01 [ 1,5 ] Encontre as medidas dos lados e ângulos de dois triângulos ABC diferentes tais que AC = 1, BC = e A BC = 0 Considere
RACIOCÍNIO LÓGICO. Com o Prof. Paulo Henrique (PH)
RACIOCÍNIO LÓGICO Com o Prof. Paulo Henrique (PH) RACIOCÍNIO LÓGICO: (1) Questões Lógicas Sequências, reconhecimento de padrões, progressões aritmética e geométrica. Problemas de raciocínio: deduzir informações
Ficha de Avaliação. Matemática A. Duração do Teste: 90 minutos. 12.º Ano de Escolaridade. Teste de Matemática A 12.º Ano Página 1
Ficha de Avaliação Matemática A Duração do Teste: 90 minutos 12.º Ano de Escolaridade Teste de Matemática A 12.º Ano Página 1 1. Colocaram-se numa urna 12 bolas, indistinguíveis pelo tato, numeradas de
Canguru Matemático sem Fronteiras 2011
http://www.mat.uc.pt/canguru/ Destinatários: alunos dos 0. e. anos de escolaridade Nome: Turma: Duração: h30min Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. As questões
Matemática 2C16//26 Princípio da multiplicação ou princípio fundamental da contagem. Permutação simples e fatorial de um número.
Matemática 2C16//26 Princípio da multiplicação ou princípio fundamental da contagem 1. Existem 2 vias de locomoção de uma cidade A para uma cidade B e 3 vias de locomoção da cidade B a uma cidade C. De
37ª Olimpíada Brasileira de Matemática Nível 1 Segunda Fase
37ª Olimpíada Brasileira de Matemática Nível 1 Segunda Fase PARTE A (ada problema vale 5 pontos) RITÉRIO DE ORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação
QUESTÃO 1 ALTERNATIVA B
1 QUESTÃO 1 O tabuleiro 7 7 pode ser facilmente preenchido e constata-se que na casa central deve aparecer o número 25, mas existe uma maneira melhor de fazer isto: no tabuleiro quadrado de casas, a quantidade
36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase
36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 2 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação
Devemosconsiderardoiscasos: 7 k ou7 k+1. Alémdisso, lembremo-nosdoseguintefato:
Polos Olímicos de Treinamento Curso de Teoria dos Números - Nível Prof. Samuel Feitosa Aula 18 Resíduos Quadráticos Definição 1. Para todos a tais que mdc(a,m) = 1, a é chamado resíduo quadrático módulo
XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO
XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Ensino Médio) GABARITO GABARITO NÍVEL ) D 6) C ) D 6) C ) B ) A 7) B ) B 7) B ) C ) D 8) C ) E 8) B ) B 4) D 9) E 4) D 9) C 4) D ) D 0) A ou
Combinatória: Dicas para escrever uma boa solução. Prof. Bruno Holanda Semana Olímpica 2010 São José do Rio Preto
Combinatória: icas para escrever uma boa solução. Prof. Bruno Holanda Semana Olímpica 00 São José do Rio Preto? Nível Uma dificuldade que é bastante frequente nos alunos do nível (ou em outros quaisquer
COLÉGIO DE APLICAÇÃO DOM HÉLDER CÂMARA EXERCÍCIOS COMPLEMENTARES I DISCIPLINA : MATEMÁTICA PROFESSOR (A): ALUNO (A) 4º ano
COLÉGIO DE APLICAÇÃO DOM HÉLDER CÂMARA EXERCÍCIOS COMPLEMENTARES I DISCIPLINA : MATEMÁTICA PROFESSOR (A): ALUNO (A) 4º ano DATA PARA ENTREGA: / /2017 1. Determine os números correspondentes as decomposições
12.º Ano de Escolaridade
gabinete de avaliação educacional T E S T E I N T E R M É D I O D E M A T E M Á T I C A 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) (Dec.-Lei n.º 286/89, de 29 de Agosto, para alunos
CONTAGEM. (a) uma semana (b) um mês (c) dois meses (d) quatro meses (e) seis meses
CONTAGEM Exercício 1(OBMEP 2011) Podemos montar paisagens colocando lado a lado, em qualquer ordem, os cinco quadros da figura. Trocando a ordem dos quadros uma vez por dia, por quanto tempo, aproximadamente,
Prova da segunda fase - Nível 2
Caro Aluno, Parabéns pela sua participação na nona edição da Olimpíada de Matemática de São José do Rio Preto! Lembre-se de que uma Olimpíada é diferente de uma prova escolar. Muitas vezes, as questões
Análise Combinatória Intermediário
Análise Combinatória Intermediário 1. (AFA) As senhas de acesso a um determinado arquivo de um microcomputador de uma empresa deverão ser formadas apenas por 6 dígitos pares, não nulos. Sr. José, um dos
MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Propostas de resolução
MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Propostas de resolução Exercícios de exames e testes intermédios 1. Como P (B) = 1 P ( B ) = P (B) P (A B) vem que P (B) = 1 0,7
AGRUPAMENTO DE ESCOLAS D. JOSÉ I - VRSA MATEMÁTICA 5.º ANO 2015/16
AGRUPAMENTO DE ESCOLAS D. JOSÉ I - VRSA MATEMÁTICA 5.º ANO 2015/16 Ficha 4 Números naturais (revisão) NOME Turma Data 1. Considere os números 15, 25 e 30. a) Determine os divisores de 15, 25 e 30. b) A
PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR a Fase RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. QUESTÃO 58. Em uma festa com n pessoas, em um dado instante, mulheres se retiraram e restaram convidados na razão de homens
Prova Valor: 80 pontos A prova constará de 20 questões, sendo 15 questões discursivas e 5 objetivas.
DISCIPLINA: MATEMÁTICA PROFESSORES: PATRICIA, MÁRIO e MAGNO. DATA: 19 / 12 / 2016 VALOR: 20,0 NOTA: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 7º TURMA: ALUNO (A): Nº: 01. RELAÇÃO DO CONTEÚDO Números Inteiros
RESPOSTA Princípio Fundamental da contagem
RESPOSTA Princípio Fundamental da contagem Monitores: Juliana e Alexandre Exercício 1 Para resolver esse exercício, devemos levar em consideração os algarismos {0, 2, 3, 5, 6, 7, 8 e 9}. Para que esse
Polos Olímpicos de Treinamento. Aula 8. Curso de Combinatória - Nível 1. Prof. Bruno Holanda
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 8 Configurações Mágicas De maneira geral, podemos dizer que as configurações mágicas são tipos especiais de diagramas
Questão 2. Questão 1. Questão 3. Resposta. Resposta. Resposta
ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço a ela reservado. Não basta escrever apenas o resultado final: é necessário mostrar os cálculos ou o raciocínio utilizado. Questão Emumasalaháumalâmpada,umatelevisão
Limite e Continuidade
Matemática Licenciatura - Semestre 200. Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa Limite e Continuidade Neste caítulo aresentaremos as idéias básicas sobre ites e continuidade de
TESTE DE PROBABILIDADES E COMBINATÓRIA 12.º ANO
TESTE DE PROBABILIDADES E COMBINATÓRIA 2.º ANO NOME: N.º: TURMA: ANO LETIVO: / AVALIAÇÃO: PROFESSOR: ENC. EDUCAÇÃO: DURAÇÃO DO TESTE: 90 MINUTOS O teste é constituído por dois grupos. O Grupo I é constituído
TEMA 1 COMBINATÓRIA E PROBABILIDADES FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 1 COMBINATÓRIA E PROBABILIDADES
FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 1 COMBINATÓRIA E PROBABILIDADES Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEMA 1 COMBINATÓRIA E PROBABILIDADES Matemática
CPV O Cursinho que Mais Aprova na GV
CPV O Cursinho que Mais Aprova na GV FGV ADM 05/junho/06 MATEMÁTICA APLICADA 0. Para a construção de uma janela na sala de um teatro, existe a dúvida se ela deve ter a forma de um retângulo, de um círculo
MICROECONOMIA II ( ) João Correia da Silva
MICROECONOMIA II 1E108 (2011-12) 29-02-2012 João Correia da Silva ([email protected]) 1. A EMPRESA 1.1. Tecnologia de Produção. 1.2. Minimização do Custo. 1.3. Análise dos Custos. 1.4. Maximização do ucro. 2
setor 1102 Aula 20 PRINCÍPIOS BÁSICOS DA CONTAGEM 2 REVISÃO
setor 1102 1102008 Aula 20 PRINCÍPIOS BÁSICOS DA CONTAGEM 1 PRINCÍPIOS BÁSICOS DA CONTAGEM Seja, por exemplo, uma lanchonete que vende três tipos de refrigerantes e dois tipos de cerveja. Pergunta-se:
MATEMÁTICA A - 12o Ano Probabilidades - Distribuições de probabilidades
MATEMÁTICA A - o Ano Probabilidades - Distribuições de probabilidades Exercícios de exames e testes intermédios. A tabela de distribuição de probabilidades de uma variável aleatória X é a seguinte. x i
XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA TERCEIRA FASE NÍVEL 1 (5 a. e 6 a. Séries)
TERCEIRA FASE NÍVEL 1 (5 a. e 6 a. Séries) PROBLEMA 1 Parte das casas de um quadriculado com o mesmo número de linhas (fileiras horizontais) e colunas (fileiras verticais) é pintada de preto, obedecendo
Módulo de Princípios Básicos de Contagem. Segundo ano
Módulo de Princípios Básicos de Contagem Permutação simples Segundo ano Permutação Simples 1 Exercícios Introdutórios Exercício 1. De quantas formas se pode dispor quatro pessoas em fila indiana? Exercício
Matemática. Resolução das atividades complementares. M1 Trigonometria no ciclo. 1 Expresse: p 4 rad. rad em graus. 4 rad 12 p b) 330 em radianos.
Resolução das atividades comlementares Matemática M Trigonometria no ciclo. 7 Exresse: a) em radianos c) em radianos e) rad em graus rad rad b) 0 em radianos d) rad em graus f) rad 0 rad em graus a) 80
QUESTÃO 3 (ALTERNATIVA A) Como já foram colocados 1500 baldes na caixa, faltam 500 baldes para enchê-la. O enunciado diz que 2000
1 QUESTÃO 1 Como Mário correu 8 = 1 6 + 2 km em sentido horário e a pista tem 6 km, então ele deu 1 volta completa e ficou a 2 km do ponto de partida no sentido horário. Do mesmo modo, João correu 15 =
Nível 8.º e 9.º anos do Ensino Fundamental 1. a Fase 6 de junho de 2017
Solução da prova da 1.ª Fase Nível 8.º e 9.º anos do Ensino Fundamental 1. a Fase 6 de junho de 2017 2 QUESTÃO 1 Para obter o maior resultado possível, devemos fazer com que os termos que contribuem positivamente
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA PRODUTO DA DISSERTAÇÃO USO DE ELEMENTOS DA CULTURA INFANTO-JUVENIL NA INTRODUÇÃO DO CONCEITO
