Projeto de Mecânica Análogos Elétricos
|
|
|
- Gabriel Vítor Gabriel Madeira Fortunato
- 8 Há anos
- Visualizações:
Transcrição
1 UNIVERSIDADE FEDERAL DE CAMPINA GRANDE UFCG CENTRO DE CIÊNCIAS E TECNOLOGIA CCT DEPARTAMENTO DE FÍSICA DF MECÂNICA GERAL II Projeto de Mecânica Análogos Elétricos Professor : Rômulo Alunos: Manuella Martins do Nascimento Felipe Queiroga Macedo Raphael Borges Felipe Souto Soares Márcio Aguiar Campina Grande-PB Junho de 2011
2 1. INTRODUÇÃO Como as equações diferenciais que regem o comportamento de tensões e correntes em um sistema elétrico são semelhantes às equações que modelam um sistema mecânico, podemos fazer uma equivalência entre seus componentes, gerando assim um análogo. 2. OBJETIVO Modelar um sistema elétrico para simular um oscilador massa-mola amortecido, animado por um braço mecânico. 3. MATERIAL UTILIZADO Indutor de 10mH; Capacitor de 1nF; Resistor de 100ohm; Gerador de Sinais; Osciloscópio; Multímetro; Protoboard. 4. DESENVOLVIMENTO TEÓRICO Para fazermos a analogia entre os dois sistemas, foi preciso analisar as equações diferencias características de cada um. Para isso desenvolvemos as mesmas a partir da força resultante e da lei de Kirchhoff, no sistema mecânico e elétrico, respectivamente. Como podemos observar na Figura 1, o sistema mecânico quando animado pelo braço para o lado direito, apresenta uma força resultando como vista na Equação 1, considerando a referência positiva para a direita e para cima. Figura 1
3 = + F Equação 1 Isolando a força do braço no lado direito da equação e dividindo toda a equação pela massa m, temos: + + = Equação 2 Analisando agora a equação gerada pela Lei de Kirchhoff das tensões no circuito RLC série como o da Figura 2, temos: Figura = () Equação 3 Fazendo a analogia: = x A Equação 3 se torna: + + = () Dividindo tudo por Lλ, temos: + + = ()/ Equação 4 Comparando as equações 2 e 4, obtivemos que: = e = = /
4 Portanto, encontramos as analogias: L = m, R = b, C = 1/K Assim, temos o indutor representando a massa da partícula, o resistor representando o amortecedor, o capacitor representando a mola, e a fonte representando o braço de força, formando então o análogo elétrico do sistema mecânico. A unidade do fator λ que relaciona os análogos pode ser encontrada pela equação abaixo: = () Portanto: = () e [λ] = [Coulomb]/[metro] Além disso, o circuito deve obedecer a relação abaixo: β = obtida através da aplicação da transformada de Laplace na equação característica do circuito RLC e resolvendo-a. Observe abaixo: ()+()+ 1 ()=() Q(s)( ++ )=().: Q(s) = V(s)/( ++ ) Encontrando os pólos da resposta em freqüência ()= () equação ( ++ ) = 0, temos: = 4 () resolvendo a = 2 ± (/2 ) 1/ A partir disto, temos que este circuito pode ser um análogo elétrico, desde que o termo dentro da raiz seja menor do que zero, pois o circuito deve ser subamortecido, para simular um oscilador massa-mola.
5 5. RESULTADOS OBTIDOS A partir dos cálculos mostrados no desenvolvimento teórico, e obedecendo à relação apresentada, montamos o circuito equivalente utilizando um gerador de sinais, um resistor de 100 ohm, um capacitor de 1nF, e um indutor de 1mH. Com esses elementos, obtivemos: β = = Por meio do gerador de sinais, submetemos o circuito a uma tensão senoidal de 0.2V de pico, e analisamos as respostas de cada elemento do circuito para a freqüência de ressonância, para uma freqüência dez vezes maior do que a de ressonância, e para uma freqüência dez vezes menor do que a de ressonância. Calculando a freqüência de ressonância para tais elementos temos: = = = = / serão: E as freqüências de um décimo e dez vezes denotadas w1 e w2, respectivamente, = =31622,7 / e = 10 = / Calculando as tensões previstas nos elementos teremos, para : Para : Para : Vindutor = 6,32 V Fase = 90º, Vcapacitor = 6,32 V Fase = -90º, Vresistor = 0,2 V Fase = 0º, Vindutor = 2 mv Fase 180º, Vcapacitor = 0,2 V Fase 0º, V resistor = 0,6 mv Fase 90º, Vindutor = 0,2 V Fase 0º, Vcapacitor = 2 mv Fase -180º, Vresistor = 0,6 mv Fase 90º, Todos os resultados esperados foram confirmados experimentalmente como pode ser visto no vídeo feito com a montagem do circuito. Podemos observar claramente o fenômeno da ressonância em um sistema elétrico, análogo à ressonância em um sistema mecânico, quando em tal freqüência
6 vemos as amplitudes das tensões aumentando bastante em relação às amplitudes observadas em outras freqüências. Mesmo quando animamos o circuito com freqüências maiores do que a de ressonância não obtemos amplitudes maiores do que as obtidas na ressonância porque nela temos uma transferência de energia o mais eficiente possível, e portanto o sistema vibra/oscila em amplitudes máximas só limitadas pelos atritos de amortecimento (resistor/amortecedor). 6. CONCLUSÃO Podemos observar, por meio dos resultados obtidos e esperados, que o circuito RLC série montado, é de fato um análogo de um oscilador massa-mola amortecido, animado por um braço mecânico, e, portanto, o experimento atingiu seu objetivo. Levando em consideração o fato de que estamos trabalhando com componentes reais e aparelhos de medição nem sempre precisos, podemos desconsiderar os erros nos resultados experimentais em relação aos resultados esperados, e concluir que o experimento foi realizado com sucesso.
Relatório do Projeto do 3º Estágio Análogos Elétricos
UFCG Universidade Federal de Campina Grande CCT Centro de Ciências e Tecnologia UAF Unidade Acadêmica de Física Mecânica II Turma 01 Professor: Rômulo Rodrigues Relatório do Projeto do 3º Estágio Análogos
REDES DE SEGUNDA ORDEM
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos - PSI - EPUSP PSI 3212 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS 1º Semestre de 2016 Experiência 9 REDES DE
Modelagem Matemática de Sistemas Eletromecânicos
Modelagem Matemática de Sistemas Eletromecânicos Estudos e Analogias de modelos de funções de transferências. Prof. Edgar Brito Introdução Os sistemas elétricos são componentes essenciais de muitos sistemas
Física Experimental III. SALAS 413 e 415
Física Experimental III SALAS 413 e 415 2017 1 Conteúdo I Experimentos Roteiros 7 1 Noções de circuitos elétricos 8 1.1 Material 8 1.2 Introdução 8 1.3 Voltagem 8 1.4 Corrente elétrica 9 1.5 Resistência
Sistemas de Controle 1
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 1 Cap2 - Modelagem no Domínio de Frequência Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle 1 Prof. Dr. Marcos
Experiência 10: REDES DE SEGUNDA ORDEM
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos - PSI - EPUSP PSI 3212 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS Edição 2018 Elisabete Galeazzo e Leopoldo
Resposta em Frequência. Guilherme Penello Temporão Junho 2016
Resposta em Frequência Guilherme Penello Temporão Junho 2016 1. Preparatório parte 1: teoria Experiência 9 Resposta em Frequência Considere inicialmente os circuitos RC e RL da figura abaixo. Suponha que
UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7040 Circuitos Elétricos I - Laboratório
UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7040 Circuitos Elétricos I - Laboratório AULA 05 SEGUNDA PARTE OSCILOSCÓPIO 1 INTRODUÇÃO Nas aulas anteriores de laboratório
Nota de Aula: Equações Diferenciais Ordinárias de 2 Ordem. ( Aplicações )
Nota de Aula: Equações Diferenciais Ordinárias de Ordem ( Aplicações ) Vamos nos ater a duas aplicações de grande interesse na engenharia: Sistema massa-mola-amortecedor ( Oscilador Mecânico ) O Sistema
Experimento 6 Corrente alternada: circuitos resistivos
1. OBJETIVO Experimento 6 Corrente alternada: circuitos resistivos O objetivo desta aula é estudar o comportamento de circuitos resistivos em presença de uma fonte de alimentação de corrente alternada.
Circuitos RLC alimentados com onda quadrada
Circuitos RLC alimentados com onda quadrada 8 8.1 Material capacitor de 10 nf; resistores de 100 Ω; indutor de 23,2 mh; potenciômetro. 8.2 Introdução Nos experimentos anteriores estudamos o comportamento
Circuitos RLC alimentados com onda quadrada
Circuitos RLC alimentados com onda quadrada 4 4.1 Material Gerador de funções; osciloscópio; multímetro; capacitor de 10 nf; resistores de 100 Ω; indutor de 10 a 50 mh; potenciômetro. 4.2 Introdução No
Experimento 5 Circuitos RLC com onda quadrada
Experimento 5 Circuitos RLC com onda quadrada 1. OBJETIVO O objetivo desta aula é estudar a variação de voltagem nas placas de um capacitor, em função do tempo, num circuito RLC alimentado com onda quadrada.
Circuitos Elétricos III
Circuitos Elétricos III Prof. Danilo Melges Depto. de Eng. Elétrica Universidade Federal de Minas Gerais Introdução aos circuitos de seleção de freqüência parte 2 Filtros passa-faixa: parâmetros 2 freqüências
Circuitos RLC alimentados com onda quadrada
Capítulo 5 Circuitos RLC alimentados com onda quadrada 5.1 Material Gerador de funções; osciloscópio; multímetro; capacitor de 10 nf; resistores de 100 Ω; indutor de 10 a 50 mh; potenciômetro. 5.2 Introdução
Eletricidade e Magnetismo II 2º Semestre/2014 Experimento 6: RLC Ressonância
Eletricidade e Magnetismo II º Semestre/014 Experimento 6: RLC Ressonância Nome: Nº USP: Nome: Nº USP: Nome: Nº USP: 1. Objetivo Observar o fenômeno de ressonância no circuito RLC, verificando as diferenças
Capítulo 2: Modelos Matemáticos de Sistemas -Sinais e Sistemas 1 -
Modelos Matemáticos de Sistemas -Sinais e Sistemas 1 - Objetivos Sinais Sistemas 1 Sistemas Eletro Entender o que significa fisicamente e matematicamente a transformada de Laplace Encontrar a transformada
UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL FÍSICA EXPERIMENTAL III CIRCUITOS RLC COM ONDA QUADRADA
UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL FÍSICA EXPERIMENTAL III CIRCUITOS RLC COM ONDA QUADRADA 1. OBJETIVO O objetivo desta aula é estudar a variação de voltagem
Experimento 6 Corrente alternada: circuitos resistivos
1 OBJETIVO Experimento 6 Corrente alternada: circuitos resistivos O objetivo desta aula é estudar o comportamento de circuitos resistivos em presença de uma fonte de alimentação de corrente alternada 2
INSTITUTO DE FÍSICA DA UNIVERSIDADE
INSTITUTO DE FÍSICA DA UNIVERSIDADE DE SÃO PAULO Laboratório de Eletromagnetismo (4300373) 2 o SEMESTRE DE 2013 Grupo:......... (nome completo) Prof(a).:... Diurno Noturno Data : / / Experiência 5 RESSONÂNCIA
Lab.05 Capacitor em Regime DC e AC
Lab.05 Capacitor em Regime DC e AC. Capacitor em regime DC (corrente contínua) OBJETIVOS Verificar experimentalmente o carregamento e o descarregamento de um capacitor utilizando tensão DC. TEORIA Ao aplicarmos
Experimento 6 Corrente alternada: circuitos resistivos
1. OBJETIO Experimento 6 Corrente alternada: circuitos resistivos O objetivo desta aula é estudar o comportamento de circuitos resistivos em presença de uma fonte de alimentação de corrente alternada.
GUIA EXPERIMENTAL E RELATÓRIO
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos - PSI EPUSP PSI 3212- LABORATÓRIO DE CIRCUITOS ELÉTRICOS Experiência 7 Resposta em Frequência de Circuitos
Aula 12. Transformada de Laplace II
Aula 12 Transformada de Laplace II Matérias que serão discutidas Nilsson Circuitos Elétricos Capítulos 12, 13 e 14 LAPLACE Capítulo 8 Circuitos de Segunda ordem no domínio do tempo Revisão A transformada
PSI.3031 LABORATÓRIO DE CIRCUITOS ELETRICOS INTRODUÇÃO TEÓRICA EXPERIÊNCIA 10: REDES DE SEGUNDA ORDEM
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP PSI.3031 LABORATÓRIO DE CIRCUITOS ELETRICOS INTRODUÇÃO TEÓRICA Edição 2017 E.Galeazzo / L.Yoshioka
Experimento 5 Circuitos RLC com onda quadrada
Experimento 5 Circuitos RLC com onda quadrada 1. OBJETIVO O objetivo desta aula é estudar a variação de voltagem nas placas de um capacitor, em função do tempo, num circuito RLC alimentado com onda quadrada.
CAPÍTULO IX. Análise de Circuitos RLC
CAPÍTULO IX Análise de Circuitos RLC 9. Introdução Neste capítulo, serão estudados os circuitos RLC s, ou seja, aqueles que possuem resistores, indutores e capacitores. Em geral, a análise desses circuitos
Medidas com circuito Ponte de Wheatstone DC e AC O aluno deverá entregar placa padrão com os circuitos montados, o kit montado não será devolvido.
Experiência Metrologia Elétrica Medidas com circuito Ponte de Wheatstone DC e AC O aluno deverá entregar placa padrão com os circuitos montados, o kit montado não será devolvido. ) Monte uma ponte de Wheatstone
Ressonância Circuito RLC (AC)
Ressonância Circuito RLC (AC) Objetivo: Medir a frequência de ressonância de um circuito RLC em série de corrente alternada (AC). Materiais: (a) Um resistor R; (b) Um capacitor C; (c) Um indutor L; (d)
Analise sistemas LCIT usando a Transformada de Laplace
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS JOINVILLE DEPARTAMENTO DO DESENVOLVIMENTO DO ENSINO
Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031
Universidade Federal do io Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁSE DE UTOS - ENG04031 Aula 7 - esposta no Domínio Tempo de ircuitos Série Sumário Solução
PSI LABORATÓRIO DE CIRCUITOS ELÉTRICOS
ESCOLA POLITÉCNICA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 3212 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS GUIA DE EXPERIMENTOS Experiência 3 COMPORTAMENTO DE COMPONENTES
2 Qual é valor da reatância capacitiva para um sinal de freqüência f = 5kHz em um capacitor de
PRÉ-RELATÓRIO 7 Nome: turma: Leia atentamente o texto da Aula 7, PARTE A Circuitos RC em corrente alternada, e responda às questões que seguem. 1 Qual é o significado de reatância capacitiva X C? Como
Circuitos resistivos alimentados com onda senoidal
Experimento 5 Circuitos resistivos alimentados com onda senoidal 5.1 Material Gerador de funções; osciloscópio; multímetro; resistor de 1 kω; indutores de 9,54, 23,2 e 50 mh. 5.2 Introdução Nas aulas anteriores
A Transformada de Laplace
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS JOINVILLE DEPARTAMENTO DO DESENVOLVIMENTO DO ENSINO
Circuitos resistivos alimentados com onda senoidal. Indutância mútua.
Capítulo 6 Circuitos resistivos alimentados com onda senoidal. Indutância mútua. 6.1 Material Gerador de funções; osciloscópio; multímetro; resistor de 1 kω; indutores de 9,54, 23,2 e 50 mh. 6.2 Introdução
1299 Circuitos elétricos acoplados
1 Roteiro elaborado com base na documentação que acompanha o conjunto por: Osvaldo Guimarães PUC-SP Tópicos Relacionados Ressonância, fator de qualidade, fator de dissipação, largura de banda, acoplamento
Roteiro-Relatório da Experiência N o 07 CIRCUITO RLC CC TRANSITÓRIO
Roteiro-Relatório da Experiência N o 7 CIRCUITO RLC CC TRANSITÓRIO. COMPONENTES DA EQUIPE: ALUNOS NOTA 3 Data: / / : hs. OBJETIVOS:.. Esta experiência tem por objetivo verificar as características de resposta
2 Qual é valor da reatância capacitiva para um sinal de freqüência f = 5kHz em um capacitor de
PRÉ-REATÓRIO 7 Nome: turma: eia atentamente o texto da Aula 7, PARTE A Circuitos RC em corrente alternada, e responda às questões que seguem. 1 Qual é o significado de reatância capacitiva X C? Como ela
Circuitos resistivos alimentados com onda senoidal
Circuitos resistivos alimentados com onda senoidal 5 5.1 Material Gerador de funções; osciloscópio; multímetro; resistor de 1 kω; indutores de 9,54, 23,2 e 50 mh. 5.2 Introdução Nas aulas anteriores estudamos
Sistemas de Controle 1
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 1 Cap4 Resposta no Domínio do Tempo Prof. Filipe Fraga Sistemas de Controle 1 4. Resposta no Domínio do Tempo 4.1 Introdução
Experimento 10 Circuitos RLC em corrente alternada: ressonância
Experimento 10 Circuitos RLC em corrente alternada: ressonância 1. OBJETIVO O objetivo desta aula é estudar o comportamento de circuitos RLC em presença de uma fonte de alimentação de corrente alternada.
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos - PSI - EPUSP
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos - PSI - EPUSP PSI 3212 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS 1º Semestre de 2016 Experiência 7 Resposta
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA LISTA DE EXERCICIOS #8 (1) FONTE DE CORRENTE a) Determine Io. b) Calcule
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA LISTA DE EXERCÍCIO #6 (1) COMPUTAÇÃO ANALÓGICA - A computação analógica
AULA LAB 01 PARÂMETROS DE SINAIS SENOIDAIS 2 MEDIÇÃO DE VALORES MÉDIO E EFICAZ COM MULTÍMETRO
CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA DEPARTAMENTO ACADÊMICO DE ELETRÔNICA Retificadores (ENG - 20301) AULA LAB 01 PARÂMETROS DE SINAIS SENOIDAIS 1 INTRODUÇÃO Esta aula de laboratório
Experimento 9 Circuitos RL em corrente alternada
1. OBJETIO Experimento 9 Circuitos RL em corrente alternada O objetivo desta aula é estudar o comportamento de circuitos RL em presença de uma fonte de alimentação de corrente alternada. 2. MATERIAL UTILIZADO
Experimentos de Introdução à Engenharia Utilizando o VISIR
Experimentos de Introdução à Engenharia Utilizando o VISIR Alimed Celecia Anna Carolina Garcia Daniel Dantas Barreto Felipe Calliari Leonardo Leite Souza René González Vanessa Paola González Atencia PUC-Rio
No. USP Nome Nota Bancada
ESCOLA POLITÉCNICA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 3212- LABORATÓRIO DE CIRCUITOS ELÉTRICOS EXPERIÊNCIA 04 GUIA DE EXPERIMENTOS e RELATÓRIO REVISÃO DAS
Experimento 7 Circuitos RC e RL em corrente alternada. Parte A: Circuito RC em corrente alternada
Experimento 7 ircuitos R e RL em corrente alternada Parte A: ircuito R em corrente alternada 1 OBJETIO O objetivo desta aula é estudar o comportamento de circuitos R em presença de uma fonte de alimentação
AULA LAB 01 PARÂMETROS DE SINAIS SENOIDAIS 2 MEDIÇÃO DE VALORES MÉDIO E EFICAZ COM MULTÍMETRO
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA DEPARTAMENTO ACADÊMICO DE ELETRÔNICA CURSO SUPERIOR DE TECNOLOGIA EM SISTEMAS ELETRÔNICOS Retificadores (ENG - 20301) AULA LAB 01 PARÂMETROS
Experimento 7. Circuitos RC e filtros de frequência. 7.1 Material. 7.2 Introdução. Gerador de funções; osciloscópio;
Experimento 7 Circuitos RC e filtros de frequência 7.1 Material Gerador de funções; osciloscópio; multímetros digitais (de mão e de bancada); resistor de 1 kω; capacitor de 100 nf. 7.2 Introdução Vimos
Sistemas de Controle 1
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 1 Cap2 - Modelagem no Domínio de Frequência Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle 1 Prof. Dr. Marcos
Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 11
Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL 420 Módulo Laplace Bode Fourier Conteúdo - Transformada de Laplace.... - Propriedades básicas da transformada de Laplace....2 - Tabela de
Roteiro-Relatório da Experiência N o 03 ANÁLISE DE MALHAS E ANÁLISE NODAL
COMPONENTES DA EQUIPE: Roteiro-Relatório da Experiência N o 03 ANÁLISE DE MALHAS E ANÁLISE NODAL ALUNOS NOTA 1 2 3 Data: /_ /_ :_ h 1. OBJETIVOS: Verificação experimental de ciruitos mistos com três malhas
Resposta de circuitos RLC
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS JOINVILLE DEPARTAMENTO DO DESENVOLVIMENTO DO ENSINO
Experimento 7 Circuitos RC e RL em corrente alternada. Parte A: Circuito RC em corrente alternada
Experimento 7 Circuitos RC e RL em corrente alternada 1. OBJETIO Parte A: Circuito RC em corrente alternada O objetivo desta aula é estudar o comportamento de circuitos RC em presença de uma fonte de alimentação
Experimento 10 Circuitos RLC em série em corrente alternada: diferença de fase entre voltagem e corrente
Experimento 10 ircuitos em série em corrente alternada: diferença de fase entre voltagem e corrente 1. OBJETIVO O objetivo desta aula é estudar o comportamento de circuitos em presença de uma fonte de
Corrente alternada. Prof. Fábio de Oliveira Borges
Corrente alternada Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil https://cursos.if.uff.br/!fisica2-0117/doku.php
1.1 Montar o circuito de acordo com o apresentado na figura 1. Cuidado ao montar, especialmente verificando a conexão de cada um dos "jumpers".
I. Lista de Material 01 módulo MCM5/EV com fonte de alimentação 01 gerador de funções com cabos 01 osciloscópio com 02 pontas de prova 01 multímetro digital 01 chave de fenda pequena fios para ligação
Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 11
Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL 420 Módulo Laplace Bode Fourier Conteúdo - Transformada de Laplace.... - Propriedades básicas da transformada de Laplace....2 - Tabela de
Prática 6: CIRCUITO RLC, TRANSIENTES e RESSONÂNCIA
Prática 6: CIRCUITO RLC, TRANSIENTES e RESSONÂNCIA Objetivos Analisar o comportamento de circuitos RL, LC e RLC e analogias eletromecânicas. Vamos investigar o efeito da ressonância do circuito RLC no
Modelos Matematicos de Sistemas
Modelos Matematicos de Sistemas Introdução; Equações Diferenciais de Sistemas Físicos; Aproximações Lineares de Sistemas Físicos; Transformada de Laplace; Função de Transferência de Sistemas Lineares;
Eletromagnetismo - Instituto de Pesquisas Científicas
ELETROMAGNETISMO Vimos que a dissipação de energia num circuito nos fornece uma condição de amortecimento. Porém, se tivermos uma tensão externa que sempre forneça energia ao sistema, de modo que compense
CIRCUITOS ELÉTRICOS I PROGRAMAÇÃO 02/16
CIRCUITOS ELÉTRICOS I PROGRAMAÇÃO 02/16 - Introdução - Método de avaliação - Data das provas: P1: 04/10/16 P2: 08/11/16 P3: 22/11/16 (somente para faltosos) - Suspensão de aulas: 09/08/16, 16/08/16, 15/11/16
Experimento 10 Circuitos RLC em série em corrente alternada: diferença de fase entre voltagem e corrente
Experimento 0 ircuitos em série em corrente alternada: diferença de fase entre voltagem e corrente. OBJETIVO O objetivo desta aula é estudar o comportamento de circuitos em presença de uma fonte de alimentação
CIRCUITOS ELÉTRICOS I PROGRAMAÇÃO 02/15
CIRCUITOS ELÉTRICOS I PROGRAMAÇÃO 02/15 Aula 1 04/08/15 - Introdução - Método de avaliação - Data das provas: P1: 29/09/15 P2: 03/11/15 P3: 10/11/15 (somente para faltosos) - Suspensão de aulas: Não há
Circuitos RC e filtros de frequência. 6.1 Material. resistor de 1 kω; capacitor de 100 nf.
Circuitos RC e filtros de frequência 6 6. Material resistor de kω; capacitor de 00 nf. 6.2 Introdução Vimos que a reatância capacitiva depende da frequência: quanto maior a frequência do sinal que alimenta
Circuitos oscilantes e corrente alternada (CA)
Circuitos oscilantes e corrente alternada (CA) Os circuitos que veremos a seguir serão compostos dos seguintes elementos: Resistores: Nos resistores R a tensão V R aplicada sobre ele e a corrente I que
Circuitos RC e filtros de frequência. 7.1 Material
Circuitos RC e filtros de frequência 7 7. Material Gerador de funções; osciloscópio; multímetros digitais (de mão e de bancada); resistor de kω; capacitor de 00 nf. 7.2 Introdução Vimos que a reatância
7. LABORATÓRIO 7 - RESSONÂNCIA
7-1 7. LABORATÓRIO 7 - RESSONÂNCIA 7.1 OBJETIVOS Após completar essas atividades de aprendizado, você deverá ser capaz de: (a) Determinar a freqüência ressonante em série a partir das medições. (b) Determinar
Experimento 9 Circuitos RL em corrente alternada
1. OBJETIVO Experimento 9 Circuitos RL em corrente alternada O objetivo desta aula é estudar o comportamento de circuitos RL em presença de uma fonte de alimentação de corrente alternada. 2. MATERIAL UTILIZADO
UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7011 ELETRICIDADE BÁSICA TURMA: 141A
UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7011 ELETRICIDADE BÁSICA TURMA: 141A MONTAGEM DE UM DETECTOR DE METAIS Equipe: Wagner Fiorini Fluck - 06141048. Alex Augusto
= 2πf é a freqüência angular (medida em rad/s) e f é a freqüência (medida
44 2. Roteiros da Segunda Sequência Experimento 1: Circuito RLC e Ressonância 2.1.1 Objetivos Fundamentar o conceito de impedância; Obter a frequência de ressonância em um circuito RLC; Obter a indutância
UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7040 Circuitos Elétricos I - Laboratório
Aula 05 Primeira parte UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7040 Circuitos Elétricos I - Laboratório AULA 05 PRIMEIRA PARTE OSCILOSCÓPIO 1 INTRODUÇÃO Nas aulas
Modelagem no Domínio do Tempo
CAPÍTULO TRÊS Modelagem no Domínio do Tempo SOLUÇÕES DE DESAFIOS DOS ESTUDOS DE CASO Controle de Antena: Representação no Espaço de Estados Para o amplificador de potência, E s a() V () s 150. Usando a
Experiência 5 - Resposta em Frequência de Circuitos RC e RLC PARTE 1 - INTRODUÇÃO TEÓRICA
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos - PSI EPUSP PSI 3212 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS Experiência 5 - Resposta em Frequência de Circuitos
Experimento 4 Circuitos RLC com corrente alternada: ressonância
Experimento 4 Circuitos RLC com corrente alternada: ressonância 1. OBJETIVO O objetivo desta aula é estudar o comportamento de circuitos RLC na presença de uma fonte de alimentação de corrente alternada.
CIRCUITOS ELÉTRICOS I PROGRAMAÇÃO 01/19
CIRCUITOS ELÉTRICOS I PROGRAMAÇÃO 01/19 - Data das provas: P1: 16/04/19 P2: 28/05/19 P3: 04/06/19 (somente para faltosos) - Horário das Provas: As provas se iniciam às 12h 40min. Retardatários não serão
Oscilações Eletromagnéticas e Corrente Alternada. Curso de Física Geral F328 1 o semestre, 2008
Oscilações Eletromagnéticas e orrente Alternada urso de Física Geral F38 o semestre, 008 Oscilações Introdução os dois tipos de circuito estudados até agora ( e ), vimos que a carga, a corrente e a diferença
Sistemas de Controle 1
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 1 Cap2 - Modelagem no Domínio de Frequência Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle 1 Prof. Dr. Marcos
Universidade Federal de Pernambuco
Universidade Federal de Pernambuco Departamento de Eletrônica e Sistemas Prática 2: PLL Circuitos de Comunicação Professor: Hélio Magalhães Alberto Rodrigues Vitor Parente Introdução O PLL (phase-locked
ADL Sistemas de Segunda Ordem Subamortecidos
ADL19 4.6 Sistemas de Segunda Ordem Subamortecidos Resposta ao degrau do sistema de segunda ordem genérico da Eq. (4.22). Transformada da resposta, C(s): (4.26) Expandindo-se em frações parciais, (4.27)
Experiência 9 Redes de Primeira ordem Circuitos RC. GUIA e ROTEIRO EXPERIMENTAL
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos - PSI - EPUSP PSI 3212 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS 1º semestre de 2018 Experiência 9 Redes de
LABORATÓRIO DE ELETRICIDADE E MAGNETISMO
1 LABORATÓRIO DE ELETRICIDADE E MAGNETISMO (Laboratório criado pelo prof. Dr. Ivanor Nunes de Oliveira e desenvolvido sob sua orientação) Foto 1. Laboratório de Eletricidade e Magnetismo 2 Trabalho de
Circuitos RL com onda quadrada e corrente alternada
Circuitos RL com onda quadrada e corrente alternada 7 7.1 Material resistores de 1 kω e 100 Ω; indutor de 23,2 mh. 7.2 Introdução O objetivo desta aula é estudar o comportamento de indutores acoplados
Comecemos escrevendo a forma geral de uma equação diferencial de ordem n, 1 inear e invariante no tempo, , b i
3 6 ADL aula 2 Função de Transferência Comecemos escrevendo a forma geral de uma equação diferencial de ordem n, 1 inear e invariante no tempo, onde c(t) é a saída, r(t) é a entrada e os a i, b i e a forma
4 Seja um circuito composto por um resistor R e um capacitor C, associados em série, alimentado por um gerador cuja voltagem gerada é dada por V g
PRÉ-RELATÓRIO 7 Nome: turma: Leia atentamente o texto da Aula 8, Experimento 7 Circuitos RC em corrente alternada, e responda às questões que seguem. 1 Qual é o significado de reatância capacitiva X C?
Circuitos Elétricos 2
Circuitos Elétricos 2 Tópico 2: Desempenho dos Circuitos em Função da Frequência Prof. Dr. Alex da 1 Rosa LARA ENE UnB www.ene.unb.br/alex Introdução No estudo de circuitos em regime permanente senoidal,
Circuitos resistivos alimentados com onda senoidal
Circuitos resistivos alimentados com onda senoidal 3 3.1 Material resistores de 1 kω e 100 Ω. 3.2 Introdução Nas aulas anteriores estudamos o comportamento de circuitos resistivos com tensão constante.
LABORATÓRIO DE CIRCUITOS ELÉTRICOS I. Prof. José Roberto Marques. Experiência 1 Transitórios Elétricos de 1ª ordem (CIRCUITO RC)
LABORATÓRIO DE CIRCUITOS ELÉTRICOS I Prof. José Roberto Marques Experiência 1 Transitórios Elétricos de 1ª ordem (CIRCUITO RC) Objetivos: Este primeiro experimento destina-se a demonstrar o comportamento
AULA 45 O OSCILADOR HARMÔNICO FORÇADO
AULA 45 O OSCILADOR HARMÔNICO FORÇADO OBJETIVOS: ESTUDAR O MOVIMENTO HARMÔNICO FORÇADO 45.1 MOVIMENTO HARMÔNICO FORÇADO Este oscilador está na base de um grande número de fenômenos da Natureza e aplicações
Oscilações Eletromagnéticas e Corrente Alternada
Oscilações Eletromagnéticas e Corrente Alternada Oscilações LC Introdução Nos dois tipos de circuito estudados até agora (C e L), vimos que a carga, a corrente e a diferença de potencial crescem ou decrescem
